跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/21 04:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李依儒
研究生(外文):Yi-Ru Li
論文名稱:研究果蠅基因tailless的轉錄抑制過程
論文名稱(外文):Studies on the initiation of transcription repression of Drosophila tailless
指導教授:廖國楨
指導教授(外文):Gwo-Jen Liaw
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:67
中文關鍵詞:黑腹果蠅無尾基因轉錄抑制多梳家族蛋白轉移機制
外文關鍵詞:Drosophila melanogastertaillesstranscription repressionPcG proteinsBTB domainTransfer Mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基因的轉錄抑制是由不同的轉錄因子專一性地針對其標的基因進行抑制調控,表觀因子則是會進一步透過形成異質染色體的方式維持住基因的轉錄抑制,然而表觀因子要如何接收訊息知道哪些基因需要被維持住轉錄抑制呢?在這邊我利用果蠅tll的轉錄抑制當作模型研究這個過程的分子機制。已知tll的轉錄抑制是由Ttk69、GAF和Hsf所組成的蛋白質抑制複合體結合在tor-RE上所進行的調控,進一步從BioGRID資料庫中注意到PRC1可能可以經由Ttk69、Lwr、Scm和Z被招募到tor-RE,所以我們藉由免疫沉澱法的實驗去證實這些蛋白質的確結合在一起,再藉由遺傳實驗得知tll的轉錄抑制是需要來自果蠅媽媽的這些基因活性,也就是說PRC1有參與tll的轉錄抑制初期階段。此外,根據實驗室的初步結果推論當PRC1被招募到tor-RE上後,會因為Ttk69、GAF和Lolal的交互作用而被運送到在tor-RE上游的multiple Pho-binding sites。已知這三個蛋白質皆有一個BTB domain且同屬於“ttk Group”這個家族,藉由電腦軟體模擬以及分析的結果支持這些蛋白質可以利用他們的BTB domain形成多聚物來運送PRC1。綜上所述,這些結果提供了一個基礎讓我們可以更了解tll的轉錄抑制是如何轉交給PcG表觀因子以維持其轉錄抑制。
Transcription repression is mediated originally by gene-specific repressors. Epigenetic repression is responsible for the maintenance of the inactivated status of target genes via heterochromatin formation. The gap between gene-specific repression and epigenetic repression has been unknown at the molecular level. The tll repression is as a model to study the transition. tll is activated due to the relief of the repression, mediated by Ttk69, GAF and Hsf proteins binding at tor-RE. Data from BioGRID imply that PRC1 is recruited to tor-RE due to the interactions among Ttk69, Lwr, Scm and Z. Here, cross-linked co-IP experiments showed that these proteins associate together. Further, genetic interaction experiments showed that the maternal activities of lwr, Scm, z and PRC1 are required for the tll repression. It indicates that PRC1 is recruited to regulate the initiation of the tll repression. In addition, according to our preliminary results, it is speculated that after PRC1 is recruited, it will be transported to the multiple Pho-binding sites due to the interactions among Ttk69, GAF and Lolal proteins. Ttk69, GAF and Lolal are in the same BTB subgroup, “ttk Group”. In silico analysis was adopted to examine the possibility that Ttk69, GAF and Lolal associate together. The result of structural alignment supported that the BTB domains of Ttk69, GAF and Lolal form a hetero-oligomer. Taken together, the results provide a cornerstone to understand how the tll repression is transferred to PcG proteins-mediated repression.
摘要 i
Abstract ii
Table of content iii
List of Figures vi
Abbreviation vii
I.Introduction 1
I-1. Transcription initiation in eukaryotes 1
I-2. Early elongation and RNA pol II pausing 3
I-3. Transcription repression 4
I-4. Chromatin structure and epigenetic repression 5
I-5. Polycomb group proteins-mediated repression 7
I-5-1. Polycomb group proteins 7
I-5-2. Polycomb response element 8
I-5-3. “Transfer Mechanism”, proposed by Bienz and Müller 9
I-6. Early embryogenesis in Drosophila melanogaster 9
I-7. Studies on the transcription regulation of Drosophila tll gene 10
I-7-1. tll expression is mainly initiated by the tor pathway 11
I-7-2. Ttk69, GAF and Hsf proteins form a repressive complex binding at tor-RE to respond the activation of the tor pathway 12
I-7-3. PcG proteins maintain the tll repression at stages 6 and after 12
I-7-4. Ttk69 associate with GAF and Lolal to transfer PRC1 to the multiple Pho-binding sites 14
I-8. Specific aim 14

II.Materials & Methods 16
II-1. Fly genetics 16
II-2. Whole-mount in situ hybridization of embryos 16
II-2-1. Embryo fixation 16
II-2-2. RNA hybridization 17
II-2-3. Probe detection 18
II-2-4. Color development 19
II-2-5. Sample mounting 19
II-3. Wild-type embryo extract preparation for western blotting 20
II-4. Western blotting to detecting the results of co-immunoprecipitation 21
II-5. In silico analysis 22
II-5-1. The BTB domains of Ttk69, GAF, Psq and Lolal proteins 22
II-5-2. The BTB domains of the GAF-Ttk69 and Lolal-GAF heterodimers 23

III.Results 24
III-1. Ttk69 associates with PcG proteins through Lwr and Pits 24
III-1-1. Experimental design to show that PcG proteins are recruited via Lwr and Pits 24
III-1-2. Antibodies against Scm, Z, Pc, Ph, E(z), Esc, Pho and Sfmbt proteins were acquired to detect the proteins in the immunoprecipitated protein complexes 24
III-1-3. PRC1 and PRC2 associate with Ttk69 via Lwr and Pits respectively 25
III-2. Lwr, Scm and Z participate in the initiation of the tll repression 25
III-2-1. Experimental design to examine the maternal roles of lwr, Scm and z in the tll regulation 25
III-2-2. The maternal activities of lwr, Scm and z are required for the initiation of the tll repression 26
III-2-3. The zygotic activities of lwr, Scm and z are also involved in the tll regulation 27
III-3. PRC1 participates in the initiation of the tll repression 28
III-4. The interactions among Ttk69, GAF and Lolal may help PRC1 to be transported to the multiple Pho-binding sites 29
III-4-1. Experimental design to examine the possibility that Ttk69, GAF and Lolal associate together 29
III-4-2. In silico analysis on the BTB domains of Ttk69, GAF, Psq and Lolal proteins 30
III-4-3. In silico analysis on the BTB domains of the GAF-Ttk69 and Lolal-GAF heterodimers 31

IV.Discussion 33
IV-1. Z protein plays a dual role in the tll regulation 34
IV-2. The recruitment of PRC1 is through a transcriptional factor, Ttk69 34
IV-3. PRC1 mediates the initiation of the tll repression by means of the maintenance of RNA pol II at the promoter 35
IV-4. PRC2 may not participate in the initiation of the tll repression 36
IV-5. PhoRC may participate in the tll regulation 36

V.References 38

Figures 44

Supplementary Figures 66



List of Figures
Fig. 1 The expression patterns of tll at stages 4-6
Fig. 2 Ttk69 interacts with PRC1, PRC2 and PhoRC through Lwr and Pits
Fig. 3 modENCODE data support that PRC1 maintains the tll repression at stages 6 and after
Fig. 4 The Pho and GAF –binding sites, located upstream from tor-RE, are conserved among Drosophila species
Fig. 5 Examples to illustrate how to collect embryos from mutant females in the dosage-dependent genetic interaction experiments
Fig. 6 The gel used for separating the immunoprecipitated protein complexes in the cross-linked co-IP experiments
Fig. 7 An example how to use PyMOL software for structural alignments
Fig. 8 Antibodies against Pc, Ph, Scm, Z, E(z), Esc, Pho and Sfmbt proteins are available to detect the immunoprecipitated protein complexes in the cross-linked co-IP experiments
Fig. 9 PcG proteins were detected in the immunoprecipitated protein complexes using anti- Lwr or Pits antibody
Fig. 10 Strategies used to study the maternal and maternal/zygotic defects on the tll posterior patterns in the dosage-dependent genetic interaction experiments
Fig. 11 The activities of lwr, Scm and z were involved in the regulation of the posterior tll repression
Fig. 12 The maternal activity of PRC1 was required for the tll repression
Fig. 13 In silico analysis on the Ttk69, GAF, Psq and Lolal BTB monomers
Fig. 14 The interaction between the Miz1-BCL6 BTB heterodimers is through their beta 1 and beta 5 stands
Fig. 15 In silico analysis on the GAF-Ttk69 and Lolal-GAF BTB heterodimers

Fig. S1 Lwr interacts with Ttk69, Scm and Z
Fig. S2 The multiple Pho-binding sites, located upstream from tor-RE, are crucial to maintain the posterior tll repression at stages 6 and after
Allis, C.D., Caparros, M.-L., Jenuwein, T., and Reinberg, D., eds. (2014). Epigenetics, 2nd edn (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).

Baroux, C., Autran, D., Gillmor, C.S., Grimanelli, D., and Grossniklaus, U. (2008). The maternal to zygotic transition in animals and plants. Cold Spring Harb. Symp. Quant. Biol. 73, 89-100.

Bienz, M., and Müller, J. (1995). Transcriptional silencing of homeotic genes in Drosophila. Bioessays 17, 775-784.

Bonchuk, A., Denisov, S., Georgiev, P., and Maksimenko, O. (2011). Drosophila BTB/POZ domains of "ttk group" can form multimers and selectively interact with each other. J Mol Biol 412, 423-436.

Bornemann, D., Miller, E., and Simon, J. (1998). Expression and Properties of Wild-Type and Mutant Forms of the Drosophila Sex Comb on Midleg (SCM) Repressor Protein. Genetics 150, 675-686.

Campos-Ortega, J.A., and Hartenstein, V., eds. (1985). The Embryonic development of Drosophila melanogaster, 2nd edn (New York: Springer-Verlag Berlin Heidelberg).

Carey, M., and Smale, S.T., eds. (2000). Transcriptional Regulation in Eukaryotes: Concepts, Strategies, and Techniques, 1st edn (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).

Carrington, E.A., and Jones, R.S. (1996). The Drosophila Enhancer of zeste gene encodes a chromosomal protein: examination of wild-type and mutant protein distribution. Development 122, 4073-4083.

Chan, L.N., and Gehring, W. (1971). Determination of blastoderm cells in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68, 2217-2221.

Chen, Y.C., Lin, S.I., Chen, Y.K., Chiang, C.S., and Liaw, G.J. (2009). The Torso signaling pathway modulates a dual transcriptional switch to regulate tailless expression. Nucleic Acids Res 37, 1061-1072.

Chen, Y.J., Chiang, C.S., Weng, L.C., Lengyel, J.A., and Liaw, G.J. (2002). Tramtrack69 is required for the early repression of tailless expression. Mech Dev 116, 75-83.

Combet, C., Jambon, M., Deleage, G., and Geourjon, C. (2002). Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18, 213-214.

Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002). Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185-196.

Frey, F., Sheahan, T., Finkl, K., Stoehr, G., Mann, M., Benda, C., and Müller, J. (2016). Molecular basis of PRC1 targeting to Polycomb response elements by PhoRC. Genes Dev 30, 1116-1127.

Gambetta, M.C., Oktaba, K., and Muller, J. (2009). Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Sci 325, 93-96.

Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y.L., Ooi, C.E., Godwin, B., Vitols, E., et al. (2003). A protein interaction map of Drosophila melanogaster. Sci 302, 1727-1736.

Grau, D.J., Antao, J.M., and Kingston, R.E. (2010). Functional dissection of Polycomb repressive complex 1 reveals the importance of a charged domain. Cold Spring Harb. Symp. Quant. Biol. 75, 61-70.

Greenspan, R.J., ed. (1996). Fly pushing: the theory and practice of Drosophila genetics (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).

Guruharsha, K.G., Rual, J.F., Zhai, B., Mintseris, J., Vaidya, P., Vaidya, N., Beekman, C., Wong, C., Rhee, D.Y., Cenaj, O., et al. (2011). A protein complex network of Drosophila melanogaster. Cell 147, 690-703.

Harvey, R., Schuster, E., and Jennings, B.H. (2013). Pleiohomeotic interacts with the core transcription elongation factor Spt5 to regulate gene expression in Drosophila. PLoS One 8, e70184.

Hug, C.B., Grimaldi, A.G., Kruse, K., and Vaquerizas, J.M. (2017). Chromatin Architecture Emerges during Zygotic Genome Activation Independent of Transcription. Cell 169, 216-228 e219.

Hulskamp, M., and Tautz, D. (1991). Gap genes and gradients--the logic behind the gaps. Bioessays 13, 261-268.

Hur, M.W., Laney, J.D., Jeon, S.H., Ali, J., and Biggin, M.D. (2002). Zeste maintains repression of Ubx transgenes: support for a new model of Polycomb repression. Development 129, 1339-1343.

Jonkers, I., and Lis, J.T. (2015). Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167-177.

Kassis, J.A., and Brown, J.L. (2013). Polycomb group response elements in Drosophila and vertebrates. Adv Genet 81, 83-118.

Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845-858.

Kennison, J.A. (1995). The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet 29, 289-303.

Kim, C.A., Sawaya, M.R., Cascio, D., Kim, W., and Bowie, J.U. (2005). Structural organization of a Sex-comb-on-midleg/polyhomeotic copolymer. J Biol Chem 280, 27769-27775.

Klymenko, T., Papp, B., Fischle, W., Kocher, T., Schelder, M., Fritsch, C., Wild, B., Wilm, M., and Müller, J. (2006). A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev 20, 1110-1122.

Larking, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, G., McWilliam, H., Valentin, F., Wallace, I., Wilm, A., and Lopez, R. (2007). ClustalW and ClustalX version 2. Bioinformatics 23, 2947-2948.

Lee, C., Li, X., Hechmer, A., Eisen, M., Biggin, M.D., Venters, B.J., Jiang, C., Li, J., Pugh, B.F., and Gilmour, D.S. (2008). NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol Cell Biol 28, 3290-3300.

Levine, M. (2011). Paused RNA polymerase II as a developmental checkpoint. Cell 145, 502-511.

Lewis, E. (1978). A gene complex controlling segmentation in Drosophila. Nature 276, 565-570.

Lewis, P. (1949). Pc: Polycomb. Dros. Inf. Serv 21, 69.

Li, W.X. (2005). Functions and mechanisms of receptor tyrosine kinase Torso signaling: lessons from Drosophila embryonic terminal development. Dev Dyn 232, 656-672.

Li, X., Peng, H., Schultz, D.C., Lopez-Guisa, J.M., Rauscher, F.J., 3rd, and Marmorstein, R. (1999). Structure-function studies of the BTB/POZ transcriptional repression domain from the promyelocytic leukemia zinc finger oncoprotein. Cancer Res. 59, 5275-5282.

Liaw, G.-J. (2016). Pits, a protein interacting with Ttk69 and Sin3A, has links to histone deacetylation. Sci. Rep. 6, 33388.

Liaw, G.J., and Lengyel, J.A. (1993). Control of tailless expression by bicoid, dorsal and synergistically interacting terminal system regulatory elements. Mech Dev 40, 47-61.

Liaw, G.J., Rudolph, K.M., Huang, J.D., Dubnicoff, T., Courey, A.J., and Lengyel, J.A. (1995). The torso response element binds GAGA and NTF-1/Elf-1, and regulates tailless by relief of repression. Genes Dev 9, 3163-3176.

Müller, J., Hart, C.M., Francis, N.J., Vargas, M.L., Sengupta, A., Wild, B., Miller, E.L., O'Connor, M.B., Kingston, R.E., and Simon, J.A. (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197-208.

Maeda, R.K., and Karch, F. (2006). The ABC of the BX-C: the bithorax complex explained. Development 133, 1413-1422.

Mahoney, P.A., and Lengyel, J.A. (1987). The zygotic segmentation mutant tailless alters the blastoderm fate map of the Drosophila embryo. Dev Biol 122, 464-470.
Moritz, M. (2007). Preparing Cytoplasmic Extracts from Drosophila Embryos. CSH Protoc 2007.

Pagans, S., Ortiz‐Lombardía, M., Espinás, M.L., Bernués, J., and Azorín, F. (2002). The Drosophila transcription factor tramtrack (TTK) interacts with Trithorax‐like (GAGA) and represses GAGA‐mediated activation. Nucleic Acids Res 30, 4406-4413.

Papp, B., and Müller, J. (2006). Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 20, 2041-2054.

Pignoni, F., Baldarelli, R.M., Steingrimsson, E., Diaz,
R.J., Patapoutian, A., Merriam, J.R., and Lengyel, J.A. (1990). The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 62, 151-163.

Pignoni, F., Steingrimsson, E., and Lengyel, J.A. (1992). bicoid and the terminal system activate tailless expression in the early Drosophila embryo. Development 115, 239-251.

Pirrotta, V., Bickel, S., and Mariani, C. (1988). Developmental expression of the Drosophila zeste gene and localization of zeste protein on polytene chromosomes. Genes Dev. 2, 1839-1850.

Read, D., and Manley, J.L. (1992). Alternatively spliced transcripts of the Drosophila tramtrack gene encode zinc finger proteins with distinct DNA binding specificities. EMBO J 11, 1035-1044.

Ringrose, L., Rehmsmeier, M., Dura, J.M., and Paro, R. (2003). Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev. Cell 5, 759-771.

Rougvie, A.E., and Lis, J.T. (1990). Postinitiation transcriptional control in Drosophila melanogaster. Mol Cell Biol 10, 6041-6045.

Sadasivam, D.A., and Huang, D.H. (2016). Maintenance of Tissue Pluripotency by Epigenetic Factors Acting at Multiple Levels. PLoS Genet 12, e1005897.

Saurin, A.J., Shao, Z., Erdjument-Bromage, H., Tempst, P., and Kingston, R.E. (2001). A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 412, 655-660.

Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675.

Simon, J., Chiang, A., Bender, W., Shimell, M.J., and O'Connor, M. (1993). Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev Biol 158, 131-144.

Smith, M., Mallin, D.R., Simon, J.A., and Courey, A.J. (2011). Small ubiquitin-like modifier (SUMO) conjugation impedes transcriptional silencing by the polycomb group repressor Sex Comb on Midleg. J Biol Chem 286, 11391-11400.

Stead, M.A., and Wright, S.C. (2014). Structures of heterodimeric POZ domains of Miz1/BCL6 and Miz1/NAC1. Acta Crystallographica. Section F, Structural Biology Communications 70, 1591-1596.

Steingrimsson, E., Pignoni, F., Liaw, G.-J., and Lengyel, J.A. (1991). Dual role of the Drosophila pattern gene tailless in embryonic termini. Sci 254, 418-421.

Stothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques 28, 1102-1104.

Strecker, T.R., Kongsuwan, K., Lengyel, J.A., and Merriam, J.R. (1986). The zygotic mutant tailless affects the anterior and posterior ectodermal regions of the Drosophila embryo. Dev Biol 113, 64-76.

Strecker, T.R., Merriam, J.R., and Lengyel, J.A. (1988). Graded requirement for the zygotic terminal gene, tailless, in the brain and tail region of the Drosophila embryo. Development 102, 721-734.

Tatsumi, R., and Hattori, A. (1995). Detection of giant myofibrillar proteins connectin and nebulin by electrophoresis in 2% polyacrylamide slab gels strengthened with agarose. Anal Biochem 224, 28-31.

Tautz, D., and Pfeifle, C. (1989). A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81-85.

Tsai, S.Y., Chang, Y.L., Swamy, K.B., Chiang, R.L., and Huang, D.H. (2016). GAGA factor, a positive regulator of global gene expression, modulates transcriptional pausing and organization of upstream nucleosomes. Epigenetics Chromatin 9, 32.

Wang, L., Brown, J.L., Cao, R., Zhang, Y., Kassis, J.A., and Jones, R.S. (2004). Hierarchical Recruitment of Polycomb Group Silencing Complexes. Mol Cell 14, 637-646.

Wang, L., Jahren, N., Vargas, M.L., Andersen, E.F., Benes, J., Zhang, J., Miller, E.L., Jones, R.S., and Simon, J.A. (2006). Alternative ESC and ESC-like subunits of a Polycomb group histone methyltransferase complex are differentially deployed during Drosophila development. Mol Cell Biol 26, 2637-2647.

Watson, J.D., Baker, T., Bell, S., Gann, A., Levine, M., and Losick, R. (2008). Genome Structure, Chromatin, and the Nucleosome. In Molecular Biology of the Gene (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press), pp. 135-194.

Wilson, C.A., Kreychman, J., and Gerstein, M. (2000). Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J Mol Biol 297, 233-249.

Yu, M., Mazor, T., Huang, H., Huang, H.T., Kathrein, K.L., Woo, A.J., Chouinard, C.R., Labadorf, A., Akie, T.E., Moran, T.B., et al. (2012). Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol Cell 45, 330-343.

Zhou, W., Zhu, P., Wang, J., Pascual, G., Ohgi, K.A., Lozach, J., Glass, C.K., and Rosenfeld, M.G. (2008). Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 29, 69-80.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top