跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳清枝
研究生(外文):Wu,Ching-Chin
論文名稱:多功能居家照護機器人循跡研究
論文名稱(外文):Path Following Study of Multi-Functional Home Care Robot
指導教授:譚仲明
指導教授(外文):Tan,Chung-Ming
口試委員:蔡宏榮邱永川譚仲明
口試委員(外文):Hong-rong CaiYong-Chuan QiuChung-Ming Tan
口試日期:2017-05-12
學位類別:碩士
校院名稱:吳鳳科技大學
系所名稱:光機電暨材料研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:108
中文關鍵詞:路徑誤差餐廳服務機器人兩輪差速路徑規畫
外文關鍵詞:Path errorrestaurant service robottwo rounds of differentialpath planning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:1
隨著人工智慧的普遍,自動化的機器人得到更多人的接受,而生活水平和衛生保健的發展導致人口的老化。使得越來越多的老人無法得到更良好的照顧。智慧型機器人結合感測技術和無線通信科技是降低醫療資源成本。在日本,服務機器人在機器人系列中非常受歡迎。為了開發智慧型移動機器人,我們將機械技術與安全技術相結合。
這項研究的第一個目標是開發一種照顧老年人的移動機器人。移動平台將採用3D CAD軟件(Pro-Engineering或Solidworks)進行設計。本研究將開發機器人平台的運動學方程。基於PC的控制器可以控制移動機器人平台和3軸機器人手臂。
該服務移動機器人配有“雷射定位系統”和“雷射測距儀”。雷射定位系統用於移動機器人的快速,精確定位和引導。雷射測距儀可以檢測靜態和動態障礙物。

With the popularity of artificial intelligence, automated robots get more people to accept. The rapid progress of standard of living and health care resulted in the increase of agedpopulation. More and more elderly people do not receive good care. Intelligent mobile robot combining sensing technologies and wireless communication technologies is a very important reducing the cost of medical resources. In Japan, service robots are very popular in robot family.
For developing the intelligent mobile robot, we combine the mecha-tronics technology with the safety technology in this research. The first objective of this research is to develop a service mobile robot for taking care of elderly people. .The mobile platform will be designed with 3D CAD software (Pro-Engineering or Solidworks). The kinematic equations of the robot platforms will be developed in this research.The PC-based controller can control the mobile robot platform and 3-axis robot arm.
This service mobile robot is equipped with "Laser positioning system" and "Laser Range Finder". The laser positioning system is used for rapid and precise positioning and guidance of the mobile robot. The laser range finder can detect a static and dynamic obstacle.

Abstract .............…..….......................................................................i
Index……..........................................................................................ii
概要……………………………………………………………………………. iii
ListofFigures ................................................................................. iv
List of Tables .................................................................................. v
Chapter I Introduction……………….……....…...................................... 1
1.1 Background ........……….......…................….......................….......1
1.2 Objective ..……....................................................................…....2
1.3 Literaturereview ...................................................................…....3
1.4Paper structure ...............................................…...................…....6
Chapter II Robot formula…………………………………..………….………...7
2.1 Omni-directional wheel movement formula..........…........................7
2.2 Bezier-curve formula ..................................................................10
Chapter III Robot Architectures ..........................…........…........……….12
3.1 Architectures ………...........................................................…........12
3.1.1 Configuration layers robots ...………….….........................…........13
3.1.2 Configuration requirements ........................................….........….14
3.2 Configuration layers:………….…………..……………………...………..15



3.3 Positioning System .......................................................…........ 33
3.4 Omni-directional wheel chassis .....................................…........ 35
3.5 Motor and drive ...........................................................…........ 37
3.6 Tri-axial arm architecture .............................................…........ 40
3.6.1 Tri-axial arm architecture ……...................................…........ 40
3.6.2 Robot master computer sending and receiving end instructionprocess .......…………...........…........…........….....….... 42
3.6.3 Arm state judgement...............……….........................…….......43
3.6.4 Arms control instructions defined ….........................…........….45
3.6.5 Three-axis arm controller(Atmel89C55single-chip)………......….47
Chapter IV Robot control software architecture …...…........................50
4.1 Positioning System and Program values………..............................50
4.1.1 VB system value and the actual distance conversion...................50
4.1.2 Positioning System numeric conversion ............…...…...............51
4.2 Virtual map ..............………...................................................…. 53
4.2.1 Virtual map building. ..........................................……….......….53
4.2.2 Path calculation. ................................……..............................….55
4.2.3 Path optimization. ..............................................................…..59
4.3Automatic patrolling .............................................….............61
4.4 Obstacle avoidance rule. .......................................................63
4.5 Human sensor applications....................……...………..............65
4.6 Arms control. ............................……..……………...........…….67
4.7 robot master interface………………………………………......69
4.8 remote monitoring software……..….…………………………..…….…..70
4.8.1 Remote monitoring interface...................................…..…... 70
4.8.2 Communication Process .........................................……......75
Chapter V wheel path to full test errorh ............................77
5.1 Stability straight path and movable idler roller Experiment …..78
5.1.1 The omnidirectional wheel straight path error experiments ...78
5.1.2 Omnidirectional wheel chassis stop slide experiment ...........82
5.2 Square experimental error path .......................................…...83
5.3 Circular path error experiments .......................................…..86
5.4 Bezier curve path error experiments ......................................92
Chapter VI Results .........…….………........................……....…...........95
6.1 The actual automatic patrol ............................................…… 95
6.2 Virtual path map ..................................……........................ 96
6.3 Body sensors tracking .....................................................… 96
6.4 Obstacle avoidance function tests ........................................ 97
6.5 Application functional testing ............................................ .98
Chapter VII Conclusions and Future Prospects.................................103
7.1 Conclusion .......................................................................103
7.2 Future direction of improvement ........................................ 105
References ...................……………………………….........…..........…107

List of Figures
Figure 2.1 Configuration (a) comprehensive round of Figure 2.1 (b) three-wheel all-round wheel chassis ..…………..…...............................7
Figure 2.2 to wheel the whole schematic diagram formula………………..8
Figure 2.3 Three-wheel all-round Kinematic Diagram…..…….…………10
Figure 2.4 Structure of four Bézier curve in Fig. ..…....................…... 11
Figure 2.5 schematic diagram of second order Bezier curve formula .…12
Figure 3.1 System Architecture ........................................................ 13
Figure 3.2 elderly home care robot ........................................…........ 15
Figure 3.3 underlying physical;layout ............................................. 16
Figure 3.4 Rectifier (Input: AC 110V, output: DC 24V) .......…………....17
Figure 3.5Transformer.............................................….….............…..17
Figure 3.6 Power Control panel ..........................….......…..................18
Figure 3.7 I / O card entity ...........................…..…........................... 19
Figure 3.8 I / O card configuration functions at .................................. 20
Figure 3.9 infrared sensor receiver circuit board .................................21
Figure 3.10 opto-coupler PC817 signal converter circuit diagram .…....21
Figure 3.11 Infrared actuator shown in Figure .................................... 22
Figure 3.12 The top radio signal receiving and signal reception armrest plate............................................................................................... 23
Figure 3.13 receives radio signals armrest signal reception circuit diagram .............……………………………….…….............................. 23
Figure 3.14 Master PC based robot systems ..................................…. 24
Figure 3.15 8GB2.5 "SSD ................................………………..............24
Figure 3.16 reminders interface .......................................…........…...25
Figure 3.17 electronic sphygmomanometer ......................................…25
Figure 3.18 three-axis orthogonal coordinate type robot ...............….…27
Figure 3.19 for the human body sensors entities FIG .....................….. 28
Figure 3.20 GSM SMS transmission system ...................…….......…….29
Figure 3.21 StarGazer indoor positioning system .....................…….....30
Figure 3.22 touch screen..............................................................…..31
Figure 3.23 Wireless network card .............................................…….31
Figure 3.24 Wireless IP camera ..................................................…….32
Figure 3.25 robot control provided with handrails to help the elderly standing walking ..………………………………….................................33
Figure 3.26 indoor location system of FIG robot ...................….......….34
Figure 3.27 Positioning reflective tag ..........................................…. 34
Figure 3.28 Passive infrared image recognition code ......................... 35
Figure 3.29 Robot mobile platform of CAD design …................…......36
Figure 3.30 structure (a) comprehensive round of ...................……....36
Figure 3.30 (b) three-wheelall-round wheel chassis of motor configuration...................................................................................36
Figure 3.31 by the DC servo motor to drive the full range of wheel ...….37
Figure 3.32 three omnidirectional wheel chassis finished ...........……...37
Figure 3.33 Low Cost control systems: single-chip 8051 and expanded LM629 servo motor control board ..................................................…38
Figure 3.34 cost of the servo motor driving circuit ...................…….....39
Figure 3.35PWM schematic signal generated ..............................….....39
Figure 3.36 Commercially available DC servo motor drive ..................40
Figure 3.37 robot entity Figure ..........................................................41
Figure 3.38 robot crawl PET bottles (half a bottle of water) .................41
Figure33.39 collect items of workflow chart …...................................42
Figure3.40 Working flowchart in to placed articles.............................43
Figure 3.41 Status of arm movements judgement process .............…….44
Figure 3.42 arms control command of the programming interface .....…44
Figure 3.43mechanical clamping arm has sensed a flowchart of the items (pick) .............................................................................................45
Figure 3.44 from a single wafer P2.0-P2.2 came from the host computer to fetch the arms control instruction, and the mechanical arm controlled ...................................................................................... 46
Figure 3.45 of the single-chip I / O port planning ...............................47
Figure 3.46 triaxial arms control and drive circuit diagram ...........…….48
Figure 3.47 TA7279AP internal circuit diagram ..................................48
Figure 3.48 arms control and drive circuits (front) ......................…….49
Figure 3.49 arms control and drive circuit (negative) ....................……49
Figure 4.1 VB coordinates system ..............................................…....51
Figure 4.2 General quadrant coordinate .............................………….. 51
Figure 4.3 original coordinate ....................................................…… 52
Figure 4.4 coordinate conversion ...................................….........…….53
Figure 4.5 10 * 10 split map (map grid point) ..............................…….54
Figure 4.6 The virtual memory map information .........................……..55
Figure 4.7 is a flowchart of standard gauge ........................................56
Figure 4.8 weight standard gauge .....................…..............................57
Figure 4.9 Search path (reverse search by the destination T, decreasing the weight program, until you find the position of the robot R) .................58
Figure 4.10 actual route search ....................................….............…..58
Figure 4.11 path optimization ...................................................……..59
Figure 4.12 (abc) bevel search ...........................................................60
Figure 4.13 optimal path search ....................................................... 60
Figure 4.14 weight formula pathfinder ...................................…........ 61
Figure 4.15 Indoor Maps planning .............................................….....62
Figure 4.16 dynamic display interface ............................................…62
Figure 4.17 interface to establish the patrol point ........................…….63
Figure 4.18 Patrol set point of interface importance ........................….63
Figure 4.19 Configuration of the reflection type infrared sensor .......…65
Figure 4.20 Full barrier to avoid mobile platform of the schematic...…..65
Figure 4.21 Human sensor detection range ..................................…….66
Figure 4.22 Human overlap angle sensor to detect exploit in order to increase the accuracy of determining the movement of the body .....…..67
Figure 4.23 three-axis robotic arm ......................…......................…..68
Figure 4.24 robot control interface ........................…...................……68
Figure 4.25 main program of the drop-robot control interface .......…….69
Figure 4.26 robots interface ............................................………….….70
Figure 4.27 The distal end of the robot monitoring interface ......……...71
Figure 4.28 Now the remote monitoring interface on the receiving........73
Figure 4.29dynamic obstacle avoidance sensor information display.......73
Figure 4.30 Robot distal end of the command and the password receiving interface .........................................................................................74
Figure 4.31 Robot master computer receives instruction execution remotely control the process..............................................................76
Figure 5.1 the forward direction of the straight path when the robot (motor speed: W1 = 0, W2 = (-W3)) .............................................................78
Figure 5.2 Linear slide test ......................…......................................79
Figure 5.3 trajectory record ...............................…............................79
Figure 5.4 (a) straight path error ..................................…..................81
Figure 5.4 (b) straight path error ...........................…........................ 81
Figure 5.4 (c) straight path error ....................................…................82
Figure 5.5 under different speed sliding stop error test ..............….......83
Figure 5.6 speed under different experimental results slide stop error….83
Figure 5.7 Error different paths of the test interface ..................….. …84
Figure 5.8 displays real-time path (a square path Test1) ......…..............85
The results of Figure 5.9 Excel displays (square path Test1) ......……....85
Figure 5.10 circumferential angleThe schematic ...........................…..86
Figure 5.11 Test 1-1 circular path trajectory ...............................……..87
Figure 5.12 Test 1-1 azimuth offset ............................................…… 87
Figure 5.13 Test 1-2 circular path trajectory ......................…..............88
Figure 5.14 Test 1-2 azimuth offset ....................................................88
Figure 5.15 Test 2-1 circular path trajectory ........................……….… 89
Figure 5.16 Test 2-1 azimuth offset ...................................………….. 89
Figure 5.17 Test 2-2 circular path trajectory .........................……....... 90
Figure 5.18 Test 2-2 azimuth offset ................................................... 90
Figure 5.19 Experiment one (ideal Baez-under the experimental path- on)..................................................................................................92
Figure 5.20 second experiment (over Baez-under the experimental path- on) ...........................................................................................…..92
Figure 2.21 third experiment (over Baez-under the experimental path- on) ................................................................................................93
Figure 6.1 schematic automatic segmentation of video patrol .............95
Figure 6.2 Human infrared sensor to track unknown persons divide the movie schematic..............................................................................97
Figure 6.3 alerts .............................................................................98
Figure 6.4 Robot armrest and control buttons .............................……99
Figure 6.5 electronic sphygmomanometer ................................…….100
Figure 6.6 reads the pressure level ..............................................…100
Figure 6.7 SMS receiving content ..............................................….101
Figure 6.8 Blood pressure measurement record ...............................102
Figure 6.9 Remote Control interface ............................................….102


List of Tables
Table 5.1 robot forward speeds and all-wheel to set the servo motor speed relationship V value .........................................................................77
Table 5.2 (ac) straight path error ...................................................... 80


(1)Muneyuki Shimokura, Shuichi Nakanishi, Tadashi Ohta,“Home Network Service Programs described in a Rule-based Language,” ICSEA International Conference , Aug. 25-31, 2007,pp62 – 62.
(2)Chee-Min Yeoh; Hee-Yuan Tan; Choon-Keat Kok; Hoon-Jae Lee; Hyotaek Lim,“e2Home:A Lightweight Smart Home Management System,” ICCIT International Conference,Nov. 11-13,2008,pp82 – 87
(3)Dongyeop Kang; Ho-Jin Choi,”Robot Task Planning for Mixed-Initiative Human Robot Interaction in Home Service Robot,” IEEE International Conference for Computer and Information Technology, July. 8-11, 2008,pp49 – 54
(4)Xuefeng Dai Ming Yin Yan Shi,“Behavior Description and Environment Modelling for Wheeled Mobile Robots of Home Service,” ICICIC International Conference, Sept. 5-7, 2007,pp515 - 515
(5)Dengler, S; Awad, A; Dressler, F,” Sensor/Actuator Networks in Smart Homes for Supporting Elderly and Handicapped People,”AINAW International Conference, May. 21-23, 2007,pp863 – 868
(6)Yoon-Gu Kim; Han-Kil Kim; Suk-Gyu Lee; Ki-Dong Lee,“Ubiquitous Home Security Robot Based on Sensor Network,” IEEE/WIC/ACM International Conference, Dec. 18-22, 2006,pp700 – 704
(7)Liang-Yen Lin; Ming-Chun Cheng; Shyan-Ming Yuan,” Standards-based User Interface Technology for Universal Home Domination,” ICHIT. International Conference , Nov. 9-11, 2006,pp298 – 307
(8)Jinwoo Choi; Kyoungmin Lee; Sunghwan Ahn; Minyong Choi;Wan Kyun Chung,”A Practical Solution to SLAM and Navigation in Home Environment,” SICE-ICASE International Joint Conference, Oct. 18-21, 2006,pp2015 – 2021.
(9)Hwan Park Ji;Oh Kim Ki;Wook Jeon Jae,” PDA based user interface management system for remote control robots,” SICE-ICASE International Joint Conference, Oct. 18-21, 2006,pp417 – 420
(10)Hamada, T.; Okubo, H; Shimada, Y.; Watanabe, Y.; Onari, H.; Kagawa, Y.; Hashimoto, T.; Akazawa, T.,” Effective Method of Robot Therapy in a Nursing Home -Study on Intervention of Therapy,” SICE-ICASE, 2006. International Joint Conference, Oct. 18-21, 2006,pp3391 – 3394
(11)Minkyoung Kim; Hyun Kim,”Behavior Coordination Mechanism for Intelligent Home,” IEEE/ACIS International Conference, July. 10-12, 2006,pp452 – 457
(12)Argyros, A.A.; Bekris, K.E.; Orphanoudakis,”Robot Homing based on Corner Tracking in a Sequence of Panoramic Images,” IEEE Computer Society Conference, 2001,II-3 - II-10 vol.2
(13)Jahanian, O.; Karimi, G.,”Locomotion Systems in Robotic Application,” IEEE International Conference, Dec. 17-20 ,2006,pp689 – 696
(14)Wada, M,”Omnidirectional Control of 4WD Robotic Base,” SICE-ICASE International Joint Conference, Oct. 18-21, 2006,pp2064 – 2067
(15)Li Kailun, "omni-directional robot gene modulation PID Control", National Yunlin University of Science and Technology Institute of Electrical Engineering, MA dissertation, January 2007.
(16)Chen Jianxun translations, "Game AI", O'REILL Publishing House, Taiwan, chapter III, 2005/10.
(17)Rong Qin Technology, "Visual C++ Game Design Magic Magic Code", Acer Peak publishing house, Taiwan, P5-31-P5-47, 2004/3/12.
(18)Chen affluent, Xiao Huide translations, "Visual Basic Internet Programming", known City Digital publishing house, Taiwan, 2000/12.
(19)Zhang Yi and the "DESIGNER6 Computer aided circuit design [circuit board]", all-China Science and Technology Book Company, 2007/1.
(20)Hong Jinkui, "Proficient in Visual Basic 6.0", Wen Kui information, 1999/2.
(21)Bezier curves, Wikipedia

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top