跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:夏宣瑜
研究生(外文):Hsuan-Yu Hsia
論文名稱:APB形成機制之探討
論文名稱(外文):The mechanism of ALT-associated promyelocytic leukemia bodies formation
指導教授:陳律佑
指導教授(外文):Liuh-Yow Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:58
中文關鍵詞:端粒
外文關鍵詞:telomerealternative lengthening of telomeresALT-associated promyelocytic leukemia nuclear bodies
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據之前的研究發現,約10%~15%左右的癌症是利用端粒重組alternative lengthening of telomeres (ALT)的方式維持端粒(telomere)的長度。而ALT-associated promyelocytic leukemia nuclear bodies (APBs)是ALT cells中其中一個很重要的特點,但APBs形成的詳細機制和在ALT cells中的功能都還有待更進一步的瞭解。在本篇論文中發現,當細胞中表現雌激素受體(estrogen receptor) 或COUP-TF1/TF2的配體結合區(ligand binding domain)和端粒結合蛋白(telomere binding protein)的融合蛋白(fusion protein)時,可以在細胞核中觀察到APBs以及端粒集結(telomere clustering)的現象。另外從本篇論文的結果可以看出這些現象和DNA複製(DNA replication)、DNA損傷反應(DNA damage response)、SMC5/6並沒有關係。除此之外我們也發現端粒集結並不需要PML的參與。因此根據本篇論文,我們推測當核受體(nuclear receptor)的配體結合區結合到端粒上後就足以促進形成APBs和端粒集結的現象。
About 10-15% of tumor cells maintain telomeres through a recombination-based mechanism known as alternative lengthening of telomere (ALT). ALT-associated promyelocytic leukemia bodies (APBs) are one of the hallmarks of ALT cells, but detailed descriptions of the mechanisms of APB formation are still lacking. Here, we reveal APB formation and telomere clustering are triggered when ERT2, the ligand-binding domain of estrogen receptor, fuses with TRF1, TRF2 or TRF2∆B in BJ5TA and U2OS cells. We show that DNA replication, the DNA damage response (DDR) and the SMC5/6 complex are not required for APB formation. Moreover, telomere clustering and DAXX co-localized with telomeres are PML-independent. However, we also found APBs and telomere clustering when COUP-TF1/TF2 ligand-binding domain (LBD) are fused with TRF1. We propose that the LBD of nuclear receptors localized at telomeres are sufficient for APB formation and telomere clustering.
誌謝 i
Abstract ii
摘要 iii
Contents iv
Introduction 1
Results 4
Expression of ERT1-TRF2 fusion protein in BJ5TA and U2OS cells generates APBs 4
APB formation and telomere clustering are time-dependent 5
ECTRs, SMC5/6 and NBS1 are not essential for APB formation in BJ5TA-ERT2-TRF2B cells 6
A DNA damage response (DDR) is not sufficient to trigger APB formation 8
PML is not required for telomere clustering 9
ERT2 and the COUP-TF1/TF2 ligand-binding domain localize to telomeres trigger APB formation 10
siZNF827 specifically affects APBs that are generated by COUP-TF1LBD and COUP-TF2LBD 12
Discussion 14
Material and Methods 20
Reference 30
Figures 35
Fig. 1 35
Fig. 2 39
Fig. 3 41
Fig. 4 43
Fig. 5 45
Fig. 6 48
Fig. 7 52
Fig. 8 55
Table 1 58
Broccoli, D., A. Smogorzewska, L. Chong, and T.d. Lange. 1997. Human telomeres contain two distince Myb-related proteins, TRF1 and TRF2. Nat. Genet. 17:231-235.
Cesare, A.J., and J.D. Griffith. 2004. Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops. Mol Cell Biol. 24:9948-9957.
Cesare, A.J., and R.R. Reddel. 2010. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 11:319-330.
Chen, L.Y., D. Liu, and Z. Songyang. 2007. Telomere maintenance through spatial control of telomeric proteins. Mol Cell Biol. 27:5898-5909.
Chung, I., H. Leonhardt, and K. Rippe. 2011. De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation. J Cell Sci. 124:3603-3618.
Chung, I., S. Osterwald, K.I. Deeg, and K. Rippe. 2012. PML body meets telomere: the beginning of an ALTernate ending? Nucleus. 3:263-275.
Conomos, D., R.R. Reddel, and H.A. Pickett. 2014. NuRD-ZNF827 recruitment to telomeres creates a molecular scaffold for homologous recombination. Nat Struct Mol Biol. 21:760-770.
Conomos, D., M.D. Stutz, M. Hills, A.A. Neumann, T.M. Bryan, R.R. Reddel, and H.A. Pickett. 2012. Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells. J Cell Biol. 199:893-906.
Dejardin, J., and R.E. Kingston. 2009. Purification of proteins associated with specific genomic Loci. Cell. 136:175-186.
Doksani, Y., J.Y. Wu, T. de Lange, and X. Zhuang. 2013. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell. 155:345-356.
Dunham, M.A., A.A. Neumann, C.L. Fasching, and R.R. Reddel. 2000. Telomere maintenance by recombination in human cells. Nature genetics. 26:447-450.
Fasching, C.L., A.A. Neumann, A. Muntoni, T.R. Yeager, and R.R. Reddel. 2007. DNA damage induces alternative lengthening of telomeres (ALT) associated promyelocytic leukemia bodies that preferentially associate with linear telomeric DNA. Cancer Res. 67:7072-7077.
Fliss, A.E., S. Benzeno, J. Rao, and A.J. Caplan. 2000. Control of estrogen receptor ligand binding by Hsp90. Steroid Biochemistry & Molecular Biology. 72:223-230.
Geoffroy, M.C., and M.K. Chelbi-Alix. 2011. Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res. 31:145-158.
Griffith, J.D., L. Comeau, S. Rosenfield, R.M. Stansel, A. Bianchi, H. Moss, and T.d. Lange. 1999. Mammalian telomeres end in a Large Duplex Loop. cell. 97:503-514.
Harley, C.B., A.B. Futcher, and C.W. Greider. 1990. Telomeres shorten during aging of human fibroblasts. Nature. 345:458-460.
Heaphy, C.M., A.P. Subhawong, S.M. Hong, M.G. Goggins, E.A. Montgomery, E. Gabrielson, G.J. Netto, J.I. Epstein, T.L. Lotan, W.H. Westra, M. Shih Ie, C.A. Iacobuzio-Donahue, A. Maitra, Q.K. Li, C.G. Eberhart, J.M. Taube, D. Rakheja, R.J. Kurman, T.C. Wu, R.B. Roden, P. Argani, A.M. De Marzo, L. Terracciano, M. Torbenson, and A.K. Meeker. 2011. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol. 179:1608-1615.
Ishov, A.M., A.G. Sotnikov, D. Negorev, O.V. Vladimirova, N. Neff, T. Kamitani, E.T.H. Yeh, J.F.S. III, and G.G. Maul. 1999. PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure when modified by SUMO-1. The Journal of Cell Biology. 147:221-233.
Jiang, W.Q., Z.H. Zhong, J.D. Henson, A.A. Neumann, A.C. Chang, and R.R. Reddel. 2005. Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex. Mol Cell Biol. 25:2708-2721.
Jiang, W.Q., Z.H. Zhong, A. Nguyen, J.D. Henson, C.D. Toouli, A.W. Braithwaite, and R.R. Reddel. 2009. Induction of alternative lengthening of telomeres-associated PML bodies by p53/p21 requires HP1 proteins. J Cell Biol. 185:797-810.
Kruse, S.W., K. Suino-Powell, X.E. Zhou, J.E. Kretschman, R. Reynolds, C. Vonrhein, Y. Xu, L. Wang, S.Y. Tsai, M.J. Tsai, and H.E. Xu. 2008. Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol. 6:e227.
Lee, M., M. Hills, D. Conomos, M.D. Stutz, R.A. Dagg, L.M. Lau, R.R. Reddel, and H.A. Pickett. 2014. Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes. Nucleic Acids Res. 42:1733-1746.
Lee, Y.K., N.H. Park, and H. Lee. 2012. Prognostic value of alternative lengthening of telomeres-associated biomarkers in uterine sarcoma and uterine carcinosarcoma. Int J Gynecol Cancer. 22:434-441.
Lundblad, V., and E.H. Blackburn. 1993. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell. 73:347-360.
M.Bryan, T., A. Englezou, L. Dalla-Pozza, M.A. Dunham, and R. R.Reddel. 1997. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Medicine. 3:1271-1274.
M.Bryan, T., A. Englezou, J. Gupta, S. Bacchetti, and R. R.Reddel. 1995. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO. 14:4240-4248.
Marzec, P., C. Armenise, G.l.P. rot, F.-M. Roumelioti, E. Basyuk, S. Gagos, F.d.r. Chibon, and J.r.m.D. jardin. 2015. Nuclear-Receptor-Mediated Telomere Insertion Leads to Genome Instability in ALT Cancers. Cell. 160:913-927.
Matunis, M.J., X.D. Zhang, and N.A. Ellis. 2006. SUMO: the glue that binds. Dev Cell. 11:596-597.
McElligott, R., and R. J.Wellinger. 1997. The terminal DNA structure of mammalian chromosomes. EMBO. 16:3705-3714.
Moyzis, R.K., J.M. Buckingham, L.S. Crams, M. Dani, L.L. Deaven, M.D. Jones, J. Meyne, R.L. Ratliff, and J.-R. Wu. 1988. A highly conserved repetitive DNA sequence,(TTAGGG).,present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. . 85:6622-6626.
Mukhopadhyay, D., and M.J. Matunis. 2011. SUMmOning Daxx-mediated repression. Mol Cell. 42:4-5.
Nabetani, A., O. Yokoyama, and F. Ishikawa. 2004. Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body. J Biol Chem. 279:25849-25857.
Osterwald, S., K.I. Deeg, I. Chung, D. Parisotto, S. Worz, K. Rohr, H. Erfle, and K. Rippe. 2015. PML induces compaction, TRF2 depletion and DNA damage signaling at telomeres and promotes their alternative lengthening. J Cell Sci. 128:1887-1900.
Palm, W., and T. de Lange. 2008. How shelterin protects mammalian telomeres. Annu Rev Genet. 42:301-334.
Pickett, H.A., and R.R. Reddel. 2015. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat Struct Mol Biol. 22:875-880.
Potts, P.R., and H. Yu. 2007. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol. 14:581-590.
Robert Feil. 1997. Regulation of Cre recombinase activity by mutated estrogen receptor lignad-binding domains. biochemical and biophysical research comunucation.
Shay, J.W., and S. Bacchetti. 1997. A survey of telomerase activity in human cancer. european journal of cancer. 22:787-791.
Shen, T.H., H.-K. Lin, P.P. Scaglioni, T.M. Yung, and P.P. Pandolfi. 2006. The mechanisms of PML-nuclear body formation. Mol Cell. 24:331-339.
Smith, A.G., and G.E. Muscat. 2006. Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol. 291:C203-217.
Steensel, B.v., A. Smogorzewska, and T.d. Lange. 1998. TRF2 protects human telomeres from end-to-end fusion. cell. 92:401-413.
Tokutake, Y., T. Matsumoto, T. Watanabe, S. Maeda, H. Tahara, S. Sakamoto, H. Niida, M. Sugimoto, T. Ide, and Y. Furuichi. 1998. Extra-chromosomal telomere repeat DNA in telomerase-negative immortalized cell lines. Biochem Biophys Res Commun. 247:765-772.
Wang, R.C., A. Smogorzewska, and T. de Lange. 2004. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell. 119:355-368.
Wright, W.E., M.A. Piatyszek, W.E. Rainey, W. Byrd, and J.W. Shay. 1996. Telomerase activity in human germline and embryonic tissues and cells. Developmental Genetics. 18:173-179.
Wu, G., X. Jiang, W.-H. Lee, and P.-L. Chen. 2003. Assembly of functional ALT-associated promyelocytic leukemia bodies requires Nijmegen Breakage Syndrome 1. Cancer Res. 63:2589-2595.
Yeager, T.R., A.A. Neumann, A. Englezou, L.I. Huschtscha, J.R. Noble, and R.R. Reddel. 1999. Telomerase-negative immortalized human cells contain a novel type of Promyelocytic Leukemia (PML) Body. Cancer Res. 59:4175-4179.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top