跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:綦可芸
研究生(外文):Ke-Yun Chyi
論文名稱:在3D環境中探討腫瘤相關纖維母細胞對鼻咽癌細胞株的幹細胞特性
論文名稱(外文):Stemness characteristics of nasopharyngeal carcinoma cells with cancer-associated fibroblasts in three-dimensional culture
指導教授:陳燕彰陳燕彰引用關係
指導教授(外文):Yann-Jang Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
論文頁數:36
中文關鍵詞:鼻咽癌腫瘤相關纖維母細胞腫瘤微環境3D培養模型
外文關鍵詞:Nasopharyngeal carcinomaCancer-Associated FibroblastTumor microenvironmentThree-dimensional culture mode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在先前的研究中發現癌細胞在2D和3D不同的環境中,會展現出不同的細胞特性。而且微環境對於癌細胞的幹細胞特性具有重要的影響作用。在微環境中,腫瘤相關纖維母細胞 (CAF) 比一般纖維母細胞更能促進腫瘤的發展。因此,本研究目的為探討癌細胞在立體環境中,纖維母細胞對於癌症幹細胞特性的影響。

實驗使用的細胞為鼻咽癌細胞珠TW01、TW06和Hone-1,以及癌症幹細胞TW01 CSC進行實驗。纖維母細胞則是來自於肺癌病患的腫瘤組織以及正常組織,給予細胞介白素6 (interleukin 6,IL-6) 或乳糖以誘發成CAF,藉由觀察CAF markers如: alpha-smooth muscle actin (α-SMA) 和vimentin以進行確認。將細胞培養於第一型膠原蛋白所建構的立體環境中,利用西方點墨法分析癌細胞的幹細胞相關基因Oct-4和Nanog的表現。

由實驗結果發現,在3D模型中癌細胞會形成聚球 (sphere) 的結構顯示相較於2D環境,細胞能展現更多的幹細胞特性。在立體環境中,癌細胞會有較高的Nanog表現,然而CSC組別中,Nanog表現卻是下降的。而在纖維母細胞的實驗中,證實乳糖有如IL-6具有促使一般纖維母細胞轉變為CAF的作用。接著將癌細胞與CAF在3D 環境中共同培養,發現CAF能促使癌細胞Nanog有比較高的表現,尤其是與乳糖誘發的CAF共同培養的組別。而且CSC組別中,與乳糖誘發的CAF培養後,Oct-4和Nanog都有顯著的增加情形。顯示微環境以及其中所存在的CAF對癌細胞的幹細胞特性能產生影響。
Previous studies revealed that stemness properties of cancer cells are different whether they are in 2D or 3D culture environment. Microenvironment of cancer cells has important roles with the stemness of cancer. In addition, cancer-associated fibroblasts (CAFs) existing in the tumor microenvironment have better ability to promote tumor development than normal fibroblast. Therefore, we compared the influences on NPC stemness properties with different fibroblast in 3D culture system.
NPC cell lines, TW01, TW06, Hone-1 and TW01 CSC, were used in this study. Fibroblasts were cultured from patients’ normal tissue or tumor tissue. Interleukin 6 (IL-6) and lactate were used to induce normal fibroblast to CAF and alpha-smooth muscle actin (α-SMA) and vimentin as the CAF markers were analyzed. Collagen type I was used as matrix to construct 3D culture environment. Expression of stemness markers, Oct-4 and Nanog, were assayed by Western blot.
In 3D system, NPC cells could form more sphere structure than in 2D culture, that indicated the stemness of cells was increased in 3D system. Nanog expressed more in 3D mono-culture than 2D system by western blot. However, Nanog was decreased in cancer stem cell (CSC) of NPC. In the other side, CAF markers were increased after treated with IL-6 or lactate in normal fibroblasts, as the previous research. When NPC cells were co-cultured with CAF, the protein level of Nanog was increased. In addition, Oct-4 and Nanog both enhanced, when CSC co-cultured with fibroblast treated with lactate. Furthermore, the concentration of lactate which released to medium rose if NPC cells/CSC co-cultured with CAF. In this study, we found that 3D culture environment with fibroblasts might change stemness properties of cancer cells.
誌謝 i
中文摘要 ii
Abstract iii
目錄 (Contents) iv
緒論 (Introduction) - 1 -
鼻咽癌 (Nasopharyngeal carcinoma) - 1 -
癌症幹細胞 (Cancer stem cell,CSC) - 1 -
鼻咽癌幹細胞 (Cancer stem cell of Nasopharyngeal carcinoma) - 2 -
腫瘤微環境 (Tumor microenvironment,TME) - 3 -
腫瘤相關纖維母細胞 (Cancer-Associated Fibroblast,CAF) - 3 -
癌細胞的代謝路徑 (The metabolism of cancer cell) - 4 -
(a) Warburg effect - 4 -
(b) Reverse Warburg Effect - 5 -
乳糖在癌症中扮演的角色 (The role of lactate in cancer) - 6 -
3D培養模型 (Three-dimensional culture model) - 6 -
研究目標 (Specific Aims) - 8 -
材料與方法 (Material and Methods) - 9 -
使用的細胞株 - 9 -
細胞培養 - 9 -
誘發纖維母細胞轉變成腫瘤相關纖維母細胞 - 9 -
3D 細胞培養模型 - 10 -
蛋白質萃取 - 10 -
西方點墨法 (Western blot) - 10 -
免疫螢光染色法 (Immunofluorescence staining) - 11 -
共軛焦顯微成像技術 (Confocal microscopy) - 11 -
乳糖濃度分析 (Lactate releasing assay) - 12 -
統計 (Statistical analysis) - 12 -
表格一 (Table 1) - 12 -
表格二 (Table 2) - 13 -
結果 (Result) - 14 -
分析來自不同組織部位的肺癌病人檢體 - 14 -
乳糖以及IL-6能誘發纖維母細胞表現CAF marker - 14 -
給予乳糖後持續培養的纖維母細胞能維持CAF markers的表現 - 14 -
培養於3D culture的鼻咽癌細胞及癌症幹細胞釋放的乳糖濃度較2D culture高 - 15 -
在3D culture中,與腫瘤相關纖維母細胞共同培養的癌細胞,其培養液有較高濃度的乳糖 - 15 -
TW01細胞株在2D和3D culture下會展現不同的細胞型態 - 15 -
透過將α-tubulin染色以觀察TW01細胞株的型態 - 16 -
分析鼻咽癌細胞珠的幹細胞相關基因表現量 - 16 -
鼻咽癌幹細胞之幹細胞相關基因表現量 - 16 -
在3D Culture中,與纖維母細胞共同培養的TW01細胞株其幹細胞相關基因表現量 - 17 -
在3D culture中,將癌細胞與施予過IL-6或乳糖的纖維母細胞培養過後,Nanog表現量有顯著性的增加 - 17 -
在3D culture中,將癌症幹癌細胞與給予乳糖的纖維母細胞培養過後,Oct-4及Nanog表現量有顯著性的增加 - 17 -
討論 (Discussion) - 18 -
參考文獻 (Reference) - 20 -
圖 (Figure) - 25 -
Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 100, 3983-3988.
Armstrong, T., Packham, G., Murphy, L.B., Bateman, A.C., Conti, J.A., Fine, D.R., Johnson, C.D., Benyon, R.C., and Iredale, J.P. (2004). Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 7427-7437.
Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L., and Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635-648.
Bonnet, D., and Dick, J.E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine 3, 730-737.
Brennan, B. (2006). Nasopharyngeal carcinoma. Orphanet journal of rare diseases 1, 23.
Cao, L., Zhou, Y., Zhai, B., Liao, J., Xu, W., Zhang, R., Li, J., Zhang, Y., Chen, L., Qian, H., et al. (2011). Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC gastroenterology 11, 71.
Casey, T.M., Eneman, J., Crocker, A., White, J., Tessitore, J., Stanley, M., Harlow, S., Bunn, J.Y., Weaver, D., Muss, H., et al. (2008). Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-beta 1) increase invasion rate of tumor cells: a population study. Breast cancer research and treatment 110, 39-49.
Chen, K., Huang, Y.H., and Chen, J.L. (2013). Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta pharmacologica Sinica 34, 732-740.
Chen, L., Xiao, Z., Meng, Y., Zhao, Y., Han, J., Su, G., Chen, B., and Dai, J. (2012). The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs. Biomaterials 33, 1437-1444.
Chen, Y.C., Hsu, H.S., Chen, Y.W., Tsai, T.H., How, C.K., Wang, C.Y., Hung, S.C., Chang, Y.L., Tsai, M.L., Lee, Y.Y., et al. (2008). Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PloS one 3, e2637.
Chua, D.T., Sham, J.S., Kwong, D.L., and Au, G.K. (2003). Treatment outcome after radiotherapy alone for patients with Stage I-II nasopharyngeal carcinoma. Cancer 98, 74-80.
Chua, M.L.K., Wee, J.T.S., Hui, E.P., and Chan, A.T.C. (2016). Nasopharyngeal carcinoma. The Lancet 387, 1012-1024.
Colegio, O.R., Chu, N.Q., Szabo, A.L., Chu, T., Rhebergen, A.M., Jairam, V., Cyrus, N., Brokowski, C.E., Eisenbarth, S.C., Phillips, G.M., et al. (2014). Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559-563.
Dalerba, P., Cho, R.W., and Clarke, M.F. (2007). Cancer stem cells: models and concepts. Annual review of medicine 58, 267-284.
Dhup, S., Dadhich, R.K., Porporato, P.E., and Sonveaux, P. (2012). Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Current pharmaceutical design 18, 1319-1330.
Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H.H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J.M., Sloane, B.F., et al. (2013). Acidity generated by the tumor microenvironment drives local invasion. Cancer research 73, 1524-1535.
Garner, E.F., and Beierle, E.A. (2015). Cancer Stem Cells and Their Interaction with the Tumor Microenvironment in Neuroblastoma. Cancers 8.
Gottfried, E., Kunz-Schughart, L.A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., Mackensen, A., and Kreutz, M. (2006). Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107, 2013-2021.
Hirschhaeuser, F., Sattler, U.G., and Mueller-Klieser, W. (2011). Lactate: a metabolic key player in cancer. Cancer research 71, 6921-6925.
Jeter, C.R., Yang, T., Wang, J., Chao, H.P., and Tang, D.G. (2015). Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem cells (Dayton, Ohio) 33, 2381-2390.
Khanna, R., Moss, D., and Gandhi, M. (2005). Technology insight: Applications of emerging immunotherapeutic strategies for Epstein-Barr virus-associated malignancies. Nature clinical practice Oncology 2, 138-149.
Kim, C.F., Jackson, E.L., Woolfenden, A.E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R.T., and Jacks, T. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823-835.
Kim, S.H., Lee, H.Y., Jung, S.P., Kim, S., Lee, J.E., Nam, S.J., and Bae, J.W. (2014). Role of secreted type I collagen derived from stromal cells in two breast cancer cell lines. Oncology letters 8, 507-512.
Krause, S., Maffini, M.V., Soto, A.M., and Sonnenschein, C. (2010). The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures. BMC cancer 10, 263.
Lee, K.W., Yeo, S.Y., Sung, C.O., and Kim, S.H. (2015). Twist1 is a key regulator of cancer-associated fibroblasts. Cancer research 75, 73-85.
Lin, Y.L., Han, Z.B., Xiong, F.Y., Tian, L.Y., Wu, X.J., Xue, S.W., Zhou, Y.R., Deng, J.X., and Chen, H.X. (2011). Malignant transformation of 293 cells induced by ectopic expression of human Nanog. Molecular and cellular biochemistry 351, 109-116.
Loh, Y.H., Wu, Q., Chew, J.L., Vega, V.B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature genetics 38, 431-440.
Maitland, N.J., and Collins, A.T. (2008). Prostate cancer stem cells: a new target for therapy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26, 2862-2870.
Martinez-Outschoorn, U.E., Lin, Z., Trimmer, C., Flomenberg, N., Wang, C., Pavlides, S., Pestell, R.G., Howell, A., Sotgia, F., and Lisanti, M.P. (2011). Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell cycle 10, 2504-2520.
Meacham, C.E., and Morrison, S.J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature 501, 328-337.
Melzer, C., von der Ohe, J., Lehnert, H., Ungefroren, H., and Hass, R. (2017). Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells. Molecular cancer 16, 28.
Nor Hashim, N.A., Ramzi, N.H., Velapasamy, S., Alex, L., Chahil, J.K., Lye, S.H., Munretnam, K., Haron, M.R., and Ler, L.W. (2012). Identification of genetic and non-genetic risk factors for nasopharyngeal carcinoma in a Southeast Asian population. Asian Pacific journal of cancer prevention : APJCP 13, 6005-6010.
O'Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110.
Orimo, A., and Weinberg, R.A. (2014). Heterogeneity of stromal fibroblasts in tumor. Cancer Biology & Therapy 6, 618-619.
Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A.K., Frank, P.G., Casimiro, M.C., Wang, C., Fortina, P., Addya, S., et al. (2009). The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell cycle 8, 3984-4001.
Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., Bernard, L., Viale, G., Pelicci, P.G., and Di Fiore, P.P. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140, 62-73.
Peiris-Pages, M., Sotgia, F., and Lisanti, M.P. (2015). Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget 6, 10728-10745.
Raab-Traub, N., Flynn, K., Pearson, G., Huang, A., Levine, P., Lanier, A., and Pagano, J. (1987). The differentiated form of nasopharyngeal carcinoma contains Epstein-Barr virus DNA. International journal of cancer 39, 25-29.
Ronnov-Jessen, L., and Petersen, O.W. (1993). Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Laboratory investigation; a journal of technical methods and pathology 68, 696-707.
Shen, Y.A., Wang, C.Y., Chuang, H.Y., Hwang, J.J., Chi, W.H., Shu, C.H., Ho, C.Y., Li, W.Y., and Chen, Y.J. (2016). CD44 and CD24 coordinate the reprogramming of nasopharyngeal carcinoma cells towards a cancer stem cell phenotype through STAT3 activation. Oncotarget 7, 58351-58366.
Shen, Y.A., Wang, C.Y., Hsieh, Y.T., Chen, Y.J., and Wei, Y.H. (2015). Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell cycle 14, 86-98.
Shiga, K., Hara, M., Nagasaki, T., Sato, T., Takahashi, H., and Takeyama, H. (2015). Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers 7, 2443-2458.
Singh, A.M., Hamazaki, T., Hankowski, K.E., and Terada, N. (2007). A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem cells (Dayton, Ohio) 25, 2534-2542.
Sotgia, F., Martinez-Outschoorn, U.E., Pavlides, S., Howell, A., Pestell, R.G., and Lisanti, M.P. (2011). Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast cancer research : BCR 13, 213.
Sounni, N.E., and Noel, A. (2013). Targeting the tumor microenvironment for cancer therapy. Clinical chemistry 59, 85-93.
Sugimoto, H., Mundel, T.M., Kieran, M.W., and Kalluri, R. (2014). Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biology & Therapy 5, 1640-1646.
Takai, K., Le, A., Weaver, V.M., and Werb, Z. (2016). Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget 7, 82889-82901.
Tommelein, J., Verset, L., Boterberg, T., Demetter, P., Bracke, M., and De Wever, O. (2015). Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Frontiers in oncology 5, 63.
Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY) 324, 1029-1033.
Vaupel, P., Kallinowski, F., and Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer research 49, 6449-6465.
Walenta, S., Wetterling, M., Lehrke, M., Schwickert, G., Sundfor, K., Rofstad, E.K., and Mueller-Klieser, W. (2000). High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer research 60, 916-921.
Warburg, O. (1956). On the origin of cancer cells. Science (New York, NY) 123, 309-314.
Warburg, O., Wind, F., and Negelein, E. (1927). THE METABOLISM OF TUMORS IN THE BODY. J Gen Physiol
Wei, P., Niu, M., Pan, S., Zhou, Y., Shuai, C., Wang, J., Peng, S., and Li, G. (2014). Cancer stem-like cell: a novel target for nasopharyngeal carcinoma therapy. Stem cell research & therapy 5, 44.
Wu, Q., Chen, X., Zhang, J., Loh, Y.H., Low, T.Y., Zhang, W., Zhang, W., Sze, S.K., Lim, B., and Ng, H.H. (2006). Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. The Journal of biological chemistry 281, 24090-24094.
Yang, T., and Rycaj, K. (2015). Targeted therapy against cancer stem cells. Oncology letters 10, 27-33.
Zheng, L., Cai, F., Ge, I., Biskup, E., and Cheng, Z. (2014). Stromal fibroblast activation and their potential association with uterine fibroids (Review). Oncology letters 8, 479-486.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top