跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖廷恩
研究生(外文):Ting-En Liao
論文名稱:Cisd3在代謝以及恆定上的功能探討
論文名稱(外文):Functional analyses of Cisd3 in metabolism and homeostasis
指導教授:蔡亭芬
指導教授(外文):Ting-Fen Tsai
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:61
中文關鍵詞:粒線體代謝恆定
外文關鍵詞:Cisd3metabolismhomeostasis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Cisd3(CDGSH iron sulfur domain)是演化上高度保留的基因,其中包含兩個參與粒線體呼吸,氧化壓力和鐵平衡的CDGSH iron sulfur doamins。然而,Cisd3蛋白的功能尚不清楚,因此,我們將探討Cisd3蛋白是否參與在代謝途徑中。我們的結果顯示,中年(16 mo)Cisd3 KO小鼠表現出更高的能量消耗,伴隨著體脂肪減少。有趣的是,脂質滴積累在7個月大的Cisd3 KO小鼠的iBAT中,但在8個月大的小鼠則較少。然而,我們對Cisd3 KO小鼠的iBAT功能的進行寒冷環境的壓力測試,顯示與WT小鼠相比沒有顯著差異。我們還餵食Cisd3 KO小鼠導致肥胖的高脂肪食物,然而,我們在Cisd3 KO和WT小鼠之間分析的所有方面沒有顯著差異。另外,我們檢測了肝臟脂質體內平衡,鐵代謝和肝癌發生相關的線粒體功能是否也受到影響。首先,Cisd3缺陷似乎不會加速或緩解高脂肪食物和果糖所誘導引發的脂肪肝炎。其次,在Cisd3 KO小鼠腹腔注射鐵葡聚醣,發現鐵沉積增加,導致肝損傷標誌物升高。這表明Cisd3蛋白可能有助於鐵代謝。最後,Cisd3 KO中N-亞硝基二乙胺(DEN)誘導的肝細胞癌(HCC)發生率高於WT小鼠。總結上述結果,我們的研究顯示,Cisd3可能有助於維持能量消耗,並參與調控肝臟在鐵代謝上的功能。此外,Cisd3缺乏可能促進由DEN誘導所產生肝細胞癌的發生率。
Cisd3 (CDGSH iron sulfur domain 3), an evolutionarily conserved gene, contains two CDGSH iron sulfur domains which are involved in mitochondrial respiration, oxidative stress and iron homeostasis. However, the functions of Cisd3 protein are unclear. We asked whether Cisd3 protein plays a role in the metabolism. Our result revealed that middle-aged (16-mo) Cisd3 KO mice exhibit higher energy expenditure, accompanying by a decreased body fat. Interestingly, the lipid droplets accumulated in iBAT of Cisd3 KO mice at 7-mo but less at 8-mo. However, our cold stress tests on the iBAT function of the Cisd3 KO mice revealed no significant difference compared to WT mice. We also introduced the dietary-associated obesity (high-fat diet) to the Cisd3 KO mice; however, there are no significant differences in all the aspects we analyzed between the Cisd3 KO and WT mice. In addition, the mitochondrial functions related to homeostasis of lipid metabolism, iron metabolism and carcinogenesis in liver were analyzed. Firstly, the Cisd3 deficiency seems not to exaggerate or alleviate HFD-induced and Fructose-induced hepatosteatosis. Secondly, we intraperitoneally injected iron-dextran and found the increase of iron deposition, leading to the elevation of liver damage markers, in the Cisd3 KO mice. It suggested that the Cisd3 protein may contribute to the iron metabolism. Lastly, the incidence of hepatocellular carcinoma (HCC) induced by the N-Nitrosodiethylamine (DEN) in the Cisd3 KO compared to the WT mice were increased. Taken together, our results suggest that Cisd3 may help maintain energy expenditure, and participate in the hepatic iron metabolism. Furthermore, Cisd3 deficiency may promote DEN-induced HCC in mice.
致謝 i
Abstract ii
摘要 iii
I. Introduction 1
II. Materials and Methods 4
II-1. Animal 4
II-2. Mouse genomic DNA extraction 4
II-3. Genotyping by polymerase chain reaction (PCR) 4
II-4. RNA extraction 4
II-5. Reverse transcription and quantitative real-time PCR 5
II-6. Whole-body energy metabolism and body composition 5
II-7. High-fat diet treatment 5
II-8. Fructose-drinking treatment 6
II-9. Iron-dextran injection treatment 6
II-10. Diethylnitrosamine (DEN) injection treatment 6
II-11. In vivo metabolic studies 6
II-12. Acute cold exposure and Brown adipose tissue surgery 7
II-13. Transmission Electron Microscopy 7
II-14. Tissue processing and paraffin-embedding 7
II-15. Hematoxylin and eosin (H&E) staining 7
II-16. Prussian’s blue staining 8
II-17. Tissue iron measurement 8
II-18. Western blotting 8
II-19. Serum biochemical analysis 9
II-20. Statistical analysis 9
III. Results 10
III-1. Cisd3 deficiency seems to promote longevity 10
III-2. Cisd3 KO mice have high energy expenditure at middle-aged 10
III-3. Cisd3 protein might not participate in thermogenesis 10
III-4. Cisd3 KO mice do not have an amelioration of metabolic syndrome in dietary-induced obesity 12
III-5. Cisd3 KO mice do not have an amelioration of metabolic syndrome in fructose-drinking induced non-alcoholic fatty liver disease (NAFLD) 13
III-6. Cisd3 KO mice might increase iron content and iron deposition-induced liver damage. 14
III-7. Disruption of Cisd3 protein might promote hepatocellular carcinoma (HCC) with diethylnitrosamine (DEN) treatment 15
III-8. The Cisd3 gene expression are upregulated in methionine-choline deficient diet (MCD) and downregulated in 3,5-Diethoxy-carbonyl-1,4-dihydrocollidine diet (DDC) 16
IV. Discussion 17
IV-1. Cisd3 deficiency might trigger the protect effect to maintain the energy expenditure and promote the long life span. 17
IV-2. Cisd3 might not involve in adaptive thermogenesis during acute cold stress challenge. 18
IV-3. Cisd3 might involve in lipid metabolism. 18
IV-4. Cisd3 might involve in iron homeostasis. 19
IV-5. Cisd3 deficiency might increase the hepatocellular carcinoma (HCC) incidence. 19
V. Reference 20
VI. Figures 26
Figure 1 26
Figure 2 27
Figure 3 28
Figure 4 30
Figure 5 31
Figure 5 continued 32
Figure 6 34
Figure 6 continued 35
Figure 7 37
Figure 7 continued 38
Figure 8 40
Figure 9 42
Figure 10 44
Figure 11 46
Figure 11 continued 47
Figure 12 49
Figure 13 51
Figure 14 53
Figure 15 54
Figure 16 56
Figure 17 58
VII. Table 60
Table 1 Primer sequence for genotyping 60
Table 2 Primer sequence for RT-PCR 60
VIII.Appendix 61
Appendix 1 61
V. Reference
1. Chen, Y.F., Wu, C.Y., Kirby, R., Kao, C.H. & Tsai, T.F. A role for the CISD2 gene in lifespan control and human disease. Ann N Y Acad Sci 1201, 58-64 (2010).
2. Maio, N. & Rouault, T.A. Iron-sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery. Biochim Biophys Acta 1853, 1493-1512 (2015).
3. Lill, R. et al. Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim Biophys Acta 1763, 652-667 (2006).
4. Beinert, H., Holm, R.H. & Munck, E. Iron-sulfur clusters: nature's modular, multipurpose structures. Science 277, 653-659 (1997).
5. Tamir, S. et al. Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease. Biochim Biophys Acta 1853, 1294-1315 (2015).
6. Cheng, Z., Landry, A.P., Wang, Y. & Ding, H. Binding of Nitric Oxide in CDGSH-type [2Fe-2S] Clusters of the Human Mitochondrial Protein Miner2. J Biol Chem 292, 3146-3153 (2017).
7. Colca, J.R. et al. Identification of a novel mitochondrial protein ("mitoNEET") cross-linked specifically by a thiazolidinedione photoprobe. Am J Physiol Endocrinol Metab 286, E252-260 (2004).
8. Colca, J.R. Insulin sensitizers may prevent metabolic inflammation. Biochem Pharmacol 72, 125-131 (2006).
9. Oslowski, C.M. & Urano, F. The binary switch that controls the life and death decisions of ER stressed beta cells. Curr Opin Cell Biol 23, 207-215 (2011).
10. Fonseca, S.G. et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J Clin Invest 120, 744-755 (2010).
11. Wu, C.Y. et al. A persistent level of Cisd2 extends healthy lifespan and delays aging in mice. Hum Mol Genet 21, 3956-3968 (2012).
12. Kusminski, C.M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat Med 18, 1539-1549 (2012).
13. Chen, Y.F. et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev 23, 1183-1194 (2009).
14. Kusminski, C.M., Park, J. & Scherer, P.E. MitoNEET-mediated effects on browning of white adipose tissue. Nat Commun 5, 3962 (2014).
15. Inupakutika, M.A. et al. Phylogenetic analysis of eukaryotic NEET proteins uncovers a link between a key gene duplication event and the evolution of vertebrates. Sci Rep 7, 42571 (2017).
16. Wiley, S.E., Murphy, A.N., Ross, S.A., van der Geer, P. & Dixon, J.E. MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proceedings of the National Academy of Sciences of the United States of America 104, 5318-5323 (2007).
17. Brown, G.C. Nitric oxide and mitochondria. Frontiers in bioscience : a journal and virtual library 12, 1024-1033 (2007).
18. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat Med 19, 1252-1263 (2013).
19. Ricquier, D. Uncoupling protein 1 of brown adipocytes, the only uncoupler: a historical perspective. Front Endocrinol (Lausanne) 2, 85 (2011).
20. Vitali, A. et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 53, 619-629 (2012).
21. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961-967 (2008).
22. Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121, 96-105 (2011).
23. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. & Kozak, L.P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest 96, 2914-2923 (1995).
24. Cederberg, A. et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106, 563-573 (2001).
25. Hariri, N. & Thibault, L. High-fat diet-induced obesity in animal models. Nutr Res Rev 23, 270-299 (2010).
26. Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 23, 804-814 (2017).
27. Meex, R.C.R. & Watt, M.J. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol (2017).
28. Buettner, R., Scholmerich, J. & Bollheimer, L.C. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring, Md.) 15, 798-808 (2007).
29. Abdelmalek, M.F. et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51, 1961-1971 (2010).
30. Alwahsh, S.M. & Gebhardt, R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol 91, 1545-1563 (2017).
31. Zhang, C. & Zhang, F. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell 6, 88-100 (2015).
32. Torti, S.V. & Torti, F.M. Iron and cancer: more ore to be mined. Nature reviews. Cancer 13, 342-355 (2013).
33. De Domenico, I., McVey Ward, D. & Kaplan, J. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol 9, 72-81 (2008).
34. Romero, A. et al. A review of metal-catalyzed molecular damage: protection by melatonin. Journal of pineal research 56, 343-370 (2014).
35. Pantopoulos, K., Porwal, S.K., Tartakoff, A. & Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry 51, 5705-5724 (2012).
36. Orrenius, S., Nicotera, P. & Zhivotovsky, B. Cell death mechanisms and their implications in toxicology. Toxicological sciences : an official journal of the Society of Toxicology 119, 3-19 (2011).
37. Lane, D.J. et al. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochim Biophys Acta 1853, 1130-1144 (2015).
38. Liedtke, C. et al. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenesis Tissue Repair 6, 19 (2013).
39. Yang, J.D. & Roberts, L.R. Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol 7, 448-458 (2010).
40. Llovet, J.M. et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2, 16018 (2016).
41. Vucur, M. et al. Mouse models of hepatocarcinogenesis: what can we learn for the prevention of human hepatocellular carcinoma? Oncotarget 1, 373-378 (2010).
42. Luedde, T. & Trautwein, C. Intracellular survival pathways in the liver. Liver international : official journal of the International Association for the Study of the Liver 26, 1163-1174 (2006).
43. Hann, B. & Balmain, A. Building 'validated' mouse models of human cancer. Curr Opin Cell Biol 13, 778-784 (2001).
44. Mamikutty, N., Thent, Z.C. & Haji Suhaimi, F. Fructose-Drinking Water Induced Nonalcoholic Fatty Liver Disease and Ultrastructural Alteration of Hepatocyte Mitochondria in Male Wistar Rat. Biomed Res Int 2015, 895961 (2015).
45. Wood, J.C. et al. Cardiac iron determines cardiac T2*, T2, and T1 in the gerbil model of iron cardiomyopathy. Circulation 112, 535-543 (2005).
46. Silva, M. et al. Iron dextran increases hepatic oxidative stress and alters expression of genes related to lipid metabolism contributing to hyperlipidaemia in murine model. Biomed Res Int 2015, 272617 (2015).
47. Khechaduri, A., Bayeva, M., Chang, H.C. & Ardehali, H. Heme levels are increased in human failing hearts. J Am Coll Cardiol 61, 1884-1893 (2013).
48. Chai, X. et al. ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice. Sci Rep 5, 10181 (2015).
49. Juan, C.C. et al. Insulin infusion induces endothelin-1-dependent hypertension in rats. Am J Physiol Endocrinol Metab 287, E948-954 (2004).
50. Tran, T.T., Yamamoto, Y., Gesta, S. & Kahn, C.R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell metabolism 7, 410-420 (2008).
51. Shabalina, I.G. et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5, 1196-1203 (2013).
52. Rowland, L.A., Bal, N.C., Kozak, L.P. & Periasamy, M. Uncoupling Protein 1 and Sarcolipin Are Required to Maintain Optimal Thermogenesis, and Loss of Both Systems Compromises Survival of Mice under Cold Stress. J Biol Chem 290, 12282-12289 (2015).
53. Dempersmier, J. et al. Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Mol Cell 57, 235-246 (2015).
54. Bal, N.C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18, 1575-1579 (2012).
55. Kao, C.H., Chen, J.K., Kuo, J.S. & Yang, V.C. Visualization of the transport pathways of low density lipoproteins across the endothelial cells in the branched regions of rat arteries. Atherosclerosis 116, 27-41 (1995).
56. Panchal, S.K. & Brown, L. Rodent models for metabolic syndrome research. J Biomed Biotechnol 2011, 351982 (2011).
57. Rinella, M.E. Nonalcoholic fatty liver disease: a systematic review. JAMA 313, 2263-2273 (2015).
58. Vos, M.B. & Lavine, J.E. Dietary fructose in nonalcoholic fatty liver disease. Hepatology 57, 2525-2531 (2013).
59. Baena, M. et al. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues. Sci Rep 6, 26149 (2016).
60. Sohn, Y.S. et al. NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proceedings of the National Academy of Sciences of the United States of America 110, 14676-14681 (2013).
61. Yang, W.S. & Stockwell, B.R. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol 26, 165-176 (2016).
62. Xie, Y. et al. Ferroptosis: process and function. Cell Death Differ 23, 369-379 (2016).
63. Dixon, S.J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072 (2012).
64. Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun 478, 838-844 (2016).
65. Saeter, G. et al. The polyploidizing growth pattern of normal rat liver is replaced by divisional, diploid growth in hepatocellular nodules and carcinomas. Carcinogenesis 9, 939-945 (1988).
66. Guidotti, J.E. et al. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 278, 19095-19101 (2003).
67. Miyaoka, Y. et al. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Current biology : CB 22, 1166-1175 (2012).
68. Seglen, P.O. DNA ploidy and autophagic protein degradation as determinants of hepatocellular growth and survival. Cell biology and toxicology 13, 301-315 (1997).
69. Sigal, S.H. et al. Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events. The American journal of physiology 276, G1260-1272 (1999).
70. Rinella, M.E. et al. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet. J Lipid Res 49, 1068-1076 (2008).
71. Kanuri, G. & Bergheim, I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int J Mol Sci 14, 11963-11980 (2013).
72. Caballero, F. et al. Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem 285, 18528-18536 (2010).
73. Johnson, P.R. & Hirsch, J. Cellularity of adipose depots in six strains of genetically obese mice. J Lipid Res 13, 2-11 (1972).
74. Ingalls, A.M., Dickie, M.M. & Snell, G.D. Obese, a new mutation in the house mouse. The Journal of heredity 41, 317-318 (1950).
75. Fonia, O., Weizman, R., Coleman, R., Kaganovskaya, E. & Gavish, M. PK 11195 aggravates 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced hepatic porphyria in rats. Hepatology 24, 697-701 (1996).
76. Cantoni, L. et al. Hepatic protoporphyria is associated with a decrease in ligand binding for the mitochondrial benzodiazepine receptors in the liver. Biochem Pharmacol 44, 1159-1164 (1992).
77. Lee, S.S., Kennedy, S., Tolonen, A.C. & Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644-647 (2003).
78. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449-460 (2005).
79. Jovaisaite, V., Mouchiroud, L. & Auwerx, J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol 217, 137-143 (2014).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top