|
Reference 1. De Angelis, F., et al., Implant survival and success rates in patients with risk factors: results from a long-term retrospective study with a 10 to 18 years follow-up. Eur Rev Med Pharmacol Sci, 2017. 21(3): p. 433-437. 2. Carinci, F., Survival and success rate of one-piece implant inserted in molar sites. Dent Res J (Isfahan), 2012. 9(Suppl 2): p. S155-9. 3. Charyeva, O., et al., Long-term dental implant success and survival--a clinical study after an observation period up to 6 years. Swed Dent J, 2012. 36(1): p. 1-6. 4. Simonis, P., T. Dufour, and H. Tenenbaum, Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res, 2010. 21(7): p. 772-7. 5. Sennerby, L. and W. Becker, Implant success versus survival. Clin Implant Dent Relat Res, 2000. 2(3): p. 119. 6. Karoussis, I.K., et al., Effect of implant design on survival and success rates of titanium oral implants: a 10-year prospective cohort study of the ITI Dental Implant System. Clin Oral Implants Res, 2004. 15(1): p. 8-17. 7. Romeo, E., et al., Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants, 2004. 19(2): p. 247-59. 8. Albrektsson, T., et al., The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants, 1986. 1(1): p. 11-25. 9. Smith, D.E. and G.A. Zarb, Criteria for success of osseointegrated endosseous implants. J Prosthet Dent, 1989. 62(5): p. 567-72. 10. Adell, R., et al., A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg, 1981. 10(6): p. 387-416. 11. Oh, T.J., et al., The causes of early implant bone loss: myth or science? J Periodontol, 2002. 73(3): p. 322-33. 12. Isidor, F., Influence of forces on peri-implant bone. Clin Oral Implants Res, 2006. 17 Suppl 2: p. 8-18. 13. Kitamura, E., et al., Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Implants Res, 2004. 15(4): p. 401-12. 14. Lee, D.W., et al., Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res, 2007. 18(4): p. 465-70. 15. Hermann, F., H. Lerner, and A. Palti, Factors influencing the preservation of the periimplant marginal bone. Implant Dent, 2007. 16(2): p. 165-75. 16. Lima de Andrade, C., et al., Biomechanical Behavior of the Dental Implant Macrodesign. Int J Oral Maxillofac Implants, 2017. 32(2): p. 264-270. 17. Chang, P.K., et al., Distribution of micromotion in implants and alveolar bone with different thread profiles in immediate loading: a finite element study. Int J Oral Maxillofac Implants, 2012. 27(6): p. e96-101. 18. Faegh, S. and S. Muftu, Load transfer along the bone-dental implant interface. J Biomech, 2010. 43(9): p. 1761-70. 19. Le Guehennec, L., et al., Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater, 2007. 23(7): p. 844-54. 20. Carlsson, L., et al., Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants, 1988. 3(1): p. 21-4. 21. Gultekin, B.A., et al., Clinical evaluation of marginal bone loss and stability in two types of submerged dental implants. Int J Oral Maxillofac Implants, 2013. 28(3): p. 815-23. 22. Baggi, L., et al., The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent, 2008. 100(6): p. 422-31. 23. Misch, C.E., Contemporary Implant Dentistry. Implant Dentistry, 1999: p. 329-343. 24. Koka, S., The implant-mucosal interface and its role in the long-term success of endosseous oral implants: a review of the literature. Int J Prosthodont, 1998. 11(5): p. 421-32. 25. Buser, D., H.P. Weber, and N.P. Lang, Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clin Oral Implants Res, 1990. 1(1): p. 33-40. 26. Qian, J., A. Wennerberg, and T. Albrektsson, Reasons for marginal bone loss around oral implants. Clin Implant Dent Relat Res, 2012. 14(6): p. 792-807. 27. Eriksson, A.R. and T. Albrektsson, Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent, 1983. 50(1): p. 101-7. 28. Wilderman, M.N., et al., Histogenesis of repair following osseous surgery. J Periodontol, 1970. 41(10): p. 551-65. 29. Bashutski, J.D., et al., Effect of flapless surgery on single-tooth implants in the esthetic zone: a randomized clinical trial. J Periodontol, 2013. 84(12): p. 1747-54. 30. Hermann, J.S., et al., Biologic Width around one- and two-piece titanium implants. Clin Oral Implants Res, 2001. 12(6): p. 559-71. 31. Berglundh, T. and J. Lindhe, Dimension of the periimplant mucosa. Biological width revisited. J Clin Periodontol, 1996. 23(10): p. 971-3. 32. Kan, J.Y., et al., Dimensions of peri-implant mucosa: an evaluation of maxillary anterior single implants in humans. J Periodontol, 2003. 74(4): p. 557-62. 33. Frost, H.M., Bone "mass" and the "mechanostat": a proposal. Anat Rec, 1987. 219(1): p. 1-9. 34. Frost, H.M., The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner, 1987. 2(2): p. 73-85. 35. Frost, H.M., Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod, 1994. 64(3): p. 175-88. 36. Cox, J.F. and G.A. Zarb, The longitudinal clinical efficacy of osseointegrated dental implants: a 3-year report. Int J Oral Maxillofac Implants, 1987. 2(2): p. 91-100. 37. Guo, X., Mechanical properties of cortical bone and cancellous bone tissue. Bone mechanics handbook, 2001. 10: p. 1-23. 38. Misch, C.E., Dental Implant Prosthetics. 2nd ed. 2014: Elsevier Health Sciences. 39. Geng, J.P., K.B. Tan, and G.R. Liu, Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent, 2001. 85(6): p. 585-98. 40. Teixeira, E.R., et al., A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. J Oral Rehabil, 1998. 25(4): p. 299-303. 41. Schwartz-Dabney, C.L. and P.C. Dechow, Edentulation alters material properties of cortical bone in the human mandible. J Dent Res, 2002. 81(9): p. 613-7. 42. Dechow, P.C., Q. Wang, and J. Peterson, Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution. Anat Rec (Hoboken), 2010. 293(4): p. 618-29. 43. O'Mahony, A.M., et al., Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin Oral Implants Res, 2000. 11(5): p. 415-21. 44. Benzing, U.R., H. Gall, and H. Weber, Biomechanical aspects of two different implant-prosthetic concepts for edentulous maxillae. Int J Oral Maxillofac Implants, 1995. 10(2): p. 188-98. 45. Tada, S., et al., Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants, 2003. 18(3): p. 357-68. 46. Proos, K.A., et al., Influence of cement on a restored crown of a first premolar using finite element analysis. Int J Prosthodont, 2003. 16(1): p. 82-90. 47. Okeson, J.P., Management of Temporomandibular Disorders and Occlusion. 2014: Elsevier Health Sciences. 48. Nelson, S.J., Wheeler's Dental Anatomy, Physiology and Occlusion. 2014: Elsevier Health Sciences. 49. Sultana, M.H., K. Yamada, and K. Hanada, Changes in occlusal force and occlusal contact area after active orthodontic treatment: a pilot study using pressure-sensitive sheets. J Oral Rehabil, 2002. 29(5): p. 484-91. 50. Preis, V., et al., Influence of cusp inclination and curvature on the in vitro failure and fracture resistance of veneered zirconia crowns. Clin Oral Investig, 2014. 18(3): p. 891-900. 51. Ferrario, V.F., et al., Single tooth bite forces in healthy young adults. J Oral Rehabil, 2004. 31(1): p. 18-22. 52. Proeschel, P.A. and T. Morneburg, Task-dependence of activity/ bite-force relations and its impact on estimation of chewing force from EMG. J Dent Res, 2002. 81(7): p. 464-8. 53. Mericske-Stern, R., et al., Occlusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. Int J Oral Maxillofac Implants, 1995. 10(3): p. 345-53. 54. Himmlova, L., et al., Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent, 2004. 91(1): p. 20-5. 55. Simsek, B., et al., Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: a 3D finite element analysis. Med Eng Phys, 2006. 28(3): p. 199-213. 56. Kitamura, E., et al., Influence of marginal bone resorption on stress around an implant--a three-dimensional finite element analysis. J Oral Rehabil, 2005. 32(4): p. 279-86. 57. Ramos Verri, F., et al., Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test. J Biomech, 2015. 48(1): p. 138-45. 58. Baggi, L., et al., Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: a three-dimensional finite element approach. J Prosthet Dent, 2013. 109(1): p. 9-21. 59. de Faria Almeida, D.A., et al., Influence of tapered and external hexagon connections on bone stresses around tilted dental implants: three-dimensional finite element method with statistical analysis. J Periodontol, 2014. 85(2): p. 261-9. 60. Liao, S.H., R.F. Tong, and J.X. Dong, Influence of anisotropy on peri-implant stress and strain in complete mandible model from CT. Comput Med Imaging Graph, 2008. 32(1): p. 53-60. 61. O'Mahony, A.M., J.L. Williams, and P. Spencer, Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res, 2001. 12(6): p. 648-57. 62. Marinescu, R., D.J. Daegling, and A.J. Rapoff, Finite-element modeling of the anthropoid mandible: the effects of altered boundary conditions. Anat Rec A Discov Mol Cell Evol Biol, 2005. 283(2): p. 300-9. 63. Yang, H., X. Ma, and T. Guo, Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur. Medical engineering & physics, 2010. 32(6): p. 553-560. 64. Abreu, C.W., et al., Straight and Offset Implant Placement under Axial and Nonaxial Loads in Implant‐Supported Prostheses: Strain Gauge Analysis. Journal of Prosthodontics, 2012. 21(7): p. 535-539. 65. Lekholm, U., Patient selection and preparation. Tissue-integrated prostheses, 1985: p. 199-209. 66. Abé, H., K. Hayashi, and M. Sato, Hard Tissues, in Data Book on Mechanical Properties of Living Cells, Tissues, and Organs, H. Abé, K. Hayashi, and M. Sato, Editors. 1996, Springer Japan: Tokyo. p. 291-362. 67. Shen, W.L., C.S. Chen, and M.L. Hsu, Influence of implant collar design on stress and strain distribution in the crestal compact bone: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants, 2010. 25(5): p. 901-10. 68. Pessoa, R.S., et al., Biomechanical evaluation of platform switching: different mismatch sizes, connection types, and implant protocols. J Periodontol, 2014. 85(9): p. 1161-71. 69. Yamanishi, Y., et al., Influences of implant neck design and implant–abutment joint type on peri-implant bone stress and abutment micromovement: Three-dimensional finite element analysis. Dental materials, 2012. 28(11): p. 1126-1133. 70. Bates, J.F., G.D. Stafford, and A. Harrison, Masticatory function - a review of the literature. III. Masticatory performance and efficiency. J Oral Rehabil, 1976. 3(1): p. 57-67. 71. Bozkaya, D., S. Muftu, and A. Muftu, Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent, 2004. 92(6): p. 523-30. 72. Falcon-Antenucci, R.M., et al., Influence of cusp inclination on stress distribution in implant-supported prostheses. A three-dimensional finite element analysis. J Prosthodont, 2010. 19(5): p. 381-6. 73. Chang, C.L., C.S. Chen, and M.L. Hsu, Biomechanical effect of platform switching in implant dentistry: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants, 2010. 25(2): p. 295-304. 74. Eskitascioglu, G., et al., The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J Prosthet Dent, 2004. 91(2): p. 144-50.
|