(3.92.96.236) 您好!臺灣時間:2021/05/07 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳復強
研究生(外文):Ful-Chiang Wu
論文名稱:應用田口方法決定診斷檢驗之最佳切點
論文名稱(外文):Determining the Optimum Cut-off Point of Diagnostic Tests by Taguchi Method
指導教授:吳炎崑吳炎崑引用關係
指導教授(外文):Yan-Kuen Wu
口試委員:吳炎崑盧永毅孫衙聰
口試委員(外文):Yan-Kuen WuYung-Yih LurYa-Chung Sun
口試日期:2017-06-16
學位類別:碩士
校院名稱:萬能科技大學
系所名稱:經營管理研究所在職專班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:30
中文關鍵詞:診斷檢驗靈敏度和特異性田口穩健設計品質損失函數Youden田口指數
外文關鍵詞:Diagnostic TestSensitivity and SpecificityTaguchi Robust DesignQuality Loss FunctionYouden_Taguchi Index
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
診斷檢驗是一種實施於病患,以確定某一特定疾病存在與否的醫學檢驗,因為早期和準確的診斷可降低疾病的發病率和死亡率。在疾病評估中,應用診斷檢驗可能會產生錯誤,因此診斷檢驗的準確性是以兩種機率來衡量:靈敏度和特異性。靈敏度為個體罹病狀況下,檢驗結果為陽性的機率;特異性為個體沒有罹病狀況下,檢驗結果為陰性的機率。有許多指標用來評估診斷績效,如接收者操作特徵曲線(ROC)、ROC下的面積、Youden指數、概似比與診斷勝算比。其中,Youden指數為一簡單評估診斷檢驗績效的統計量,此指數為ROC曲線的所有點,而使此指數最大值即為選擇最佳切點的標準。
田口穩健設計主要是減少雜音因子對產品或製程的影響,進而提高的顧客滿意度與營運績效。穩健設計的目的是使產品或製程的損失最小化,而田口所建議使用的SN比,乃基於錯誤之損失係數相等的條件下,對數位系統進行最佳化,然而,此兩種錯誤的損失係數是不相等的。診斷檢驗所存在錯誤率(偽陰性率與偽陽性率)的問題亦可視為田口數位動態系統。本研究根據田口品質損失函數概念,當偽陰性與偽陽性的損失係數不同時,對於母體為常態分配、對數常態分配、Gamma與Weibull分配時,推導Youden田口指數JT與最佳切點。

A diagnostic test is a medical test that is applied to a patient in order to determine the presence of a specific disease, where early and accurate diagnosis can decrease morbidity and mortality rates of disease. The application of a diagnostic test in the assessment of a disease may lead to errors, and therefore the accuracy of a diagnostic test is measured in terms of two probabilities: sensitivity and specificity. Sensitivity is the probability of a positive result when the individual has the disease, and specificity is the probability of a negative result when the individual does not have the disease. There are several indices are studied for evaluating diagnostic performance, such as sensitivity and specificity, receiver operating characteristic (ROC) curves, area under the ROC curve, Youden index, likelihood ratio and diagnostic odds ratio. The Youden index is a single statistic that captures the performance of a diagnostic test. The index is defined for all points of a ROC curve, and the maximum value of the index may be used as a criterion for selecting the optimum cut-off point.
Taguchi's robust design aims to reduce the impact of noise on the product or process quality and leads to greater customer satisfaction and higher operational performance. The objective of robust design is to minimize the total quality loss in products or processes. The SN ratio recommended by Taguchi is based on the errors with the same loss coefficient to optimize the digital dynamic problem. However, the losses due to the two types of errors are not equal. The problem of two error probabilities (false negative rate and false positive rate) in diagnostic tests can be viewed as a digital dynamic system in Taguchi method. The purpose of study is to obtain the optimum cut-off point for the diagnostic tests using the concept of Taguchi's quality loss function. The loss model of diagnostic tests is proposed due to different loss coefficients between false negative and false positive. The Youden_Taguchi index (JT) and optimum cut-off point are derived for the normal, lognormal, Gamma and Weibull distributions.

中文摘要 i
英文摘要 ii
目錄 iii
表目錄 iv
圖目錄 v
第一章 緒論 1
1.1 研究背景與動機 1
1.2鑑別診斷檢測之常用方法 4
1.3田口方法 6
第二章 文獻探討 9
2.1診斷檢驗之最佳切點與Youden指數的研究. 9
2.2數位動態系統之研究 10
2.3應用田口方法應用於診斷檢驗的相關研究 10
第三章 研究方法 11
3.1母體為常態分配之Youden田口指數與最佳切點 11
3.2母體為對數常態分配之Youden田口指數與最佳切點 18
3.3母體為Gamma分配之Youden田口指數與最佳切點 29
3.4母體為Weibull分配之Youden田口指數與最佳切點 21
第四章 研究結果與結論 23
參考文獻 27
1.Böhning. D. (2015), Youden’s Index and the Likelihood Ratio Positive in Diagnostic Testing, Methods of Information in Medicine, 54(4), 382 -383.
2.Bowling, S.R., Khasawneh, M.T., Kaewkuekool, S., Cho, B.R. (2009), A logistic approximation to the cumulative normal distribution, Journal of Industrial Engineering and Management, 2(1), 114-127.
3.Fluss, R., Faraggi, D., Reiser, B. (2005), Estimation of the Youden Index and It’s Associated Cutoff Point, Biometrical Journal, 47(4), 458–472.
4.Glas, A.S. Lijmer, J.G., Prins, M.H, Bonsel, G.J., Bossuyt, P.M.M. (2003), The Diagnostic Odds Ratio: A Single Indicator of Test Performance, Journal of Clinical Epidemiology, 56(11), 1129–1135.
5.Hanley J.A., McNeil, B.T. (1983), A Method of Comparing the Areas under Receiver Operating Characteristic Curve Derived from the Same Cases, Radiology, 148(3), 839-843.
6.Hanley, J.A. (1988), The Robustness of the "Binormal" Assumptions Used in Fitting ROC Curves, Medical Decision Making, 8(3), 197-203.
7.Hughes G. (2015), Youden’s Index and the Weight of Evidence, Methods of Information in Medicine, 54(2), 198 –199.
8.Lai, R. L., Wu, F. C., Chen, C. H. 2008, Robust Design of Digital Multiple Dynamic Systems, Journal of Information and Optimization Sciences, 29(1), 103-113.
9.Li, M.H. (2001), Optimising Operating Conditions by Selection of Optimal Threshold Value for Digital-digital Dynamic Characteristic, International Journal of Advanced Manufacturing Technology, 17(3), 210-215.
10.Lusted L.B. (1971), Signal Detectability and Medical Decision-making, Science, 171(3977), 1217-1219.
11.Middleton, D., Meter, D.V. (1955), Detection and Extraction of Signals in Noise from the Point of View of Statistical Decision Theory. I, Journal of the Society for Industrial and Applied Mathematics, 3(4), 192-253.
12.Middleton, D., Meter, D.V. (1956), Detection and Extraction of Signals in Noise from the Point of View of Statistical Decision Theory. II, Journal of the Society for Industrial and Applied Mathematics, 4(2), 86-119
13.Nakas, C.T., Alonzob, T.A., Yiannoutsos, C.T. (2010), Accuracy and Cut-off Point Selection in Three-class Classification Problems Using a Generalization of the Youden Index, 29(28), 2946-2955.
14.Nakas, C.T., Dalrymple-Alford, J.C.,  Anderson, T.J., Alonzo, T.A. (2013), Generalization of Youden Index for Multiple-class Classification Problems Applied to the Assessment of Externally Validated Cognition in Parkinson Disease Screening, Statistics in medicine, 32(6), 995 -1003.
15.Peterson,W.W., Birdsall, T.G., Fox, W.C. (1954), The Theory of Signal Detectability, Proceedings of the IRE Professional Group on Information Theory, 4(4), 171-212.
16.Randrianirina, F., Carod, J.-F., Ratsima, E., Chretien, J.-B., Richard, V., Talarmin, A. (2008), Evaluation of the Performance of Four Rapid Tests for Detection of Hepatitis B Surface Antigen in Antananarivo, Madagascar, Journal of Virological Methods, 151(2), 294-297.
17.Schisterman, E.F., Perkins, N. (2007), Confidence Intervals for the Youden Index and the Corresponding Optimal Cut-Point, Communications in Statistics-Simulation and Computation, 36(3), 549–563.
18.Schisterman, E.F., Perkins, N., Liu, A., Bondell, H. (2005), Optimal Cut-Point and Its Corresponding Youden Index to Discriminate Individuals Using Pooled Blood Samples, Epidemiology, 16(1), 73–81.
19.Shan, G. (2015), Improved Confidence Intervals for the Youden Index , PloS one, 10(7), 1-19.
20.Simpson A.J., Fitter, M.J. (1973), What is the Best Index of Detectability? Psychol Bull, 80(6), 481-488.
21.Skaltsa, K., Jover, L., Carrasco, J.L. (2010), Estimation of the Diagnostic Threshold Accounting for Decision Costs and Sampling Uncertainty, Biometrical Journal, 52(5), 676–697.
22.Stefan, M., Panduru, N.M., Ion, D.A. (2011), Estimation of Youden Index and Its Associated Optimal Cut-Point when the Parameters of Gamma Biomarkers are Estimated by the Method of Moments, , Proceedings of the Romanian Academy, Series A, 12(4), 269–276.
23.Taguchi, G. (1992), Taguchi Methods: Research and Development, American Suppliers Institute, Dearborn, MI.
24.Taner, M.T., Antony, J. (2000), The Assessment of Quality in Medical Diagnostic Tests: A Comparison of ROC/Youden and Taguchi Methods, International Journal of Health Care Quality Assurance, 13(7), 300-307.
25.Taner, M.T., Sezen, B. (2009), An Assessment of Diagnostic Efficiency by Taguchi/DEA Methods, International Journal of Health Care Quality Assurance, 22(1), 93-98.
26.Taner, M.T., Sezen, B. (2009), Modelling of Taguchi's Signal-to-noise Ratios for Healthcare, Total Quality Management & Business Excellence, 20(5), 483-495.
27.Taner, M.T., Sezen, B., Atwat, K. (2013), A Comparison of Two Diagnostic Performance Measures: Signal‐to‐noise Ratio Versus Partial Area under Receiver Operating Characteristic Curve, International Journal of Health Care Quality Assurance, 26(2), 109-117.
28.Vizard, A.L., Anderson, G.A., Gasser, R.B. (1990), Determination of the Optimum Cut-off Value of a Diagnostic Test, Preventive Veterinary Medicine, 10(1-2), 137–143.
29.Wu, F.-C. (2007), Robust Design of Digital-digital Dynamic System, Journal of the Chinese Institute of Industrial Engineers, 24(5), 378-387.
30.Wu, F.-C., Wang, H.-M., Fan, T.-Y. (2010), Quality Design of Taguchi’s Digital Dynamic Systems, International Journal of Industrial Engineering - Applications and Practice, 16(5), 405-416.
31.Yin, J.J, Samawi, H.M., Linder, D. (2016), Improved Estimation of Optimal Cut-Off Point Associated with Youden Index Using Ranked Set Sampling, Biometrical Journal, 58(4), 915-934.
32.Yin, J.J, Samawi, H.M., Linder, D. (2016), Improved Nonparametric Estimation of the Optimal Diagnostic Cut-off Point Associated with the Youden Index under Different Sampling Schemes, 58(4), 915-934.
33.Inde Youden W.J. (1950), Index for Rating Diagnostic Tests, Cancer, 3(1), 32-35.
電子全文 電子全文(網際網路公開日期:20220622)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔