跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉韋初
研究生(外文):Wei-Chu Liu
論文名稱:邊緣深度提升對上顎第一大臼齒冠蓋體贗復之生物力學影響:三維有限元素分析
論文名稱(外文):Biomechanical effects of deep margin elevation technique on maxillary first molar with onlay restoration by 3D finite element analysis
指導教授:許明倫許明倫引用關係陳振昇陳振昇引用關係
指導教授(外文):Ming-Lun HsuChen-Sheng Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:牙醫學系
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:66
中文關鍵詞:邊緣深度提升應力分析有限元素法
外文關鍵詞:deep margin elevationproximal box elevationmargin relocationstress analysisfinite element method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
問題敘述
邊緣深度提升為臨床解決牙齦下缺損之直接贗復時需要移除多餘健康齒質、取模困難度增加和贗復物黏著時難以將多餘黏著劑移除乾淨等問題。然目前並未有足夠的證據及長年的追蹤可以支持此技術的預後,僅少數體外實驗研究探討其各材料間交界面在經過疲勞測試後是否會破壞其外表面完整性,無法瞭解整體交界面的應力分佈。

研究目的
利用有限元素分析法,觀察上顎第一大臼齒在不同深度之遠心缺損施作邊緣深度提升並以陶瓷冠蓋體贗復後,且與未施作邊緣深度提升之模型作比較,來探討邊緣深度提升後之應力分佈。

研究材料與方法
利用微電腦斷層掃描及三維電腦輔助設計軟體,建構出人類上顎第一大臼齒模型,並切割出四組模型:遠心缺損至牙齦下1公釐、2公釐及3公釐三組,皆利用邊緣深度提升至牙齦上1公釐,包含冠蓋體、黏著層、複合樹脂、牙釉質及牙本質等組件;及遠心缺損至牙齦下2公釐,未使用邊緣深度提升,包含冠蓋體、黏著層、牙釉質、牙本質等組件。施予800牛頓及300牛頓的力量,模擬緊咬及咀嚼時的咬合力,分析複合樹脂與牙本質交界面的應力分佈。

結果
牙齦下2公釐之缺損,有施作邊緣深度提升之組別可以減低複合樹脂與牙本質交界面之平均等效應力及平均最大剪應力。亦觀察到四組模型在此交界面之遠心側會出現應力提升之現象,尤其在緊咬時,牙齦下3公釐的組別,最大剪應力會接近目前黏著系統所達之黏著強度。

結論
在有限元素的假設條件與限制下,可得出幾點結論:(1) 在缺損為2公釐以內時,施作邊緣深度提升可減少複合樹脂與牙本質交界面之應力集中的現象,(2) 當缺損達牙齦下3公釐時,不建議使用邊緣深度提升,(3) 有緊咬的患者亦不建議使用邊緣深度提升。
Statement of problem
Traditionally, if we want to restore the tooth with sub-gingival defect, there are some problems need to face, like remove too much sound tooth structure, hard to take impression, remove excessive cement difficulty. Recently, deep margin elevation technique become the solution for those problems. However, no sufficient evidences and long time clinical follow up to support the prognosis of deep margin elevation. Only some in vitro studies focus on margin integrity of interface between different materials, we could not understand the stress distribution of those interfaces.

Purpose
Using the finite element method to observe the stress distribution between interfaces of human upper first molar with deep margin elevation technique from different depth of distal sub-gingival defect and restored by ceramic onlay, and compared to a model only restored by onlay without deep margin elevation technique.

Material and methods
Combined micro computed tomography and three dimensional computer-aided design software to build up a human upper first molar model, then make four different models: sub-gingival 1mm, 2mm and 3mm distal defect, then build up to supra-gingival 1mm, each of those three models contains 5 parts: onlay, cement layer, composite resin, enamel and dentin. And one model which with distal sub-gingival defect restored by onlay directly, contains four parts: onlay, cement layer, enamel and dentin. Loading force with 800N and 300N to simulate the biting force of clenching and chewing, then observing the stress distribution of the interface between composite resin and dentin.

Result
Comparing sub-gingival 2mm models, with or without deep margin elevation technique. The model with deep margin elevation reduces the von mise’s stress and maximum shear stress of the interface between composite resin and dentin. Moreover, both two stress increased over distal side of the interface, especially in the model with sub-gingival 3mm defect while clenching, the maximum shear stress is equal to the bonding strength of modern bonding systems.

Conclusion
Within the limitation of finite element analysis, the following conclusion can be drawn: (1) when the defect within 2mm, using deep margin elevation technique can reduce the stress concentration between composite resin and dentin, (2) if the defect approach to 3mm, deep margin elevation technique is not recommended, (3) deep margin elevation technique is also not recommended for those patients with clenching.
目錄
中文摘要……I
Abstract……III
目錄……V
圖目錄……VIII
表目錄……X

第一章 緒論
1.1 前言……1
1.2 邊緣深度提升的發展……2
1.3 邊緣深度提升的評估
1.3.1 邊緣的連續性……3
1.3.2 生物性寬度的侵犯與否……5
1.4 研究目的……5

第二章 研究材料與方法
2.1 三維有限元素模型建立
2.1.1 樣本選擇與模型建立……6
2.1.2 三維醫學影像建模……6
2.1.3 實驗模型……7
2.2 有限元素模型建立與邊界條件設定
2.2.1 元素選擇……9
2.2.2 材料性質設定……9
2.2.3 模型網格化……10
2.2.4 介面接觸設定……11
2.2.5 拘束條件……12
2.2.6 施力條件……12
2.2.7 受力位置與面積設定……13
2.3 分析目標……14
2.4 收斂測試……15
2.5 模型比較……15

第三章 結果
3.1 收斂測試……17
3.2 模型比較……17
3.3 交界面承受負荷之應力表現
3.3.1 緊咬時之等效應力……18
3.3.2 緊咬時之最大剪應力……18
3.3.3 咀嚼時作為工作側之等效應力……19
3.3.4 咀嚼時作為工作側之最大剪應力……19

第四章 討論
4.1 三維模型的建立
4.1.1 微電腦斷層的應用……20
4.1.2 建模方式的討論……21
4.2 結果分析討論……22
4.3 有限元素分析……23
4.4 臨床意義……23

第五章 結論與臨床建議……25
附圖……26
附表……49
參考文獻……52
附錄(3Dslicer步驟)……58
光碟片(3維模型製作影片檔)


圖目錄
圖一、 微電腦斷層掃描影像……26
圖二、 3Dslicer中以閾值區分及建立牙釉質初始模型……27
圖三、 牙本質匯入Meshmixer軟體……28
圖四、 牙釉質匯入Meshmixer軟體……28
圖五、 三組施作邊緣深度提升之模型組件……29
圖六、 未施作邊緣深度提升之模型組件……30
圖七、 FreeCAD將模型實體化之操作……31
圖八、 實體模型匯入ANSYS及網格化之操作……32
圖九、 拘束條件示意圖……33
圖十、 緊咬時外力施予位置示意圖……33
圖十一、 咀嚼時外力施予位置示意圖……34
圖十二、 緊咬時外力條件示意圖……34
圖十三、 咀嚼時外力條件示意圖……35
圖十四、 收斂測試圖……35
圖十五、 模型比較應力圖……36
圖十六、 應力值顯示路徑示意圖……36
圖十七、 緊咬時等效應力分佈圖……37
圖十八、 緊咬時最大剪應力分佈圖……40
圖十九、 咀嚼時等效應力分佈圖……43
圖廿、 咀嚼時最大剪應力分佈圖……46


表目錄
表一、 模型分類……49
表二、 材料性質設定……49
表三、 模型元素與節點數量……50
表四、 收斂測試之結果數據……50
表五、結果總表……51
1. Manhart J, Chen H, Hamm G, Hickel R., Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent, 2004. 29: p. 481-508.
2. Da Silva Gonçalves D, Cura M, Ceballos L, Fuentes MV, Influence of proximal box elevation on bond strength of composite inlays. Clin Oral Investig, 2017. 21(1): p. 247-254.
3. Julia CS, Philipp S, Roland W, Patrick RS, Clemens W, Biologic width dimensions – a systematic review. J Clin Periodontol, 2013. 40(5): p. 493-504.
4. Di Fiore PM, Complications of surgical crown lengthening for a maxillary molar with four roots: a clinical report. J Prosthet Dent., 1999. 82(3): p. 266-269.
5. Veneziani M, Adhesive restorations in the posterior area with subgingival cervical margins: new classification and differentiated treatment approach. Eur J Esthet Dent, 2010. 5(1): p. 50-76.
6. Magne P, Spreafico RC, Deep margin elevation: a paradigm shift. Am J Esthet Dent, 2012. 2(2).
7. Conrad HJ, Seong WJ, Pesun IJ, Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent, 2007. 98(5): p. 389-404.
8. Dietschi D, Spreafico R., Current clinical concepts for adhesive cementation of tooth-colored posterior restorations. Pract Periodontics Aesthet Dent., 1997. 10(1): p. 47-54; quiz 56.
9. Dietschi D, Olsburgh S, Krejci I, Davidson C, In vitro evaluation of marginal and internal adaptation after occlusal stressing of indirect class II composite restorations with different resinous bases. Eur J Oral Sci, 2003. 111(1): p. 73-80.
10. Frankenberger R, Hehn J, Hajtó J, Krämer N, Naumann M, Koch A, Roggendorf MJ, Effect of proximal box elevation with resin composite on marginal quality of ceramic inlays in vitro. Clin Oral Investig, 2013. 17(1): p. 177-83.
11. Rocca GT, Krejci I., Bonded indirect restorations for posterior teeth: from cavity preparation to provisionalization. Quintessence Int. , 2007. 38(5): p. 371-9.
12. Kielbassa AM, Philipp F, Restoring proximal cavities of molars using the proximal box elevation technique: Systematic review and report of a case. Quintessence Int, 2015. 46(9): p. 751-64.
13. Müller V, Friedl KH, Friedl K, Hahnel S, Handel G, Lang R, Influence of proximal box elevation technique on marginal integrity of adhesively luted Cerec inlays. Clin Oral Investig, 2017. 21(2): p. 607-612.
14. Ilgenstein I, Zitzmann NU, Bühler J, Wegehaupt FJ, Attin T, Weiger R, Krastl G, Influence of proximal box elevation on the marginal quality and fracture behavior of root-filled molars restored with CAD/CAM ceramic or composite onlays. Clin Oral Investig, 2015. 19(5): p. 1021-8.
15. Frese C, Wolff D, Staehle HJ., Proximal box elevation with resin composite and the dogma of biological width: clinical R2-technique and critical review. Oper Dent, 2014. 39(1): p. 22-31.
16. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward SR, Miller JV, Pieper S, Kikinis R, 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging, 2012. 30(9): p. 1323-1341.
17. Schmidt R, Singh K, Meshmixer : an interface for rapid mesh composition. ACM SIGGRAPH 2010 Talks, 2010.
18. Lee HH, Finite element simulations with ANSYS workbench 16. 2015 : SDC publications.
19. Magne P, Stanley K, Schlichting LH, Modeling of ultrathin occlusal veneers. Dent Mater, 2012. 28(7): p. 777-82.
20. Trindade FZ, Valandro LF, de Jager N, Bottino MA, Kleverlaan CJ, Elastic Properties of Lithium Disilicate Versus Feldspathic Inlays: Effect on the Bonding by 3D Finite Element Analysis. J Prosthodont, 2016.
21. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ, Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater, 2005. 21(10): p. 984-991.
22. Lefever D, Gregor L, Bortolotto T, Krejci I, Supragingival relocation of subgingivally located margins for adhesive inlays/onlays with different materials. J Adhes Dent, 2012. 14(6): p. 561.
23. Rosatto CM, Bicalho AA, Veríssimo C, Bragança GF, Rodrigues MP, Tantbirojn D, Versluis A, Soares CJ, Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of molars restored with bulk-fill composites and incremental filling technique. J Dent, 2015. 43(12): p. 1519-28.
24. Bates JF, Stafford GD, Harrison A, Masticatory function—a review of the literature. J Oral Rehabil, 1975. 2(3): p. 281-301.
25. Schlichting LH, Maia HP, Baratieri LN, Magne P, Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion. J Prosthet Dent, 2011. 105(4): p. 217-226.
26. Okeson JP, Management of Temporomandibular Disorders and Occlusion-E-Book. 2014 : Elsevier Health Sciences.
27. Ferrario VF, Sforza C, Serrao G, Dellavia C, Tartaglia GM, Single tooth bite forces in healthy young adults. J Oral Rehabil, 2004. 31(1): p. 18-22.
28. Preis V, Dowerk T, Behr M, Kolbeck C, Rosentritt M, Influence of cusp inclination and curvature on the in vitro failure and fracture resistance of veneered zirconia crowns. Clin Oral Investig, 2014. 18(3): p. 891-900.
29. Magne P, Cheung R, Numeric simulation of occlusal interferences in molars restored with ultrathin occlusal veneers. J Prosthet Dent, 2017. 117(1): p. 132-137.
30. Kumagai H, Suzuki T, Hamada T, Sondang P, Fujitani M, Nikawa H., Occlusal force distribution on the dental arch during various levels of clenching. J Oral Rehabil, 1999. 26(12): p. 932-5.
31. Bedford A, Fowler WL, Liechti KM, Statics and mechanics of materials. 2003 : Prentice Hall/Pearson Education.
32. Tyndall DA, Rathore S., Cone-beam CT diagnostic applications: caries, periodontal bone assessment, and endodontic applications. Dent Clin North Am, 2008. 52(4): p. 825-841.
33. Krisjane Z, Urtane I, Krumina G, Neimane L, Ragovska I, The prevalence of TMJ osteoarthritis in asymptomatic patients with dentofacial deformities: a cone-beam CT study. Int J Oral Maxillofac Surg, 2012. 41(6): p. 690-695.
34. Tsiklakis K, Syriopoulos K, Stamatakis HC, Radiographic examination of the temporomandibular joint using cone beam computed tomography. Dentomaxillofac Radiol, 2004. 33(3): p. 196-201.
35. Mildenberger P, Eichelberg M, Martin E, Introduction to the DICOM standard. Eur Radiol, 2002. 12(4): p. 920.
36. Mario B, Leif K, Mark P, Pierre A, Bruno L, Polygon mesh processing. 2010 : CRC press.
37. Cashman TJ, NURBS-compatible subdivision surfaces. 2010, Cashman, Thomas J.
38. Topala APDF and Faur EN, Investigation of the preparation design on stresses resulted in ceramic inlays restored premolars. Int Poster J Dent Oral Med, 2017.
39. Meharry MR, Moazzami SM, Li Y, Comparison of enamel and dentin shear bond strengths of current dental bonding adhesives from three bond generations. Oper Dent, 2013. 38(6): p. E237-E245.
40. Isolan CP, Valente LL, Münchow EA, Bond strength of a universal bonding agent and other contemporary dental adhesives applied on enamel, dentin, composite, and porcelain. Appl Adhes Sci, 2014. 2(1): p. 25.
41. Habelitz S, Marshall SJ, Marshall GW Jr, Balooch M, Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol, 2001. 46(2): p. 173-183.
42. Chun K, Choi H, Lee J, Comparison of mechanical property and role between enamel and dentin in the human teeth. J Dent Biomech, 2014. 5.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊