跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 03:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝欣玫
研究生(外文):Hsin-Mei Hsieh
論文名稱:不同植體頸部設計對植體周圍骨應力分佈之影響 : 三維有限元素分析
論文名稱(外文):Comparison of peri-implant bone stress with different implant crest module design by 3D finite element analysis
指導教授:許明倫許明倫引用關係陳振昇陳振昇引用關係
指導教授(外文):Ming-Lun HsuChen-Sheng Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:牙醫學系
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:73
中文關鍵詞:植體周圍骨早期缺失植體頸部設計應力分布有限元素法
外文關鍵詞:early implant bone lossimplant crest modulestress distributionfinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
研究動機 : 由於植體周圍骨早期缺失的機制尚未完全了解,對於不同植體頸部設計何者可以保留較多的植體周圍皮質骨,至今依然有非常多的爭議。

研究目的 : 利用有限元素分析法,比較外展、直立以及內縮式的植體頸部設計在植體周圍皮質骨的壓力分析。

研究材料與方法 : 模型分成外展、直立、和內縮三組不同的植體頸部設計模型,每個模型均含有植體、植體贗復物和部分左下顎骨頭區域。為了模擬完全骨整合,在植體和骨頭之間設定為”黏著接觸”。施予200牛頓力量模擬正常咀嚼力。並且分成垂直受力組和斜向力組。在垂直受力組別,分別施予平行於牙齒長軸的力於五個理想咬點。在斜向力組別,分別施予和牙齒長軸呈30度的力於下顎兩個頰側咬頭。並且分析植體周圍骨的壓力分佈和植體本身的位移和壓力分佈。

結果 : 馮•米爾斯應力大部分集中在皮質骨的最上端和最下端,尤其是內縮式植體頸部設計。在垂直咬力組別最大的馮•米爾斯應力在外展、直立和內縮分別為41.4 MPa、54.3 MPa和 62.4 MPa,在斜向力組別分別為88 MPa、90.6 MPa和112.6 MPa。
結論 : 在有限元素的假設與限制條件下,內縮式的植體頸部設計會造成較高的應力集中於植體周圍皮質骨和植體頸部區域,尤其是斜向力組別。植體的頸部設計在植體周圍骨應力分布扮演重要的角色。

關鍵字 : 植體周圍骨早期缺失、植體頸部設計、應力分布、有限元素法
Motivation: The mechanism of early implant bone loss is not fully understood. It is still a controversial issue about which implant crest module geometry is more favorable for the preservation of crestal cortical bone.

Purpose: The main purpose of this study is to compare the stress at crestal cortical bone of three different implant crest module designs: divergent, straight & convergent.

Materials and methods: Models set up of divergent, straight, and convergent implant crest module with implant body, prostheses and region of posterior left mandible. To stimulate osseointegration, the models were designed as ”bonded” between implant and alveolar bone. Under vertical loading, 200N was applied over five occlusal contacts to stimulate maximum intercuspal position. Under oblique loading, 200N was applied at two occlusal contacts over buccal cusps at 30-degree with the direction from buccal to lingual. The stress distribution in the peri-implant bone and the displacement of implant were analyzed.

Results: The peak von Mises stress concentrated around the crestal region of cortical bone and the bottom of cortical bone, especially in the group of convergent group. The maximal von Mises stress of divergent, straight, and convergent models were 41.4 MPa, 54.3 MPa, and 62.4 MPa during vertical loading and 88 MPa, 90.6 MPa, and 112.6 MPa during oblique loading.

Conclusion: Within the limitation of this study, convergent implant crest module model could induce more stress concentrated around cortical bone and implant crest module area, especially in oblique loading condition. The shape of implant crest module may play an important role in stress distribution around bone.

Key word: early implant bone loss, implant crest module, stress distribution, finite element analysis
Content
中文摘要………………………………………………………………..i
Abstract……………………………………………………………… .iii
Contents…………………………………………………………….….v
List of figures…………………………………………………………vii
List of table…………………………………………………………....ix

Chapter 1: Introduction 1
1.1 The motivation for this study : different implant crest module geometry 1
1.2 The definition of implant crest module 3
1.3 Literature review 3
1.3.1 Surgical trauma 4
1.3.2 Microgap 5
1.3.3 Biologic width 5
1.3.4 Occlusal overload 6
1.3.5 Different geometry of implant crest module 7
1.4 Finite element method 8
1.5 Objectives 8
Chapter 2 : Materials and methods 10
2.1 Construction of the three-dimensional solid model 10
2.1.1 Construct bone block of lower molar area 10
2.1.2 The implant geometry & implant restoration construction 10
2.2 Material properties 12
2.3 Interface condition 12
2.4 Loading condition 13
2.5 Boundary condition 14
2.6 Convergence test 14
2.7 Aim of analysis 15
2.7.1 Equivalent stress 15
2.7.2 Maximum principal stress 15
2.7.3 Minimum principal stress 16
2.7.4 Maximum shear stress 16
2.7.5 Total deformation of implant 16
Chapter 3. Results 17
3.1 Number of elements and nodes 17
3.2 Biomechanical analysis of six FEA model 17
3.2.1 Von Mises stress of cortical bone 17
3.2.2 Maximum principal stress and minimum principal stress of cortical bone 18
3.2.3 Maximum shear stress of cortical bone 19
3.2.4 Von Mises stress of implant 20
3.2.5 Displacement of implant 20
Chapter 4. Discussion 21
4.1 Explanation of the result 21
4.2 Parameters of finite element model 22
(1) Quality and quantity of the surrounding bone. 22
(2) Implant geometry 24
(3) Material properties of the implant and prostheses. 26
(4) Interface condition of bone and implant. 26
(5) Type of loading 26
4.3 Limitation of the study 28
5.Conclusion 29
6. Future study 29

List of figures
Fig. 1. Microthread design 30
Fig. 2. Different thread design of implant 30
Fig. 3. Three types of implant crest module geometries: divergent, straight and convergent. 31
Fig. 4. Implant crest module 31
Fig. 5. The “saucerization” phenomena 32
Fig. 6. One-piece implant and two-piece implant. 32
Fig. 7. The theory of mechanostat by Frost: 5 types of strain levels 33
Fig. 8. Bone loss to first thread . 33
Fig. 9. The theory by Misch 34
Fig. 10. Bone block. 35
Fig. 11. Different implant crest module size 36
Fig. 12. Implant thread design 37
Fig. 13. Diameter of anutment 37
Fig. 14. Typodont tooth of lower left first molar 38
Fig. 15. Crown image data in meshmixer 3.2 38
Fig. 16. Import data into meshmixer 3.2 39
Fig. 17. Implant prosthesis 39
Fig. 18. Stimulating the condition under maximum intercuspal position of optimal occlusion 40
Fig. 19. Five occlusal contacts under vertical loading 41
Fig. 20. Two occlusal contact under oblique loading . 41
Fig. 21. Under vertical loading, each of the five occlusal contacts was set to be 40 N 42
Fig. 22. Each occlusal contact was set to be 100N at 30 degrees with the long axis of the tooth from buccal to lingual. 42
Fig. 23. Boundary condition. 43
Fig. 24. Convergence test 43
Fig. 25. The straight implant crest module model showed after mesh. 44
Fig. 26. (Cross-section view) Under vertical loading condition: distribution of von Mises stress around bone(MPa) 45
Fig. 27. (Occlusal view) Under vertical loading condition: distribution of von Mises stress around bone(MPa) 46
Fig. 28. (Cross-section view) Under oblique loading condition: distribution of von Mises stress around bone(MPa) 47
Fig. 29. (Occlusal view) Under oblique loading condition: distribution of von Mises stress around bone(MPa) 48
Fig. 30. (Cross-section view) Under vertical loading condition: distribution of tensile stress around bone(MPa). 49
Fig. 31. (Occlusal view) Under vertical loading condition: distribution of tensile stress around bone(MPa). 50
Fig. 32. (Cross-section view) Under oblique loading condition: distribution of tensile stress around bone(MPa). 51
Fig. 33. (Occlusal view) Under oblique loading condition: distribution of tensile stress around bone(MPa). 52
Fig. 34. (Cross-section view) Under vertical loading condition: distribution of compressive stress around bone(MPa) 53
Fig. 35. (Occlusal view) Under vertical loading condition: distribution of compressive stress around bone(MPa). 54
Fig. 36. (Occlusal view) Under vertical loading condition: distribution of compressive stress around bone(MPa). 55
Fig. 37. (Occlusal view) Under vertical loading condition: distribution of compressive stress around bone(MPa). 56
Fig. 38. (Cross-section view) Under vertical loading condition: distribution of shear stress around bone(MPa). 57
Fig. 39. (Occlusal view) Under vertical loading condition: distribution of shear stress around bone(MPa). 58
Fig. 40. (Cross-section view) Under oblique loading condition: distribution of shear stress around bone(MPa). 59
Fig. 41. (Occlusal view) Under oblique loading condition: distribution of shear stress around bone(MPa). 60
Fig. 42. Under vertical loading condition: distribution of von Mises stress of implant 61
Fig. 43. Under oblique loading condition: distribution of von Mises stress of implant 62
Fig. 44. Maximal intercuspal position : when cusp tips contact flat surfaces, the resultant force is directed vertically through the long axes of the teeth 63
Fig. 45. The angulation of the force depends on the inner inclination of maxillary cusp. The direction of reaction force is from buccal to lingual. 63

List of Tables
Table 1 Material properties of cortical and cancellous bone……….64
Table 2 Material properties of implant and crown…………………64
Table 3 Result of convergence test…………………………………65
Table 4 The number of elements and nodes………………………..65
Table 5 All the data of vertical loading group..…………………….66
Table 6 All the data of oblique loading group..…………………….66
Reference
1. De Angelis, F., et al., Implant survival and success rates in patients with risk factors: results from a long-term retrospective study with a 10 to 18 years follow-up. Eur Rev Med Pharmacol Sci, 2017. 21(3): p. 433-437.
2. Carinci, F., Survival and success rate of one-piece implant inserted in molar sites. Dent Res J (Isfahan), 2012. 9(Suppl 2): p. S155-9.
3. Charyeva, O., et al., Long-term dental implant success and survival--a clinical study after an observation period up to 6 years. Swed Dent J, 2012. 36(1): p. 1-6.
4. Simonis, P., T. Dufour, and H. Tenenbaum, Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res, 2010. 21(7): p. 772-7.
5. Sennerby, L. and W. Becker, Implant success versus survival. Clin Implant Dent Relat Res, 2000. 2(3): p. 119.
6. Karoussis, I.K., et al., Effect of implant design on survival and success rates of titanium oral implants: a 10-year prospective cohort study of the ITI Dental Implant System. Clin Oral Implants Res, 2004. 15(1): p. 8-17.
7. Romeo, E., et al., Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants, 2004. 19(2): p. 247-59.
8. Albrektsson, T., et al., The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants, 1986. 1(1): p. 11-25.
9. Smith, D.E. and G.A. Zarb, Criteria for success of osseointegrated endosseous implants. J Prosthet Dent, 1989. 62(5): p. 567-72.
10. Adell, R., et al., A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg, 1981. 10(6): p. 387-416.
11. Oh, T.J., et al., The causes of early implant bone loss: myth or science? J Periodontol, 2002. 73(3): p. 322-33.
12. Isidor, F., Influence of forces on peri-implant bone. Clin Oral Implants Res, 2006. 17 Suppl 2: p. 8-18.
13. Kitamura, E., et al., Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Implants Res, 2004. 15(4): p. 401-12.
14. Lee, D.W., et al., Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res, 2007. 18(4): p. 465-70.
15. Hermann, F., H. Lerner, and A. Palti, Factors influencing the preservation of the periimplant marginal bone. Implant Dent, 2007. 16(2): p. 165-75.
16. Lima de Andrade, C., et al., Biomechanical Behavior of the Dental Implant Macrodesign. Int J Oral Maxillofac Implants, 2017. 32(2): p. 264-270.
17. Chang, P.K., et al., Distribution of micromotion in implants and alveolar bone with different thread profiles in immediate loading: a finite element study. Int J Oral Maxillofac Implants, 2012. 27(6): p. e96-101.
18. Faegh, S. and S. Muftu, Load transfer along the bone-dental implant interface. J Biomech, 2010. 43(9): p. 1761-70.
19. Le Guehennec, L., et al., Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater, 2007. 23(7): p. 844-54.
20. Carlsson, L., et al., Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants, 1988. 3(1): p. 21-4.
21. Gultekin, B.A., et al., Clinical evaluation of marginal bone loss and stability in two types of submerged dental implants. Int J Oral Maxillofac Implants, 2013. 28(3): p. 815-23.
22. Baggi, L., et al., The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent, 2008. 100(6): p. 422-31.
23. Misch, C.E., Contemporary Implant Dentistry. Implant Dentistry, 1999: p. 329-343.
24. Koka, S., The implant-mucosal interface and its role in the long-term success of endosseous oral implants: a review of the literature. Int J Prosthodont, 1998. 11(5): p. 421-32.
25. Buser, D., H.P. Weber, and N.P. Lang, Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clin Oral Implants Res, 1990. 1(1): p. 33-40.
26. Qian, J., A. Wennerberg, and T. Albrektsson, Reasons for marginal bone loss around oral implants. Clin Implant Dent Relat Res, 2012. 14(6): p. 792-807.
27. Eriksson, A.R. and T. Albrektsson, Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent, 1983. 50(1): p. 101-7.
28. Wilderman, M.N., et al., Histogenesis of repair following osseous surgery. J Periodontol, 1970. 41(10): p. 551-65.
29. Bashutski, J.D., et al., Effect of flapless surgery on single-tooth implants in the esthetic zone: a randomized clinical trial. J Periodontol, 2013. 84(12): p. 1747-54.
30. Hermann, J.S., et al., Biologic Width around one- and two-piece titanium implants. Clin Oral Implants Res, 2001. 12(6): p. 559-71.
31. Berglundh, T. and J. Lindhe, Dimension of the periimplant mucosa. Biological width revisited. J Clin Periodontol, 1996. 23(10): p. 971-3.
32. Kan, J.Y., et al., Dimensions of peri-implant mucosa: an evaluation of maxillary anterior single implants in humans. J Periodontol, 2003. 74(4): p. 557-62.
33. Frost, H.M., Bone "mass" and the "mechanostat": a proposal. Anat Rec, 1987. 219(1): p. 1-9.
34. Frost, H.M., The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner, 1987. 2(2): p. 73-85.
35. Frost, H.M., Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod, 1994. 64(3): p. 175-88.
36. Cox, J.F. and G.A. Zarb, The longitudinal clinical efficacy of osseointegrated dental implants: a 3-year report. Int J Oral Maxillofac Implants, 1987. 2(2): p. 91-100.
37. Guo, X., Mechanical properties of cortical bone and cancellous bone tissue. Bone mechanics handbook, 2001. 10: p. 1-23.
38. Misch, C.E., Dental Implant Prosthetics. 2nd ed. 2014: Elsevier Health Sciences.
39. Geng, J.P., K.B. Tan, and G.R. Liu, Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent, 2001. 85(6): p. 585-98.
40. Teixeira, E.R., et al., A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. J Oral Rehabil, 1998. 25(4): p. 299-303.
41. Schwartz-Dabney, C.L. and P.C. Dechow, Edentulation alters material properties of cortical bone in the human mandible. J Dent Res, 2002. 81(9): p. 613-7.
42. Dechow, P.C., Q. Wang, and J. Peterson, Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution. Anat Rec (Hoboken), 2010. 293(4): p. 618-29.
43. O'Mahony, A.M., et al., Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin Oral Implants Res, 2000. 11(5): p. 415-21.
44. Benzing, U.R., H. Gall, and H. Weber, Biomechanical aspects of two different implant-prosthetic concepts for edentulous maxillae. Int J Oral Maxillofac Implants, 1995. 10(2): p. 188-98.
45. Tada, S., et al., Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants, 2003. 18(3): p. 357-68.
46. Proos, K.A., et al., Influence of cement on a restored crown of a first premolar using finite element analysis. Int J Prosthodont, 2003. 16(1): p. 82-90.
47. Okeson, J.P., Management of Temporomandibular Disorders and Occlusion. 2014: Elsevier Health Sciences.
48. Nelson, S.J., Wheeler's Dental Anatomy, Physiology and Occlusion. 2014: Elsevier Health Sciences.
49. Sultana, M.H., K. Yamada, and K. Hanada, Changes in occlusal force and occlusal contact area after active orthodontic treatment: a pilot study using pressure-sensitive sheets. J Oral Rehabil, 2002. 29(5): p. 484-91.
50. Preis, V., et al., Influence of cusp inclination and curvature on the in vitro failure and fracture resistance of veneered zirconia crowns. Clin Oral Investig, 2014. 18(3): p. 891-900.
51. Ferrario, V.F., et al., Single tooth bite forces in healthy young adults. J Oral Rehabil, 2004. 31(1): p. 18-22.
52. Proeschel, P.A. and T. Morneburg, Task-dependence of activity/ bite-force relations and its impact on estimation of chewing force from EMG. J Dent Res, 2002. 81(7): p. 464-8.
53. Mericske-Stern, R., et al., Occlusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. Int J Oral Maxillofac Implants, 1995. 10(3): p. 345-53.
54. Himmlova, L., et al., Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent, 2004. 91(1): p. 20-5.
55. Simsek, B., et al., Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: a 3D finite element analysis. Med Eng Phys, 2006. 28(3): p. 199-213.
56. Kitamura, E., et al., Influence of marginal bone resorption on stress around an implant--a three-dimensional finite element analysis. J Oral Rehabil, 2005. 32(4): p. 279-86.
57. Ramos Verri, F., et al., Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test. J Biomech, 2015. 48(1): p. 138-45.
58. Baggi, L., et al., Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: a three-dimensional finite element approach. J Prosthet Dent, 2013. 109(1): p. 9-21.
59. de Faria Almeida, D.A., et al., Influence of tapered and external hexagon connections on bone stresses around tilted dental implants: three-dimensional finite element method with statistical analysis. J Periodontol, 2014. 85(2): p. 261-9.
60. Liao, S.H., R.F. Tong, and J.X. Dong, Influence of anisotropy on peri-implant stress and strain in complete mandible model from CT. Comput Med Imaging Graph, 2008. 32(1): p. 53-60.
61. O'Mahony, A.M., J.L. Williams, and P. Spencer, Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res, 2001. 12(6): p. 648-57.
62. Marinescu, R., D.J. Daegling, and A.J. Rapoff, Finite-element modeling of the anthropoid mandible: the effects of altered boundary conditions. Anat Rec A Discov Mol Cell Evol Biol, 2005. 283(2): p. 300-9.
63. Yang, H., X. Ma, and T. Guo, Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur. Medical engineering & physics, 2010. 32(6): p. 553-560.
64. Abreu, C.W., et al., Straight and Offset Implant Placement under Axial and Nonaxial Loads in Implant‐Supported Prostheses: Strain Gauge Analysis. Journal of Prosthodontics, 2012. 21(7): p. 535-539.
65. Lekholm, U., Patient selection and preparation. Tissue-integrated prostheses, 1985: p. 199-209.
66. Abé, H., K. Hayashi, and M. Sato, Hard Tissues, in Data Book on Mechanical Properties of Living Cells, Tissues, and Organs, H. Abé, K. Hayashi, and M. Sato, Editors. 1996, Springer Japan: Tokyo. p. 291-362.
67. Shen, W.L., C.S. Chen, and M.L. Hsu, Influence of implant collar design on stress and strain distribution in the crestal compact bone: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants, 2010. 25(5): p. 901-10.
68. Pessoa, R.S., et al., Biomechanical evaluation of platform switching: different mismatch sizes, connection types, and implant protocols. J Periodontol, 2014. 85(9): p. 1161-71.
69. Yamanishi, Y., et al., Influences of implant neck design and implant–abutment joint type on peri-implant bone stress and abutment micromovement: Three-dimensional finite element analysis. Dental materials, 2012. 28(11): p. 1126-1133.
70. Bates, J.F., G.D. Stafford, and A. Harrison, Masticatory function - a review of the literature. III. Masticatory performance and efficiency. J Oral Rehabil, 1976. 3(1): p. 57-67.
71. Bozkaya, D., S. Muftu, and A. Muftu, Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent, 2004. 92(6): p. 523-30.
72. Falcon-Antenucci, R.M., et al., Influence of cusp inclination on stress distribution in implant-supported prostheses. A three-dimensional finite element analysis. J Prosthodont, 2010. 19(5): p. 381-6.
73. Chang, C.L., C.S. Chen, and M.L. Hsu, Biomechanical effect of platform switching in implant dentistry: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants, 2010. 25(2): p. 295-304.
74. Eskitascioglu, G., et al., The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J Prosthet Dent, 2004. 91(2): p. 144-50.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊