跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王鼎涵
研究生(外文):Ding-Han Wang
論文名稱:類風溼性關節炎誘發之顳顎關節紊亂實驗動物模式建立
論文名稱(外文):Animal Models of Rheumatoid Arthritis Induced Temporomandibular Joint Disorders
指導教授:許明倫許明倫引用關係
指導教授(外文):Ming-Lun Hsu
學位類別:博士
校院名稱:國立陽明大學
系所名稱:牙醫學系
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:類風溼性關節炎顳顎關節顳顎關節盤胞外間質連接蛋白
外文關鍵詞:Rheumatoid arthritisTemporomandibular jointTemporomandibular joint discExtracellular matrixLink protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:796
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
顱顎障礙症(craniomandibular disorder)為牙科門診常見之疾患,輕者引起患者顳顎關節或咀嚼肌群之不適及疼痛,重者導致下顎運動受限、咀嚼困難、顳顎關節盤移位(temporomandibular joint disc displacement)、關節內部紊亂 (internal derangement)甚至顳顎關節之骨性破壞(bony destruction)等問題。類風濕性關節炎(rheumatoid arthritis)亦為人類常見之疾病,由於自體免疫系統之問題,造成患者多處骨關節受到破壞、形變,進而影響正常功能。以往在風濕免疫科門診中,多以四肢關節為主要診治目標,近年來顱顎障礙症患者日趨增多,部分患者為類風濕性關節炎所誘發之顳顎關節骨性障礙,甚至造成患者開咬 (open bite)而嚴重影響患者之咀嚼系統。研究指出約有 56%之類風濕性關節炎患者具有顳顎關節骨性障礙,近年來臨床觀察更高達70%之類風濕性關節炎患者,罹患顳顎關節骨性障礙;病人常因關節發炎導致軟骨細胞及其胞外間質(extracellular matrix)的膠 原蛋白(collagen)、連接蛋白(link protein)及蛋白聚糖(proteoglycan)結構受破壞,使顳顎關節的關節盤受損而無法維持正常的關節功能。顳顎關節運動方式不同於其他關節,除旋轉(rotation)外尚兼具位移(translation)之功能;由於人類顳顎關節之關節盤構造特殊,僅含少量之細胞,主要之成份仍為胞外間質,一旦遭受破壞甚難修復,嚴重影響患者生活品質與身體健康。然而,目前關於類風溼性關節炎誘發之顳顎關節紊亂仍缺乏合適之實驗動物模式進行研究,故本研究擬建立合適之類風溼性關節炎誘發之顳顎關節紊亂實驗動物模式,並探討其利用連接蛋白N端胜肽(LinkN)治療之可行性。研究之結果,未來將可運用在治療類風溼性關節患者身體其他關節可行性之後續研究,對類風溼性關節炎甚至於退化性關節炎之研究或臨床治療,均將有莫大助益。
Craniomandibular disorder is a common disorder in the dental clinic. It can induce discomfort and pain of TMJ or masticatory muscles. Moreover, it also causes jaw movement limitation, difficulty in chewing, TMJ disc internal derangement and even bony destruction. RA is also a common disease of human. Because of the autologous immune responses, patients’ bones and joints are damaged and deformed and then affecting their normal function. In the past, limb joints were the major diagnosis and treatment goals in rheumatoid immunization clinic. However, in recent years, numbers of patients with craniomandibular disorder are increasing and parts of the patients are RA related-TMJ disorder. It even results in patients’ open bite which seriously impaired the masticatory system. According to doctor Yi-Jun Lin’s clinical study in 2006, 56% of RA patients have TMJ disorder. In recent years, up to 70% of patients have RA related-TMJ disorder can be diagnosed in RA clinic. Due to the inflammation of joints, the structure of articular cartilage cells and ECM i.e. collagen, link protein and proteoglycan are disrupted. The destruction makes the TMJ disc unable to maintain its shape and function. TMJ movement is different from other joints. In addition to rotation, it comprises translation movement as well. Due to the structural specificity of the human TMJ disc, it contains only a few cells. The main ingredient is the extracellular matrix, and once the damage occurred, it is extremely difficult to repair and would seriously affect the patients’ chewing function, quality of life and health. Until now, there is no ideal RA related-TMJ disorder animal model and treatment except conservative symptom therapy. In this proposal following will be preceded investigation of the tissue repair in RA related-TMJ disorder rat models by cell and ECM therapy. The results of these studies can be used in the further study for treatment of other joints of patients with RA. It will be a great help to RA and even osteoarthritis both in research and clinical treatment.
中文摘要....i
Abstract....ii
目錄....iv
第一章 緒論....1
第一節 顳顎關節之解剖構造....1
第二節 顳顎關節之細胞組成以及其細胞、胞外基質成分....2
1.2.1 顳顎關節盤....2
1.2.2 顳顎關節窩與關節髁頭....3
第三節 類風溼性關節炎與顳顎關節炎之關係....4
第四節 顳顎關節之實驗動物種類選擇....5
第五節 類風溼性關節炎所導致的顳顎關節骨性障礙相關實驗動物相關文獻探討....7
第六節 類風溼性關節炎所導致的顳顎關節骨性障礙可能之治療策略....10
第二章 研究動機及目的....15
第一節 研究動機....15
第二節 研究目的....15
第三章 研究方法與材料....16
第一節 研究方法....16
3.1.1 建立實驗大鼠/實驗豬隻之關節腔注射技術....16
3.1.2 以膠原蛋白誘法(collagen-induced arthritis, CIA)之大鼠顳顎關節炎,來評估當大鼠顳顎關節細胞遇到類似類風濕性關節炎機轉下的發炎反應時,其纖維軟骨組織表現是否與利用單純完全弗氏佐劑注射組(Complete Freund's Adjuvant ,CFA)誘導,使關節產生關節炎所導致之關節退化情況類似....17
3.1.3 釐清CIA動物模式下之顳顎關節骨關節炎大鼠,其纖維軟骨細胞與細胞外基質成份差異之研究....19
3.1.4 釐清連接蛋白N端胜肽對於以CIA炎誘發之顳顎關節骨關節炎之大鼠進行關節腔注射,以觀察其組織修復之初步探討。....20
第二節 研究材料....21
3.2.1 實驗大鼠顳顎關節腔注射法....21
3.2.2 實驗大鼠CO2犧牲法(不須進行組織切片之大鼠)....21
3.2.3 實驗豬隻顳顎關節腔注射法....22
3.2.4 實驗豬隻犧牲方法....23
3.2.5 以藥物誘導實驗大鼠顳顎關節炎(單次藥物注射組)....23
3.2.6 以藥物誘導實驗大鼠顳顎關節炎(雙次藥物誘導注射及藥物治療組)....24
3.2.7 實驗大鼠之犧牲(須進行組織切片之大鼠)....25
3.2.8 樣本脫鈣及切片製作....25
3.2.9 掃描式電子顯微鏡拍照....26
3.2.10 連接蛋白N端胜肽之合成....26
3.2.11 RNA 抽取與cDNA 合成....26
3.2.12 及時定量PCR (Quantifcation Real-Time PCR,Q-PCR)....27
3.2.13 統計方法....27
第四章 實驗結果....28
第一節 建立實驗動物之顳顎關節腔注射技術....28
4.1.1 實驗大鼠之顳顎關節注射技術建立....28
4.1.2 實驗豬隻之顳顎關節注射技術建立....28
4.1.3 顳顎關節腔前外側注射法(Anterosuperior injection technique, ASI)....29
4.1.4 顳顎關節腔外側注射法(Lateral injection technique, LI)....29
4.1.5 顳顎關節腔後側注射法(Posterior injection technique, PI)....30
4.1.6 關節腔注射成功之情況....30
4.1.7 關節腔注射失敗之情況....30
4.1.8 實驗豬隻利用後側注射法(PI)、前外側注射法(ASI)及外側注射法(LI)之比較與成功率統計....31
第二節 以膠原蛋白誘法(collagen-induced arthritis, CIA)之大鼠顳顎關節炎,來評估當大鼠顳顎關節細胞遇到類似類風濕性關節炎機轉下的發炎反應時,其纖維軟骨組織表現是否與利用單純CFA誘導,使關節產生關節炎所導致之關節退化情況類似....31
4.2.1 建立具類風溼性關節炎誘發之顳顎關節骨性障礙大鼠動物模式之研究結果-實驗對照組(normal control, NC)施打後7天組別....32
4.2.2 建立具類風溼性關節炎誘發之顳顎關節骨性障礙大鼠動物模式之研究結果-第一型膠原蛋白注射組(collagen type I, COI)施打後7天組別....33
4.2.3 建立具類風溼性關節炎誘發之顳顎關節骨性障礙大鼠動物模式之研究結果-完全弗氏佐劑注射組(Complete Freund's Adjuvant ,CFA)施打後7天組別....33
4.2.4 建立具類風溼性關節炎誘發之顳顎關節骨性障礙大鼠動物模式之研究結果-第一型膠原蛋白混和完全弗氏佐劑注射之膠原蛋白誘導TMJ-RA組(collagen-induced arthritis, CIA)施打後7天組別....34
4.2.5 7天藥物誘導組別之IL-1β及MMP3其基因表現....34
4.2.6 利用CFA及CIA於第0天單次注射後,於第0天、第7天、第35天的H&E組織染色圖比較....35
第三節 釐清CIA動物模式下之顳顎關節骨關節炎大鼠,其纖維軟骨細胞與細胞外基質成份差異之研究....35
4.3.1 利用CFA分於第0天注射第一劑、第7天注射第二劑後,於第0天、第14天、第35天的H&E組織染色圖比較....35
4.3.2 利用CIA誘導法分於第0天注射第一劑、第7天注射第二劑後,於第0天、第14天、第35天的H&E組織染色圖比較....36
第四節 釐清連接蛋白N端胜肽對於以CIA炎誘發之顳顎關節骨關節炎之大鼠進行關節腔注射,以觀察其組織修復之初步探討....36
4.4.1 利用CIA誘導法分於第0天注射第一劑、第7天注射第二劑後,於第14天進行連接蛋白N端胜肽(LinkN)注射治療,之後於第35天的H&E組織染色圖比較....36
4.4.2 CIA誘導之顳顎關節炎及利用連接蛋白N端胜肽LinkN對於CIA關節炎模式之治療效益評估....37
第五章 討論....39
第一節 實驗動物顳顎關節注射技術之建立....39
第二節 CFA與CIA大鼠關節炎模式之差異....40
5.2.1 單次藥劑注射對於誘發大鼠之顳顎關節炎探討....40
5.2.2 雙次藥劑注射對於誘發大鼠之顳顎關節炎探討....42
第三節 CIA模式之大鼠顳顎關節障礙動物模式及連接蛋白N端胜肽之療效....43
第六章 結論....46
第一節 結論與建議....46
第二節 未來展望....47
第七章 圖、表目錄....49
圖一、實驗大鼠顳顎關節解剖構造....49
圖二、建立實驗大鼠之關節腔注射技術之初步研究結果....50
圖三、實驗豬隻顎關節解剖構造及關節盤膠原蛋白纖維結構排列情形....51
圖四、實驗動物豬隻顱骨矢狀切片之解剖構造及注射標記點....52
圖五、顳顎關節腔前外側注射法(Anterosuperior injection technique, ASI)....53
圖六、顳顎關節腔外側注射法(Lateral injection technique, LI)....54
圖七、顳顎關節腔後側注射法(Posterior injection technique, PI)....55
圖八、實驗豬隻注射成功之顳顎關節....56
圖九、顳顎關節腔注射失敗之案例....57
圖十、實驗豬隻利用後側注射法(PI)、前外側注射法(ASI)及外側注射法(LI)之比較圖....58
表格一、實驗豬隻利用後側注射法(PI)、前外側注射法(ASI)及外側注射法(LI)之成功率比較....59
圖十一、建立具類風溼性關節炎誘發之顳顎關節骨性障礙大鼠動物模式之研究結果-實驗對照組(normal control, NC)施打後7天組別....60
圖十二、建立具類風溼性關節炎誘發之顳顎關節骨性障礙大鼠動物模式之研究結果-第一型膠原蛋白注射組(collagen type I, COI)施打後7天組別....61
圖十三、建立具類風溼性關節炎誘發之顳顎關節骨性障礙大鼠動物模式之研究結果-完全弗氏佐劑注射組(Complete Freund's Adjuvant ,CFA)施打後7天組別....62
圖十四、建立具類風溼性關節炎誘發之顳顎關節骨性障礙大鼠動物模式之研究結果-第一型膠原蛋白混和完全弗氏佐劑注射之膠原蛋白誘導TMJ-RA組(collagen-induced arthritis, CIA)施打後7天組別....63
圖十五、7天藥物誘導組別之IL-1β及MMP3其基因表現....64
圖十六、利用CFA及CIA於第0天單次注射後,於第0天、第7天、第35天的H&E組織染色圖....65
圖十七、利用CFA分於第0天注射第一劑、第7天注射第二劑後,於第0天、第14天、第35天的H&E組織染色圖....66
圖十八、利用CIA誘導法分於第0天注射第一劑、第7天注射第二劑後,於第0天、第14天、第35天的H&E組織染色圖....67
圖十九、利用CIA誘導法分於第0天注射第一劑、第7天注射第二劑後,於第14天進行連接蛋白N端胜肽(LinkN)注射治療,之後於第35天的H&E組織染色圖....68
圖二十、CIA誘導之顳顎關節炎及利用連接蛋白N端胜肽LinkN對於CIA關節炎模式之治療效益評估....69
第八章 研究文獻....70
附錄一、實驗豬隻顳顎關節腔技術之文獻發表....78
附錄二、不同實驗大鼠顳顎關節炎誘導方法比較之文獻發表....84
[1] Wong ME, Allen KD, Athanasiou KA. Tissue Engineering of the Temporomandibular Joint. In: Bronzino JD, editor. Tissue Engineering and Artificial Organs. Boca Raton, FL: CRC Press, 2006.
[2] Dolwick MF. The temporomandibular joint: normal and abnormal anatomy. In: Helms CA, Katzberg RW, Dolwick MF, editors. Internal Derangements of the Temporomandibular Joint. San Francisco, CA: Radiology Research and Education Foundation, 1983. p. 1-14.
[3] Rees LA. The structure and function of the mandibular joint. Br Dent J. 1954; 96(6):125-133.
[4] Willard VP, Arzi B, Athanasiou KA. The attachments of the temporomandibular joint disc: a biochemical and histological investigation. Arch Oral Biol. 2012; 57: 599-606.
[5] Allen KD, Athanasiou KA. Tissue Engineering of the TMJ disc: a review. Tissue Eng. 2006;12(5):1183-96.
[6] Jagger, R. G.; Bates, J. F.; Kopp, S. Temporomandibular Joint Dysfunction: Essentials; Butterworth-Heinemann Ltd: Oxford, 1994.
[7] Minarelli AM, Del Santo Junior M, Liberti EA. The structure of the human temporomandibular joint disc: a scanning electron microscopy study. J Orofac Pain. 1997; 11: 95-100.
[8] Dolwick, M. F. In Internal Derangements of the Temporomandibular Joint; Helms, C. A., Katzberg, R. W., Dolwick, M. F., Eds.; Radiology Research and Education Foundation: San Francisco; CA, 1983; pp 1–14.
[9] Minarelli AM, Liberti EA. A microscopic survey of the human temporomandibular joint disc. J Oral Rehabil. 1997; 24: 835-840.
[10] Axelsson S, Holmlund A, Hjerpe A. Glycosaminoglycans in normal and osteoarthrotic human temporomandibular joint disks. Acta Odontol Scand. 1992; 50: 113-119.
[11] Kobayashi J. [Studies on matrix components relevant to structure and function of the temporomandibular joint]. Kokubyo Gakkai Zasshi. 1992; 59: 105-123.
[12] Berkovitz BK, Pacy J. Age changes in the cells of the intra-articular disc of the temporomandibular joints of rats and marmosets. Arch Oral Biol. 2000; 45: 987-995.
[13] Landesberg R, Takeuchi E, Puzas JE. Cellular, biochemical and molecular characterization of the bovine temporomandibular joint disc. Arch Oral Biol. 1996; 41: 761-767.
[14] Kalpakci KN, Willard VP, Wong ME, Athanasiou KA. An interspecies comparison of the temporomandibular joint disc. J Dent Res. 2011; 90: 193-198.
[15] Mills DK, Fiandaca DJ, Scapino RP. Morphologic, microscopic, and immunohistochemical investigations into the function of the primate TMJ disc. J Orofac Pain. 1994; 8: 136-154.
[16] Detamore MS, Athanasiou KA. Structure and function of the temporomandibular joint disc: implications for tissue engineering. J Oral Maxillofac Surg. 2003; 61: 494-506.
[17] Singh M, Detamore MS. Biomechanical properties of the mandibular condylar cartilage and their relevance to the TMJ disc. J Biomech. 2009; 42: 405-417.
[18] Singh M, Detamore MS. Tensile properties of the mandibular condylar cartilage. J Biomech Eng. 2008; 130: 011009.
[19] de Moraes LO, Lodi FR, Gomes TS, Marques SR, Oshima CT, Lancellotti CL, Rodríguez-Vázquez JF, Mérida-Velasco JR, Alonso LG. Immunohistochemical expression of types I and III collagen antibodies in the temporomandibular joint disc of human foetuses. Eur J Histochem. 2011;55(3):e24.
[20] Yasumoto T, Bird JL, Sugimoto K, Mason RM, Bayliss MT. The G1 domain of aggrecan released from porcine articular cartilage forms stable complexes with hyaluronan/link protein. Rheumatology (Oxford). 2003;42(2):336-42.
[21] Shi S, Grothe S, Zhang Y, O'Connor-McCourt MD, Poole AR, Roughley PJ, Mort JS. Link protein has greater affinity for versican than aggrecan. J Biol Chem. 2004;279(13):12060-6.
[22] Ng L, Grodzinsky AJ, Patwari P, Sandy J, Plaas A, Ortiz C. Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J Struct Biol. 2003;143(3):242-57.
[23] Willard VP, Kalpakci KN, Reimer AJ, Athanasiou KA. The regional contribution of glycosaminoglycans to temporomandibular joint disc compressive properties. J Biomech Eng. 2012;134(1):011011. doi: 10.1115/1.4005763.
[24] Embree MC, Chen M, Pylawka S, Kong D, Iwaoka GM, Kalajzic I, et al. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nat Commun. 2016;7:13073.
[25] Yamakawa M, Ansai T, Kasai S, Ohmaru T, Takeuchi H, et al. Dentition status and temporomandibular joint disorders in patients with rheumatoid arthritis. Cranio. 2002; 20: 165-171.
[26] Lin YC, Hsu ML, Yang JS, Liang TH, Chou SL, et al. Temporomandibular joint disorders in patients with rheumatoid arthritis. J Chin Med Assoc. 2007; 70: 527-534.
[27] Herring SW (2003) TMJ anatomy and animal models. J Musculoskelet Neuronal Interact 3: 391-394; discussion 406-397.
[28] Porto GG, Vasconcelos BC, Andrade ES, Silva-Junior VA. Comparison between human and rat TMJ: anatomic and histopathologic features. Acta Cir Bras. 2010; 25: 290-293.
[29] Bresin A, Kiliaridis S, Strid KG. Effect of masticatory function on the internal bone structure in the mandible of the growing rat. Eur J Oral Sci.1999; 107: 35-44.
[30] Liu ZJ, Ikeda K, Harada S, Kasahara Y, Ito G. Functional properties of jaw and tongue muscles in rats fed a liquid diet after being weaned. J Dent Res. 1998; 77: 366-376.
[31] Sato I, Konishi K, Kuramochi T, Sato T. Developmental changes in enzyme activities and in structural features of rat masticatory muscle mitochondria. J Dent Res. 1998; 77: 1926-1930.
[32] Druzinsky RE. Functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents - part 1: masticatory muscles, skull shape and digging. Cells Tissues Organs. 2010; 191: 510-522.
[33] Langenbach GE, Weijs WA. Growth patterns of the rabbit masticatory muscles. J Dent Res. 1990; 69: 20-25.
[34] Weijs WA, de Jongh HJ. Strain in mandibular alveolar bone during mastication in the rabbit. Arch Oral Biol. 1977; 22: 667-675.
[35] Rosloniec EF, Brand DD, Myers LK, et al. Induction of a utoimmu ne a r th ritis in HL A-DR4 (DR B1*0401) transgenic mice by immunization with human and bovine ype II collagen. J Immunol. 1998;160:2573–2578.
[36] Nabozny GH, Baisch JM, Cheng S, et al.: HLA-DQ8 transgenic mice are highly susceptible to collagen-induced arthritis: a novel model for human polyarthritis. J Exp Med. 1996; 183:27–37.
[37] Barzilai O, Ram M, Shoenfeld Y: Viral infection can induce the production of autoantibodies. Curr Opin Rheumatol. 2007;19:636-643.
[38] Malmstrom V, Michaelsson E, Burkhardt H, Mattsson R, Vuorio E, et al. Systemic versus cartilage-specific expression of a type II collagen-specific T-cell epitope determines the level of tolerance and susceptibility to arthritis. Proc Natl Acad Sci U S A. 1996; 93: 4480-4485.
[39] Haque MA, Yoshino S, Inada S, Nomaguchi H, Tokunaga O, et al. Suppression of adjuvant arthritis in rats by induction of oral tolerance to mycobacterial 65-kDa heat shock protein. Eur J Immunol. 1996, 26: 2650-2656.
[40] Terato K, DeArmey DA, Ye XJ, Griffiths MM, Cremer MA. The mechanism of autoantibody formation to cartilage in rheumatoid arthritis: possible cross-reaction of antibodies to dietary collagens with autologous type II collagen. Clin Immunol Immunopathol. 1996; 79: 142-154.
[41] Zamma T. Adjuvant-induced arthritis in the temporomandibular joint of rats. Infect Immun. 1983; 39(3):1291-9.
[42] Quinteiro MS, Napimoga MH, Mesquita KP, Clemente-Napimoga JT. The indirect antinociceptive mechanism of 15d-PGJ2 on rheumatoid arthritis-induced TMJ inflammatory pain in rats. Eur J Pain. 2012; 16(8):1106-15.
[43] Bolon B, Stolina M, King C, Middleton S, Gasser J, Zack D, Feige U. Rodent preclinical models for developing novel antiarthritic molecules: comparative biology and preferred methods for evaluating efficacy. J Biomed Biotechnol. 2011; 2011:569068. doi: 10.1155/2011/569068.
[44] 昇 藤. Histological evaluation for knee joint and temporomandibular joint (TMJ) in rheumatoid ar arthritis (RA) model rat. 松本歯科大学大学院歯学独立研究科. 2008; 34: 278-291.
[45] Huang IY, Wu JH, Kao YH, Chen CM, Yang YH. Splint therapy for disc displacement with reduction of the temporomandibular joint. part I: modified mandibular splint therapy. Kaohsiung J Med Sci. 2011; 27: 323-329.
[46] Fayed MM, El-Mangoury NH, El-Bokle DN, Belal AI. Occlusal splint therapy and magnetic resonance imaging. World J Orthod. 2004; 5: 133-140.
[47] Stiesch-Scholz M, Fink M, Tschernitschek H, Rossbach A. Medical and physical therapy of temporomandibular joint disk displacement without reduction. Cranio. 2002; 20: 85-90.
[48] Machado E, Bonotto D, Cunali PA. Intra-articular injections with corticosteroids and sodium hyaluronate for treating temporomandibular joint disorders: a systematic review. Dental Press J Orthod. 2013; 18: 128-133.
[49] Kopp S, Carlsson GE, Haraldson T, Wenneberg B. Long-term effect of intra-articular injections of sodium hyaluronate and corticosteroid on temporomandibular joint arthritis. J Oral Maxillofac Surg. 1987; 45: 929-935.
[50] El-Hakim IE, Elyamani AO. Preliminary evaluation of histological changes found in a mechanical arthropatic temporomandibular joint (TMJ) exposed to an intra-articular Hyaluronic acid (HA) injection, in a rat model. J Craniomaxillofac Surg. 2011; 39(8):610-4.
[51] Takahashi K, Goomer RS, Harwood F, Kubo T, Hirasawa Y, Amiel D. The effects of hyaluronan on matrix metalloproteinase-3 (MMP-3), interleukin-1beta(IL-1beta), and tissue inhibitor of metalloproteinase-1 (TIMP-1) gene expression during the development of osteoarthritis. Osteoarthritis Cartilage. 1999; 7(2):182-90.
[52] Chou CL, Li HW, Lee SH, Tsai KL, Ling HY. Effect of intra-articular injection of hyaluronic acid in rheumatoid arthritis patients with knee osteoarthritis. J Chin Med Assoc. 2008; 71(8):411-5.
[53] Micheal F. DEAN and Paul SANSOM. Link peptide cartilage growth factor is degraded by membrane proteinases. Biochem J. 2000; 349,473-479.
[54] Baici, A. Die Arthrose als Erkrankung der Chondrozyten. Der Informierte Arzt.1988; 9, 19-25.
[55] Watanabe H, Yamada Y. Mice lacking link protein develop dwarfism and craniofacial abnormalities. Nat Genet. 1999; 21(2):225-9.
[56] Iain B. McInnes and Georg Schett. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Reviews Immunology. 2007; 7, 429-442.
[57] Lubberts E and van den Berg WB. Cytokines in the Pathogenesis of Rheumatoid Arthritis and Collagen-Induced Arthritis. Adv Exp Med Biol. 2003; 520:194-202.
[58] Piotr Wojdasiewicz, Łukasz A. Poniatowski, and Dariusz Szukiewicz. The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis. Mediators of Inflammation. 2014; Article ID 561459, 19 pages.
[59] X.D. Wang, X.X. Kou, J.J. Mao, Y.H. Gan, and Y.H. Zhou, Sustained Inflammation Induces Degeneration of the Temporomandibular Joint. J Dent Res. 2012; 91(5): 499–505.
[60] Evan Meszaros and Charles J. Malemud. Prospects for treating osteoarthritis: enzyme–protein interactions regulating matrix metalloproteinase activity. Ther Adv Chronic Dis. 2012; 3(5): 219–229.
[61] B. Henderson,J. G. Edwards,E. R. Pettipher. Mechanisms and Models in Rheumatoid Arthritis. Academic press limited. 1995; 174-178.
[62] Hany MARTIN and Michael DEAN. An N-terminal peptide from link protein is rapidly degraded by chondrocytes, monocytes and B cells. Eur. J. Biochem. 1993; 212: 87-94.
[63] Fackson Mwale, Koichi Masuda, Rajeswari Pichika, Laura M Epure, Tomoaki Yoshikawa, Aseem Hemmad, Peter J Roughley4 and John Antoniou. The efficacy of Link N as a mediator of repair in a rabbit model of intervertebral disc degeneration. Arthritis Research & Therapy. 2011; 13:R120.
[64] Zili Wang, M. Neale Weitzmann, Sreedhara Sangadala, William C Hutton, and S. Tim Yoon. Link protein N-terminal peptide binds to BMP type II receptor and drives matrix protein expression in rabbit intervertebral disc cells. J Biol Chem. 2013; 288(39):28243-53.
[65] Gawri R, Antoniou J, Ouellet J, Awwad W, Steffen T, Roughley P, Haglund L, Mwale F. Best paper NASS 2013: link-N can stimulate proteoglycan synthesis in the degenerated human intervertebral discs. Eur Cell Mater. 2013; 26:107-19.
[66] Kameoka S, Matsumoto K, Kai Y, Yonehara Y, Arai Y, Honda K. Establishment of temporomandibular joint puncture technique in rats using in vivo micro-computed tomography (R_mCT®). Dentomaxillofac Radiol. 2010; 39(7):441-5.
[67] Kuroki Y, Honda K, Kijima N, Wada T, Arai Y, Matsumoto N, et al. In vivo morphometric analysis of inflammatory condylar changes in rat temporomandibular joint. Oral Dis. 2011; 17(5):499-507.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top