|
V. Reference 1. Chen, Y.F., Wu, C.Y., Kirby, R., Kao, C.H. & Tsai, T.F. A role for the CISD2 gene in lifespan control and human disease. Ann N Y Acad Sci 1201, 58-64 (2010). 2. Maio, N. & Rouault, T.A. Iron-sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery. Biochim Biophys Acta 1853, 1493-1512 (2015). 3. Lill, R. et al. Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim Biophys Acta 1763, 652-667 (2006). 4. Beinert, H., Holm, R.H. & Munck, E. Iron-sulfur clusters: nature's modular, multipurpose structures. Science 277, 653-659 (1997). 5. Tamir, S. et al. Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease. Biochim Biophys Acta 1853, 1294-1315 (2015). 6. Cheng, Z., Landry, A.P., Wang, Y. & Ding, H. Binding of Nitric Oxide in CDGSH-type [2Fe-2S] Clusters of the Human Mitochondrial Protein Miner2. J Biol Chem 292, 3146-3153 (2017). 7. Colca, J.R. et al. Identification of a novel mitochondrial protein ("mitoNEET") cross-linked specifically by a thiazolidinedione photoprobe. Am J Physiol Endocrinol Metab 286, E252-260 (2004). 8. Colca, J.R. Insulin sensitizers may prevent metabolic inflammation. Biochem Pharmacol 72, 125-131 (2006). 9. Oslowski, C.M. & Urano, F. The binary switch that controls the life and death decisions of ER stressed beta cells. Curr Opin Cell Biol 23, 207-215 (2011). 10. Fonseca, S.G. et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J Clin Invest 120, 744-755 (2010). 11. Wu, C.Y. et al. A persistent level of Cisd2 extends healthy lifespan and delays aging in mice. Hum Mol Genet 21, 3956-3968 (2012). 12. Kusminski, C.M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat Med 18, 1539-1549 (2012). 13. Chen, Y.F. et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev 23, 1183-1194 (2009). 14. Kusminski, C.M., Park, J. & Scherer, P.E. MitoNEET-mediated effects on browning of white adipose tissue. Nat Commun 5, 3962 (2014). 15. Inupakutika, M.A. et al. Phylogenetic analysis of eukaryotic NEET proteins uncovers a link between a key gene duplication event and the evolution of vertebrates. Sci Rep 7, 42571 (2017). 16. Wiley, S.E., Murphy, A.N., Ross, S.A., van der Geer, P. & Dixon, J.E. MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proceedings of the National Academy of Sciences of the United States of America 104, 5318-5323 (2007). 17. Brown, G.C. Nitric oxide and mitochondria. Frontiers in bioscience : a journal and virtual library 12, 1024-1033 (2007). 18. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat Med 19, 1252-1263 (2013). 19. Ricquier, D. Uncoupling protein 1 of brown adipocytes, the only uncoupler: a historical perspective. Front Endocrinol (Lausanne) 2, 85 (2011). 20. Vitali, A. et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 53, 619-629 (2012). 21. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961-967 (2008). 22. Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121, 96-105 (2011). 23. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. & Kozak, L.P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest 96, 2914-2923 (1995). 24. Cederberg, A. et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106, 563-573 (2001). 25. Hariri, N. & Thibault, L. High-fat diet-induced obesity in animal models. Nutr Res Rev 23, 270-299 (2010). 26. Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 23, 804-814 (2017). 27. Meex, R.C.R. & Watt, M.J. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol (2017). 28. Buettner, R., Scholmerich, J. & Bollheimer, L.C. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring, Md.) 15, 798-808 (2007). 29. Abdelmalek, M.F. et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51, 1961-1971 (2010). 30. Alwahsh, S.M. & Gebhardt, R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol 91, 1545-1563 (2017). 31. Zhang, C. & Zhang, F. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell 6, 88-100 (2015). 32. Torti, S.V. & Torti, F.M. Iron and cancer: more ore to be mined. Nature reviews. Cancer 13, 342-355 (2013). 33. De Domenico, I., McVey Ward, D. & Kaplan, J. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol 9, 72-81 (2008). 34. Romero, A. et al. A review of metal-catalyzed molecular damage: protection by melatonin. Journal of pineal research 56, 343-370 (2014). 35. Pantopoulos, K., Porwal, S.K., Tartakoff, A. & Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry 51, 5705-5724 (2012). 36. Orrenius, S., Nicotera, P. & Zhivotovsky, B. Cell death mechanisms and their implications in toxicology. Toxicological sciences : an official journal of the Society of Toxicology 119, 3-19 (2011). 37. Lane, D.J. et al. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochim Biophys Acta 1853, 1130-1144 (2015). 38. Liedtke, C. et al. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenesis Tissue Repair 6, 19 (2013). 39. Yang, J.D. & Roberts, L.R. Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol 7, 448-458 (2010). 40. Llovet, J.M. et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2, 16018 (2016). 41. Vucur, M. et al. Mouse models of hepatocarcinogenesis: what can we learn for the prevention of human hepatocellular carcinoma? Oncotarget 1, 373-378 (2010). 42. Luedde, T. & Trautwein, C. Intracellular survival pathways in the liver. Liver international : official journal of the International Association for the Study of the Liver 26, 1163-1174 (2006). 43. Hann, B. & Balmain, A. Building 'validated' mouse models of human cancer. Curr Opin Cell Biol 13, 778-784 (2001). 44. Mamikutty, N., Thent, Z.C. & Haji Suhaimi, F. Fructose-Drinking Water Induced Nonalcoholic Fatty Liver Disease and Ultrastructural Alteration of Hepatocyte Mitochondria in Male Wistar Rat. Biomed Res Int 2015, 895961 (2015). 45. Wood, J.C. et al. Cardiac iron determines cardiac T2*, T2, and T1 in the gerbil model of iron cardiomyopathy. Circulation 112, 535-543 (2005). 46. Silva, M. et al. Iron dextran increases hepatic oxidative stress and alters expression of genes related to lipid metabolism contributing to hyperlipidaemia in murine model. Biomed Res Int 2015, 272617 (2015). 47. Khechaduri, A., Bayeva, M., Chang, H.C. & Ardehali, H. Heme levels are increased in human failing hearts. J Am Coll Cardiol 61, 1884-1893 (2013). 48. Chai, X. et al. ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice. Sci Rep 5, 10181 (2015). 49. Juan, C.C. et al. Insulin infusion induces endothelin-1-dependent hypertension in rats. Am J Physiol Endocrinol Metab 287, E948-954 (2004). 50. Tran, T.T., Yamamoto, Y., Gesta, S. & Kahn, C.R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell metabolism 7, 410-420 (2008). 51. Shabalina, I.G. et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5, 1196-1203 (2013). 52. Rowland, L.A., Bal, N.C., Kozak, L.P. & Periasamy, M. Uncoupling Protein 1 and Sarcolipin Are Required to Maintain Optimal Thermogenesis, and Loss of Both Systems Compromises Survival of Mice under Cold Stress. J Biol Chem 290, 12282-12289 (2015). 53. Dempersmier, J. et al. Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Mol Cell 57, 235-246 (2015). 54. Bal, N.C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18, 1575-1579 (2012). 55. Kao, C.H., Chen, J.K., Kuo, J.S. & Yang, V.C. Visualization of the transport pathways of low density lipoproteins across the endothelial cells in the branched regions of rat arteries. Atherosclerosis 116, 27-41 (1995). 56. Panchal, S.K. & Brown, L. Rodent models for metabolic syndrome research. J Biomed Biotechnol 2011, 351982 (2011). 57. Rinella, M.E. Nonalcoholic fatty liver disease: a systematic review. JAMA 313, 2263-2273 (2015). 58. Vos, M.B. & Lavine, J.E. Dietary fructose in nonalcoholic fatty liver disease. Hepatology 57, 2525-2531 (2013). 59. Baena, M. et al. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues. Sci Rep 6, 26149 (2016). 60. Sohn, Y.S. et al. NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proceedings of the National Academy of Sciences of the United States of America 110, 14676-14681 (2013). 61. Yang, W.S. & Stockwell, B.R. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol 26, 165-176 (2016). 62. Xie, Y. et al. Ferroptosis: process and function. Cell Death Differ 23, 369-379 (2016). 63. Dixon, S.J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072 (2012). 64. Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun 478, 838-844 (2016). 65. Saeter, G. et al. The polyploidizing growth pattern of normal rat liver is replaced by divisional, diploid growth in hepatocellular nodules and carcinomas. Carcinogenesis 9, 939-945 (1988). 66. Guidotti, J.E. et al. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 278, 19095-19101 (2003). 67. Miyaoka, Y. et al. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Current biology : CB 22, 1166-1175 (2012). 68. Seglen, P.O. DNA ploidy and autophagic protein degradation as determinants of hepatocellular growth and survival. Cell biology and toxicology 13, 301-315 (1997). 69. Sigal, S.H. et al. Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events. The American journal of physiology 276, G1260-1272 (1999). 70. Rinella, M.E. et al. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet. J Lipid Res 49, 1068-1076 (2008). 71. Kanuri, G. & Bergheim, I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int J Mol Sci 14, 11963-11980 (2013). 72. Caballero, F. et al. Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem 285, 18528-18536 (2010). 73. Johnson, P.R. & Hirsch, J. Cellularity of adipose depots in six strains of genetically obese mice. J Lipid Res 13, 2-11 (1972). 74. Ingalls, A.M., Dickie, M.M. & Snell, G.D. Obese, a new mutation in the house mouse. The Journal of heredity 41, 317-318 (1950). 75. Fonia, O., Weizman, R., Coleman, R., Kaganovskaya, E. & Gavish, M. PK 11195 aggravates 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced hepatic porphyria in rats. Hepatology 24, 697-701 (1996). 76. Cantoni, L. et al. Hepatic protoporphyria is associated with a decrease in ligand binding for the mitochondrial benzodiazepine receptors in the liver. Biochem Pharmacol 44, 1159-1164 (1992). 77. Lee, S.S., Kennedy, S., Tolonen, A.C. & Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644-647 (2003). 78. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449-460 (2005). 79. Jovaisaite, V., Mouchiroud, L. & Auwerx, J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol 217, 137-143 (2014).
|