|
Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 100, 3983-3988. Armstrong, T., Packham, G., Murphy, L.B., Bateman, A.C., Conti, J.A., Fine, D.R., Johnson, C.D., Benyon, R.C., and Iredale, J.P. (2004). Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 7427-7437. Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L., and Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635-648. Bonnet, D., and Dick, J.E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine 3, 730-737. Brennan, B. (2006). Nasopharyngeal carcinoma. Orphanet journal of rare diseases 1, 23. Cao, L., Zhou, Y., Zhai, B., Liao, J., Xu, W., Zhang, R., Li, J., Zhang, Y., Chen, L., Qian, H., et al. (2011). Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC gastroenterology 11, 71. Casey, T.M., Eneman, J., Crocker, A., White, J., Tessitore, J., Stanley, M., Harlow, S., Bunn, J.Y., Weaver, D., Muss, H., et al. (2008). Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-beta 1) increase invasion rate of tumor cells: a population study. Breast cancer research and treatment 110, 39-49. Chen, K., Huang, Y.H., and Chen, J.L. (2013). Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta pharmacologica Sinica 34, 732-740. Chen, L., Xiao, Z., Meng, Y., Zhao, Y., Han, J., Su, G., Chen, B., and Dai, J. (2012). The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs. Biomaterials 33, 1437-1444. Chen, Y.C., Hsu, H.S., Chen, Y.W., Tsai, T.H., How, C.K., Wang, C.Y., Hung, S.C., Chang, Y.L., Tsai, M.L., Lee, Y.Y., et al. (2008). Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PloS one 3, e2637. Chua, D.T., Sham, J.S., Kwong, D.L., and Au, G.K. (2003). Treatment outcome after radiotherapy alone for patients with Stage I-II nasopharyngeal carcinoma. Cancer 98, 74-80. Chua, M.L.K., Wee, J.T.S., Hui, E.P., and Chan, A.T.C. (2016). Nasopharyngeal carcinoma. The Lancet 387, 1012-1024. Colegio, O.R., Chu, N.Q., Szabo, A.L., Chu, T., Rhebergen, A.M., Jairam, V., Cyrus, N., Brokowski, C.E., Eisenbarth, S.C., Phillips, G.M., et al. (2014). Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559-563. Dalerba, P., Cho, R.W., and Clarke, M.F. (2007). Cancer stem cells: models and concepts. Annual review of medicine 58, 267-284. Dhup, S., Dadhich, R.K., Porporato, P.E., and Sonveaux, P. (2012). Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Current pharmaceutical design 18, 1319-1330. Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H.H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J.M., Sloane, B.F., et al. (2013). Acidity generated by the tumor microenvironment drives local invasion. Cancer research 73, 1524-1535. Garner, E.F., and Beierle, E.A. (2015). Cancer Stem Cells and Their Interaction with the Tumor Microenvironment in Neuroblastoma. Cancers 8. Gottfried, E., Kunz-Schughart, L.A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., Mackensen, A., and Kreutz, M. (2006). Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107, 2013-2021. Hirschhaeuser, F., Sattler, U.G., and Mueller-Klieser, W. (2011). Lactate: a metabolic key player in cancer. Cancer research 71, 6921-6925. Jeter, C.R., Yang, T., Wang, J., Chao, H.P., and Tang, D.G. (2015). Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem cells (Dayton, Ohio) 33, 2381-2390. Khanna, R., Moss, D., and Gandhi, M. (2005). Technology insight: Applications of emerging immunotherapeutic strategies for Epstein-Barr virus-associated malignancies. Nature clinical practice Oncology 2, 138-149. Kim, C.F., Jackson, E.L., Woolfenden, A.E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R.T., and Jacks, T. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823-835. Kim, S.H., Lee, H.Y., Jung, S.P., Kim, S., Lee, J.E., Nam, S.J., and Bae, J.W. (2014). Role of secreted type I collagen derived from stromal cells in two breast cancer cell lines. Oncology letters 8, 507-512. Krause, S., Maffini, M.V., Soto, A.M., and Sonnenschein, C. (2010). The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures. BMC cancer 10, 263. Lee, K.W., Yeo, S.Y., Sung, C.O., and Kim, S.H. (2015). Twist1 is a key regulator of cancer-associated fibroblasts. Cancer research 75, 73-85. Lin, Y.L., Han, Z.B., Xiong, F.Y., Tian, L.Y., Wu, X.J., Xue, S.W., Zhou, Y.R., Deng, J.X., and Chen, H.X. (2011). Malignant transformation of 293 cells induced by ectopic expression of human Nanog. Molecular and cellular biochemistry 351, 109-116. Loh, Y.H., Wu, Q., Chew, J.L., Vega, V.B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature genetics 38, 431-440. Maitland, N.J., and Collins, A.T. (2008). Prostate cancer stem cells: a new target for therapy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26, 2862-2870. Martinez-Outschoorn, U.E., Lin, Z., Trimmer, C., Flomenberg, N., Wang, C., Pavlides, S., Pestell, R.G., Howell, A., Sotgia, F., and Lisanti, M.P. (2011). Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell cycle 10, 2504-2520. Meacham, C.E., and Morrison, S.J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature 501, 328-337. Melzer, C., von der Ohe, J., Lehnert, H., Ungefroren, H., and Hass, R. (2017). Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells. Molecular cancer 16, 28. Nor Hashim, N.A., Ramzi, N.H., Velapasamy, S., Alex, L., Chahil, J.K., Lye, S.H., Munretnam, K., Haron, M.R., and Ler, L.W. (2012). Identification of genetic and non-genetic risk factors for nasopharyngeal carcinoma in a Southeast Asian population. Asian Pacific journal of cancer prevention : APJCP 13, 6005-6010. O'Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110. Orimo, A., and Weinberg, R.A. (2014). Heterogeneity of stromal fibroblasts in tumor. Cancer Biology & Therapy 6, 618-619. Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A.K., Frank, P.G., Casimiro, M.C., Wang, C., Fortina, P., Addya, S., et al. (2009). The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell cycle 8, 3984-4001. Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., Bernard, L., Viale, G., Pelicci, P.G., and Di Fiore, P.P. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140, 62-73. Peiris-Pages, M., Sotgia, F., and Lisanti, M.P. (2015). Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget 6, 10728-10745. Raab-Traub, N., Flynn, K., Pearson, G., Huang, A., Levine, P., Lanier, A., and Pagano, J. (1987). The differentiated form of nasopharyngeal carcinoma contains Epstein-Barr virus DNA. International journal of cancer 39, 25-29. Ronnov-Jessen, L., and Petersen, O.W. (1993). Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Laboratory investigation; a journal of technical methods and pathology 68, 696-707. Shen, Y.A., Wang, C.Y., Chuang, H.Y., Hwang, J.J., Chi, W.H., Shu, C.H., Ho, C.Y., Li, W.Y., and Chen, Y.J. (2016). CD44 and CD24 coordinate the reprogramming of nasopharyngeal carcinoma cells towards a cancer stem cell phenotype through STAT3 activation. Oncotarget 7, 58351-58366. Shen, Y.A., Wang, C.Y., Hsieh, Y.T., Chen, Y.J., and Wei, Y.H. (2015). Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell cycle 14, 86-98. Shiga, K., Hara, M., Nagasaki, T., Sato, T., Takahashi, H., and Takeyama, H. (2015). Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers 7, 2443-2458. Singh, A.M., Hamazaki, T., Hankowski, K.E., and Terada, N. (2007). A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem cells (Dayton, Ohio) 25, 2534-2542. Sotgia, F., Martinez-Outschoorn, U.E., Pavlides, S., Howell, A., Pestell, R.G., and Lisanti, M.P. (2011). Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast cancer research : BCR 13, 213. Sounni, N.E., and Noel, A. (2013). Targeting the tumor microenvironment for cancer therapy. Clinical chemistry 59, 85-93. Sugimoto, H., Mundel, T.M., Kieran, M.W., and Kalluri, R. (2014). Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biology & Therapy 5, 1640-1646. Takai, K., Le, A., Weaver, V.M., and Werb, Z. (2016). Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget 7, 82889-82901. Tommelein, J., Verset, L., Boterberg, T., Demetter, P., Bracke, M., and De Wever, O. (2015). Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Frontiers in oncology 5, 63. Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY) 324, 1029-1033. Vaupel, P., Kallinowski, F., and Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer research 49, 6449-6465. Walenta, S., Wetterling, M., Lehrke, M., Schwickert, G., Sundfor, K., Rofstad, E.K., and Mueller-Klieser, W. (2000). High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer research 60, 916-921. Warburg, O. (1956). On the origin of cancer cells. Science (New York, NY) 123, 309-314. Warburg, O., Wind, F., and Negelein, E. (1927). THE METABOLISM OF TUMORS IN THE BODY. J Gen Physiol Wei, P., Niu, M., Pan, S., Zhou, Y., Shuai, C., Wang, J., Peng, S., and Li, G. (2014). Cancer stem-like cell: a novel target for nasopharyngeal carcinoma therapy. Stem cell research & therapy 5, 44. Wu, Q., Chen, X., Zhang, J., Loh, Y.H., Low, T.Y., Zhang, W., Zhang, W., Sze, S.K., Lim, B., and Ng, H.H. (2006). Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. The Journal of biological chemistry 281, 24090-24094. Yang, T., and Rycaj, K. (2015). Targeted therapy against cancer stem cells. Oncology letters 10, 27-33. Zheng, L., Cai, F., Ge, I., Biskup, E., and Cheng, Z. (2014). Stromal fibroblast activation and their potential association with uterine fibroids (Review). Oncology letters 8, 479-486.
|