跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周嗣堯
研究生(外文):Sih-Yao Chow
論文名稱:輻射奇異球菌海藻糖合成酶的天門冬醯胺酸253於受質引發活性位關閉與反應特異性之功能研究
論文名稱(外文):Functional roles of Asn253 in trehalose synthase from Deinococcus radiodurans in the substrate- induced active-site closure and the reaction specificity
指導教授:廖淑惠廖淑惠引用關係
指導教授(外文):Shwu-Huey Liaw
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:84
中文關鍵詞:海藻糖合成酶糖苷鍵水解酶第13家族酵素催化機制受質專一性反應特異性蛋白質構型改變受質結合誘導結構域旋轉突變結構
外文關鍵詞:Trehalose synthaseGlycoside hydrolase family 13Enzyme mechanismSubstrate specificityReaction specificityConformational changeSubstrate-induced domain rotationMutationStructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
海藻糖合成酶(Trehalose synthase, TS)屬於糖苷鍵水解酶第13家族(Glycoside hydrolase family 13, GH13),催化可逆的異構化反應將麥芽糖轉換成海藻糖。因為這個酵素具有反應步驟簡單,而且反應基質便宜的特性,因此具有被運用於海藻糖之工業生產的潛力。過去,由實驗室王詠霖學長測定出抗輻射奇異球菌(Deinococcus radiodurans)海藻糖合成酶與抑制劑 Tris共結晶的複合晶體結構(DrTS-Tris),顯示了一個因受質結合而形成的封閉構型,可使 TS進行分子內異構化作用。藉由比對 DrTS-Tris以及與其相似的蛋白質結構發現,與活性位-1 subsite的葡萄糖形成交互作用力的氨基酸具有高度保留性;相較之下,活性位 +1 subsite的周遭則有著多樣化與高相異性的氨基酸,因此推測這些氨基酸可能參與調控這些不同酵素的受質與反應特異性。
本篇論文的主要研究目標為探討在 DrTS活性位 +1 subsite周遭氨基酸的功能。首先,王詠霖學長建立了 DrTS與麥芽糖的模擬複合體結構。根據酵素活性分析顯示,Y213A,E320A與 E324A突變株並無偵測到產物的生成,因此推測 Tyr213,Glu320與 Glu324這三個氨基酸對於 DrTS的活性是必須的;然而,N253A突變株則具有野生株 ~12%的異構酶以及 ~163%的水解酶活性。在 DrTS當中,天門冬醯胺酸253為位於 general acid/base谷氨酸之後的兩個氨基酸,並且高度的保留於來自不同物種的 TS序列當中。在一些 GH13成員的突變研究中顯示,這個位置的氨基酸影響了酵素的受質與反應特異性。除此之外,由我測定的 DrTS與海藻糖相似物 validoxylamine A之複合晶體結構可以推測,天門冬醯胺酸253與海藻糖的距離,近於與麥芽糖的距離。因此,我的博士論文為利用飽和點突變,以及分析突變株的酵素活性與蛋白質結構,來了解天門冬醯胺酸253的功能研究。
在所有的天門冬醯胺酸253突變株當中,N253R為唯一一個無法偵測到酵素活性的突變株。其晶體結構顯示,精氨酸253的支鏈伸入活性位,可能因此阻擋了麥芽糖與海藻糖的結合位。此外,有四個突變株:N253A,N253C,N253D與 N253L,具有相對野生株較低的異構酶以及較高的水解酶活性。在 N253A與 N253C之晶體結構的活性位上方觀察到可使水分子通透的孔洞,可能因此導致更多的水分子進入活性位而水解反應中間產物。至於剩下的十四個突變株,則僅具有麥芽糖的水解活性。藉由將 N253Q,N253E與 N253T的蛋白質晶體結構與 DrTS-海藻糖的模擬複合體結構重疊推測,突變的氨基酸分子支鏈可能會與海藻糖在 +1 subsite產生立體空間障礙。因此,這些突變株無法將海藻糖作為受質以及產物。出乎意料的是,N253F突變株的晶體結構顯示了一個新的開放構型。將其與 DrTS相似的結構比較顯示,N253F的結構可能代表 TS於與受質結合前的構型。
綜合上述的實驗結果顯示,輻射奇異球菌海藻糖合成酶的天門冬醯胺酸253已經被演化成為最適合催化分子內異構化作用的氨基酸。這個在 TS當中高度保留的天門冬醯胺酸不僅參與受質引發的活性位關閉外,也調控了反應特異性。
Trehalose synthase (TS) catalyzes a simple conversion of the maltose into trehalose with a side reaction of hydrolysis and hence is of great interest to industrial trehalose production. Dr. Yung-Lin Wang has solved the crystal structure of Deinococcus radiodurans TS in complex with the inhibitor Tris (DrTS-Tris), which represents a substrate-induced closed conformation for catalysis of the intramolecular isomerization. A structural comparison between DrTS-Tris and its closest structural neighbors reveals that residues interacting with the glucose residue at the -1 subsite are conserved, while residues surrounding the +1 subsite are diverse and hence may be responsible for the substrate and reaction specificity.
The specific aim of this thesis is to characterize the residues at the +1 subsite of DrTS. A maltose was first modeled into the active site. Subsequent mutational analysis showed neither detectable isomerase nor hydrolase activity in Y213A, E320A and E324A mutants, suggesting that these residues are essential for the TS activity. In contrast, replacement of Asn253 with alanine resulted in ~12% of isomerase activity and ~163% of hydrolase activity compared with the wild type. This strictly conserved asparagine residue is the second residue behind the general acid/base Glu, in which the corresponding residue in some other glycoside hydrolase family 13 (GH13) enzymes has been shown to participate in the substrate and reaction specificity. In addition, I solved the complex structure of DrTS with a trehalose analogue, validoxylamine A, displaying that Asn253 forms closer contacts with trehalose than maltose. Thus, functional roles of Asn253 were characterized by saturation mutagenesis and structural analysis.
N253R is the only mutant showing no detectable enzyme activity, and the crystal structure reveals that the protruding guanidino side chain blocks the substrate binding site. Four mutants including N253A, N253C, N253D and N253L, contain a reduced isomerase activity and retain an increased hydrolase activity. The N253A and N253C structures demonstrate a mutant-induced active-site aperture for water entry. The remaining fourteen mutants possess only maltose hydrolase activity. The N253Q, N253E and N253T structures suggest that these substituted side chains make potential steric hindrance with the glycosyl moiety of trehalose at the +1 subsite and hence trehalose can serve as neither substrate nor product. Unexpectedly, the N253F mutant structure reveals a novel open TS conformation with an empty active site, in which the closed active conformation may not formed upon substrate binding. A comparison with the closest structural matches of TS suggests that this empty active-site topology represents an open conformation for the apo enzyme prior to substrate binding.
In summary, the saturated mutation demonstrated that the Asn253 in DrTS has been evolved to be the most appropriate residue for catalysis of the isomerzation reaction. This residue not only participates in the substrate-induced active-site closure through hydrogen bonding with Glu324, but also determines the maltose/trehalose preference and the isomerase/hydrolase preference. Hopefully, this study can provide new insights into the protein engineering of TS for potential industrial applications.
中文摘要....i
Abstract....iii
Table of Contents....v
List of Tables....vii
List of Figures....viii
List of Abbreviations....ix
Chapter 1 Introduction
1.1 Trehalose....1
1.1.1 Biological functions....1
1.1.2 Properties and applications....2
1.1.3 Biosynthetic pathways....3
1.1.4 Industrial production....5
1.2 Trehalose synthase (TS)....7
1.2.1 Enzyme properties....7
1.2.2 A kinetically proposed catalytic mechanism....7
1.2.3 Structural studies....8
1.3 Glycoside hydrolase family 13 (GH13)....9
1.3.1 A comparison between DrTS and some other GH13 enzymes....10
1.3.2 The conserved -1 subsite and the diverse +1 subsite....12
1.3.3 Substrate-induced formation of the active conformation....13
1.4 Aims of this study....14
Chapter 2 Materials and Methods
2.1 Chemicals....15
2.2 Protein preparation and characterization....16
2.2.1 Site-directed mutagenesis....16
2.2.2 Protein expression and purification....16
2.3 Activity assay....17
2.4 Validoxylamine A (VAA) preparation....18
2.5 Crystallization....19
2.6 X-ray diffraction data collection and structure determination....20
Chapter 3 Results and Discussion
3.1 Crystal structure of DrTS-VAA complex....21
3.2 Rationale for saturation mutagenesis of Asn253....22
3.3 Enzymatic activity of Asn253 mutants....24
3.4 Crystal structures of Asn253 mutants....26
3.4.1 N253R: Blocking of the substrate binding site....27
3.4.2 N253A, N253C and R148A: A mutation-induction of an active-site aperture....27
3.4.3 N253Q, N253E, N253T and N253H: A potential steric hinderance with trehalose....28
3.4.4 N253F and N253RD: A novel open conformation and its implications....30
3.4.4.1 A snapshot of the apo-TS....31
3.4.4.2 The open conformation confers the hydrolytic activity to N253F....32
3.5 The proposed catalytic mechanism....33
References....36
Tables....51
Figures....57
Appendices....84
Adams, Robert P, E Kendall, and K K Kartha. 1990. “Comparison of Free Sugars in Growing and Desiccated Plants of Selaginella lepidophylla.” Biochemical Systematics and Ecology 18 (2-3): 107–10.
Argüelles, Juan-Carlos. 2014. “Why Can't Vertebrates Synthesize Trehalose?.” Journal of Molecular Evolution 79 (3-4): 111–16.
Avonce, Nelson, Alfredo Mendoza-Vargas, Enrique Morett, and Gabriel Iturriaga. 2006. “Insights on the Evolution of Trehalose Biosynthesis.” BMC Evolutionary Biology 6 (1): 109.
Belocopitow, E, and L R Maréchal. 1970. “Trehalose Phosphorylase From Euglena Gracilis.” Biochimica Et Biophysica Acta 198 (1): 151–54.
Brünger, A T, P D Adams, G M Clore, W L DeLano, P Gros, R W Grosse-Kunstleve, J S Jiang, et al. 1998. “Crystallography & NMR System: a New Software Suite for Macromolecular Structure Determination..” Acta Crystallographica Section D Biological Crystallography 54 (Pt 5): 905–21.
Cabib, E, and L F Leloir. 1958. “The Biosynthesis of Trehalose Phosphate.” Journal of Biological Chemistry 231 (1): 259–75.
Caner, Sami, Nham Nguyen, Adeleke Aguda, Ran Zhang, Yuan T Pan, Stephen G Withers, and Gary D Brayer. 2013. “The Structure of the Mycobacterium smegmatis Trehalose Synthase Reveals an Unusual Active Site Configuration and Acarbose-Binding Mode.” Glycobiology 23 (9): 1075–83.
Cantarel, Brandi L, Pedro M Coutinho, Corinne Rancurel, Thomas Bernard, Vincent Lombard, and Bernard Henrissat. 2009. “The Carbohydrate-Active EnZymes Database (CAZy): an Expert Resource for Glycogenomics.” Nucleic Acids Research 37 (Database issue): D233–38.
Champion, Elise, Magali Remaud-Siméon, Lars K Skov, Jette S Kastrup, Michael Gajhede, and Osman Mirza. 2009. “The Apo Structure of Sucrose Hydrolase From Xanthomonas campestris Pv. Campestris Shows an Open Active-Site Groove.” Acta Crystallographica Section D Biological Crystallography 65 (Pt 12): 1309–14.
Chen, F, T Fukuse, S Hasegawa, T Bando, N Hanaoka, M Kawashima, H Sakai, et al. 2004. “Effective Application of ET-Kyoto Solution for Clinical Lung Transplantation.” Transplantation Proceedings 36 (9): 2812–15.
Chen, Yi-Shan, Guan-Chiun Lee, and Jei-Fu Shaw. 2006. “Gene Cloning, Expression, and Biochemical Characterization of a Recombinant Trehalose Synthase From Picrophilus torridus in Escherichia coli.” Journal of Agricultural and Food Chemistry 54 (19): 7098–104.
Davies, G J, K S Wilson, and B Henrissat. 1997. “Nomenclature for Sugar-Binding Subsites in Glycosyl Hydrolases.” Biochemical Journal 321 (Pt 2): 557–59.
DeLano, W L. 2002. The PyMOL Molecular Graphics System; DeLano Scientific: Palo Alto, CA.
Elbein, Alan D, Y T Pan, Irena Pastuszak, and David Carroll. 2003. “New Insights on Trehalose: a Multifunctional Molecule.” Glycobiology 13 (4): 17R–27R.
Emsley, P, B Lohkamp, W G Scott, and K Cowtan. 2010. “Features and Development of Coot.” Acta Crystallographica Section D Biological Crystallography 66 (Pt 4): 486–501.
Feofilova, E P, A I Usov, I S Mysyakina, and G A Kochkina. 2014. “Trehalose: Chemical Structure, Biological Functions, and Practical Application.” Microbiology 83 (3): 184–94.
Filipkowski, Pawel. 2012. “Expression of Deinococcus Geothermalis Trehalose Synthase Gene in Escherichia coli and Its Enzymatic Properties.” African Journal of Biotechnology 11 (67): 13131–139.
Gao, Yun, Yue Xi, Xiao-Ling Lu, Heng Zheng, Bo Hu, Xiao-Yu Liu, and Bing-Hua Jiao. 2013. “Cloning, Expression and Functional Characterization of a Novel Trehalose Synthase From Marine Pseudomonas Sp. P8005.” World Journal of Microbiology and Biotechnology 29 (11): 2195–206.
Han, Sang-Eun, Hawk-Bin Kwon, Seung-Bum Lee, Bu-Young Yi, Ikuo Murayama, Yutaka Kitamoto, and Myung-Ok Byun. 2003. “Cloning and Characterization of a Gene Encoding Trehalose Phosphorylase (TP) From Pleurotus Sajor-Caju.” Protein Expression and Purification 30 (2): 194–202.
Hayward, S, and H J Berendsen. 1998. “Systematic Analysis of Domain Motions in Proteins From Conformational Change: New Results on Citrate Synthase and T4 Lysozyme.” Proteins: Structure, Function, and Bioinformatics 30 (2): 144–54.
Higashiyama, T. 2002. “Novel Functions and Applications of Trehalose.” Pure and Applied Chemistry 74 (7): 1263–69.
Hohmann, S, W Bell, M J Neves, D Valckx, and J M Thevelein. 1996. “Evidence for Trehalose-6-Phosphate-Dependent and -Independent Mechanisms in the Control of Sugar Influx Into Yeast Glycolysis.” Molecular Microbiology 20 (5): 981–91.
Holm, Liisa, and Päivi Rosenström. 2010. “Dali Server: Conservation Mapping in 3D.” Nucleic Acids Res 38 (Web Server issue): W545–49.
Hunter, Robert L, Margaret R Olsen, Chinnaswamy Jagannath, and Jeffrey K Actor. 2006. “Multiple Roles of Cord Factor in the Pathogenesis of Primary, Secondary, and Cavitary Tuberculosis, Including a Revised Description of the Pathology of Secondary Disease.” Annals of Clinical and Laboratory Science 36 (4): 371–86.
Jain, Nishant Kumar, and Ipsita Roy. 2008. “Effect of Trehalose on Protein Structure.” Protein Science 18 (1): 29–41.
Janecek, S. 2002. “How Many Conserved Sequence Regions Are There in the α-Amylase Family.” Biologia 57 (11): 29–41.
Jin, Li-Qun, Ya-Ping Xue, Yu-Guo Zheng, and Yin-Chu Shen. 2006. “Production of Trehalase Inhibitor Validoxylamine a Using Acid-Catalyzed Hydrolysis of Validamycin A.” Catalysis Communications 7 (3): 157–61.
Kaasen, I, P Falkenberg, O B Styrvold, and A R Strøm. 1992. “Molecular Cloning and Physical Mapping of the otsBA Genes, Which Encode the Osmoregulatory Trehalose Pathway of Escherichia coli: Evidence That Transcription Is Activated by katF (AppR).” Journal of Bacteriology 174 (3): 889–98.
Kim, Hyun-Jung, Ae-Ran Kim, and Sung-Jong Jeon. 2010. “Immobilization on Chitosan of a Thermophilic Trehalose Synthase From Thermus thermophilus HJ6.” Journal of Microbiology and Biotechnology 20 (3): 513–17.
Kim, Myung-Il, Hong-Suk Kim, Jin Jung, and Sangkee Rhee. 2008. “Crystal Structures and Mutagenesis of Sucrose Hydrolase From Xanthomonas axonopodis Pv. Glycines: Insight Into the Exclusively Hydrolytic Amylosucrase Fold.” Journal of Molecular Biology 380 (4): 636–47.
Kim, T K, J H Jang, H Y Cho, H S Lee, and Y W Kim. 2010. “Gene Cloning and Characterization of a Trehalose Synthase From Corynebacterium glutamicum ATCC13032.” Food Science and Biotechnology 19 (2): 565–69.
Lee, Jin-Ho, Kwang-Ho Lee, Chang-Gyeom Kim, Se-Young Lee, Geun-Joong Kim, Young-Hoon Park, and Sung-Oh Chung. 2005. “Cloning and Expression of a Trehalose Synthase From Pseudomonas stutzeri CJ38 in Escherichia coli for the Production of Trehalose.” Applied Microbiology and Biotechnology 68 (2): 213–19.
Leibowitz, J. 1943. “A New Source of Trehalose.” Nature 152: 414.
Lemieux, R U, and H F Bauer. 1954. “A Chemical Synthesis of D-Trehalose.” Canadian Journal of Chemistry 32 (4): 340–44.
Liang, Jiayuan, Ribo Huang, Ying Huang, Xiaobo Wang, Liqin Du, and Yutuo Wei. 2013. “Cloning, Expression, Properties, and Functional Amino Acid Residues of New Trehalose Synthase From Thermomonospora curvata DSM 43183.” Journal of Molecular Catalysis B: Enzymatic 90 (June): 26–32.
Lipski, Alexandra, Hildegard Watzlawick, Stéphanie Ravaud, Xavier Robert, Moez Rhimi, Richard Haser, Ralf Mattes, and Nushin Aghajari. 2013. “Mutations Inducing an Active-Site Aperture in Rhizobium Sp. Sucrose Isomerase Confer Hydrolytic Activity.” Acta Crystallographica Section D Biological Crystallography 69 (Pt 2): 298–307.
Luyckx, Jacques, and Christophe Baudouin. 2011. “Trehalose: an Intriguing Disaccharide with Potential for Medical Application in Ophthalmology.” Clinical Ophthalmology 5: 577–81.
Maruta, K, T Nakada, M Kubota, and H Chaen. 1995. “Formation of Trehalose From Maltooligosaccharides by a Novel Enzymatic System.” Bioscience 59 (10): 1829–34.
McCoy, A J, and R W Grosse-Kunstleve. 2007. “Phaser Crystallographic Software.” Journal of Applied Crystallography 40 (4): 658–74.
Mirza, Osman, L K Skov, M Remaud-Simeon, G Potocki de Montalk, C Albenne, P Monsan, and M Gajhede. 2001. “Crystal Structures of Amylosucrase From Neisseria polysaccharea in Complex with D-Glucose and the Active Site Mutant Glu328Gln in Complex with the Natural Substrate Sucrose.” Biochemistry 40 (30): 9032–39.
Mukai, K, A Tabuchi, T Nakada, and T Shibuya. 1997. “Production of Trehalose From Starch by Thermostable Enzymes From Sulfolobus acidocaldarius.” Starch 49 (1): 26–30.
Murshudov, Garib N, Pavol Skubák, Andrey A Lebedev, Navraj S Pannu, Roberto A Steiner, Robert A Nicholls, Martyn D Winn, Fei Long, and Alexei A Vagin. 2011. “REFMAC5 for the Refinement of Macromolecular Crystal Structures.” Acta Crystallographica Section D Biological Crystallography 67 (Pt 4): 355–67.
Nakada, T, K Maruta, H Mitsuzumi, M Kubota, H Chaen, T Sugimoto, M Kurimoto, and Y Tsujisaka. 1995. “Purification and Characterization of a Novel Enzyme, Maltooligosyl Trehalose Trehalohydrolase, From Arthrobacter Sp. Q36.” Bioscience, Biotechnology, and Biochemistry 59 (12): 2215–18.
Nakada, T, K Maruta, K Tsusaki, M Kubota, H Chaen, T Sugimoto, M Kurimoto, and Y Tsujisaka. 1995. “Purification and Properties of a Novel Enzyme, Maltooligosyl Trehalose Synthase, From Arthrobacter Sp. Q36.” Bioscience, Biotechnology, and Biochemistry 59 (12): 2210–14.
Nakada, T, S Ikegami, H Chaen, M Kubota, S Fukuda, T Sugimoto, M Kurimoto, and Y Tsujisaka. 1996. “Purification and Characterization of Thermostable Maltooligosyl Trehalose Synthase From the Thermoacidophilic Archaebacterium Sulfolobus acidocaldarius.” Bioscience, Biotechnology, and Biochemistry 60 (2): 263–66.
Neta, T, K Takada, and M Hirasawa. 2000. “Low-Cariogenicity of Trehalose as a Substrate.” Journal of Dentistry 28 (8): 571–76.
Nishimoto, T, M Nakano, T Nakada, H Chaen, S Fukuda, T Sugimoto, M Kurimoto, and Y Tsujisaka. 1996. “Purification and Properties of a Novel Enzyme, Trehalose Synthase, From Pimelobacter Sp. R48.” Bioscience, Biotechnology, and Biochemistry 60 (4): 640–44.
Nishimoto, T, T Nakada, H Chaen, S Fukuda, T Sugimoto, M Kurimoto, and Y Tsujisaka. 1996. “Purification and Characterization of a Thermostable Trehalose Synthase From Thermus aquaticus.” Bioscience, Biotechnology, and Biochemistry 60 (5): 835–39.
Ohtake, Satoshi, and Y John Wang. 2011. “Trehalose: Current Use and Future Applications.” Journal of Pharmaceutical Sciences 100 (6): 2020–53.
Otwinowski, Z, and W Minor. 1997. “Processing of X-Ray Diffraction Data Collected in Oscillation Mode.” Methods in Enzymology 276: 307–26.
Pan, Yuan T, Vineetha Koroth Edavana, William J Jourdian, Rick Edmondson, J David Carroll, Irena Pastuszak, and Alan D Elbein. 2004. “Trehalose Synthase of Mycobacterium smegmatis: Purification, Cloning, Expression, and Properties of the Enzyme.” European Journal of Biochemistry / FEBS 271 (21): 4259–69.
Pan, Yuan Tseng, J D Carroll, Naoki Asano, Irena Pastuszak, Vineetha K Edavana, and Alan D Elbein. 2008. “Trehalose Synthase Converts Glycogen to Trehalose.” The FEBS Journal 275 (13): 3408–20.
Qu, Qiuhao, Sung-Jae Lee, and Winfried Boos. 2004. “TreT, a Novel Trehalose Glycosyltransferring Synthase of the Hyperthermophilic Archaeon Thermococcus litoralis.” Journal of Biological Chemistry 279 (46): 47890–97.
Ravaud, S, H Watzlawick, R Mattes, and R Haser. 2005. “Towards the Three-Dimensional Structure of a Sucrose Isomerase From Pseudomonas mesoacidophila MX-45.” Biologia 60 (16) 89–95.
Ravaud, Stéphanie, Xavier Robert, Hildegard Watzlawick, Richard Haser, Ralf Mattes, and Nushin Aghajari. 2007. “Trehalulose Synthase Native and Carbohydrate Complexed Structures Provide Insights Into Sucrose Isomerization.” Journal of Biological Chemistry 282 (38): 28126–36.
Ravaud, Stéphanie, Xavier Robert, Hildegard Watzlawick, Sabine Laurent, Richard Haser, Ralf Mattes, and Nushin Aghajari. 2008. “Insights Into Sucrose Isomerization From Crystal Structures of the Pseudomonas mesoacidophila MX-45 Sucrose Isomerase, MutB.” Biocatalysis and Biotransformation 26 (1-2): 111–19.
Ravaud, Stéphanie, Xavier Robert, Hildegard Watzlawick, Richard Haser, Ralf Mattes, and Nushin Aghajari. 2009. “Structural Determinants of Product Specificity of Sucrose Isomerases.” FEBS Letters 583 (12): 1964–68.
Richards, A B, S Krakowka, L B Dexter, H Schmid, A P M Wolterbeek, D H Waalkens-Berendsen, A Shigoyuki, and M Kurimoto. 2002. “Trehalose: a Review of Properties, History of Use and Human Tolerance, and Results of Multiple Safety Studies.” Food and Chemical Toxicology 40 (7): 871–98.
Rossmann, M G, and D M Blow. 1962. “The Detection of Sub-Units Within the Crystallographic Asymmetric Unit.” Acta Crystallographica 15: 24–31.
Roy, Rana, Veeraraghavan Usha, Ali Kermani, David J Scott, Eva I Hyde, Gurdyal S Besra, Luke J Alderwick, and Klaus Fütterer. 2013. “Synthesis of α-Glucan in Mycobacteria Involves a Hetero-Octameric Complex of Trehalose Synthase TreS and Maltokinase Pep2.” ACS Chemical Biology 8 (10): 2245–55.
Ryu, Soo-In, Cheon-Seok Park, Jaeho Cha, Eui-Jeon Woo, and Soo-Bok Lee. 2005. “A Novel Trehalose-Synthesizing Glycosyltransferase From Pyrococcus horikoshii: Molecular Cloning and Characterization.” Biochemical and Biophysical Research Communications 329 (2): 429–36.
Saburi, Wataru, Hiroaki Rachi-Otsuka, Hironori Hondoh, Masayuki Okuyama, Haruhide Mori, and Atsuo Kimura. 2015. “Structural Elements Responsible for the Glucosidic Linkage-Selectivity of a Glycoside Hydrolase Family 13 Exo-Glucosidase.” FEBS Letters 589 (7): 865–69.
Sarkar, Sovan, Janet E Davies, Zebo Huang, Alan Tunnacliffe, and David C Rubinsztein. 2007. “Trehalose, a Novel mTOR-Independent Autophagy Enhancer, Accelerates the Clearance of Mutant Huntingtin and α-Synuclein.” Journal of Biological Chemistry 282 (8): 5641–52.
Schiraldi, Chiara, Isabella Di Lernia, and Mario De Rosa. 2002. “Trehalose Production: Exploiting Novel Approaches.” Trends in Biotechnology 20 (10): 420–25.
Schüttelkopf, Alexander W, and Daan M F van Aalten. 2004. “PRODRG: a Tool for High-Throughput Crystallography of Protein-Ligand Complexes.” Acta Crystallographica Section D Biological Crystallography 60 (Pt 8): 1355–63.
Shen, Xing, Wataru Saburi, Zuoqi Gai, Koji Kato, Teruyo Ojima-Kato, Jian Yu, Keisuke Komoda, et al. 2015. “Structural Analysis of the α-Glucosidase HaG Provides New Insights Into Substrate Specificity and Catalytic Mechanism.” Acta Crystallographica Section D Biological Crystallography 71 (Pt 6): 1382–91.
Skov, Lars K, Osman Mirza, Desiree Sprogøe, Imran Dar, Magali Remaud-Siméon, Cecile Albenne, Pierre Monsan, and Michael Gajhede. 2002. “Oligosaccharide and Sucrose Complexes of Amylosucrase. Structural Implications for the Polymerase Activity.” Journal of Biological Chemistry 277 (49): 47741–47.
Skov, Lars K, Sandra Pizzut-Serin, Magali Remaud-Siméon, Heidi A Ernst, Michael Gajhede, and Osman Mirza. 2013. “The Structure of Amylosucrase from Deinococcus radiodurans has an Unusual Open Active-Site Topology.” Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 69 (Pt 9): 973–78.
Stewart, L C, N K Richtmyer and C S Hudson. 1950. “The Preparation of Trehalose From Yeast.” Journal of the American Chemical Society 72 (5): 2059–61.
Su, Jing, Tengfei Wang, Chunling Ma, Zhongkui Li, Zhenzhen Li, and Ruiming Wang. 2014. “Homology Modeling and Function of Trehalose Synthase From Pseudomonas putida P06.” Biotechnology Letters 36 (5): 1009–13.
Suzuki, Takeo, Katsunobu Tanaka, and Shukuo Kinoshita. 2014. “The Extracellular Accumulation of Trehalose and Glucose by Bacteria Grown on n-Alkanes.” Agricultural and Biological Chemistry 33 (2): 190–95.
Tengfei, Wang, Hongjuan Liu, Kun Dai, Ruiming Wang, and Shiru Jia. 2014. “Expression of Trehalose Synthase Gene From Pseudomonas putida P06 in Pichia pastoris.” Pakistan Journal of Pharmaceutical Sciences 27 (3): 659–62.
Thevelein, J M. 1984. “Regulation of Trehalose Mobilization in Fungi.” Microbiological Reviews 48 (1): 42–59.
Tseng, Hsin Hao. 2011. “Improvement in the conversion rate of trehalose synthase by enzyme engineering.” Master’s thesis, National Taiwan Normal University.
Tsujimoto, Y, H Tanaka, R Takemura, T Yokogawa, A Shimonaka, H Matsui, S i Kashiwabara, K Watanabe, and Y Suzuki. 2007. “Molecular Determinants of Substrate Recognition in Thermostable α-Glucosidases Belonging to Glycoside Hydrolase Family 13.” Journal of Biochemistry 142 (1): 87–93.
Tsusaki, K, T Nishimoto, T Nakada, M Kubota, H Chaen, T Sugimoto, and M Kurimoto. 1996. “Cloning and Sequencing of Trehalose Synthase Gene From Pimelobacter Sp. R48.” Biochimica Et Biophysica Acta 1290 (1): 1–3.
Vogel, G, R A Aeschbacher, J Müller, T Boller, and A Wiemken. 1998. “Trehalose-6-Phosphate Phosphatases From Arabidopsis thaliana: Identification by Functional Complementation of the Yeast Tps2 Mutant.” The Plant Journal: for Cell and Molecular Biology 13 (5): 673–83.
Wang, Jia-Hung, Meng-Yin Tsai, Jen-Jye Chen, Guan-Chiun Lee, and Jei-Fu Shaw. 2007. “Role of the C-Terminal Domain of Thermus thermophilus Trehalose Synthase in the Thermophilicity, Thermostability, and Efficient Production of Trehalose.” Journal of Agricultural and Food Chemistry 55 (9): 3435–43.
Wang, Tengfei, Shiru Jia, Kun Dai, Hongjuan Liu, and Ruiming Wang. 2014. “Cloning and Expression of a Trehalose Synthase From Pseudomonas putida KT2440 for the Scale-Up Production of Trehalose From Maltose.” Canadian Journal of Microbiology 60 (9): 599–604.
Wang, Yufan, Jun Zhang, Wenwen Wang, Yanchao Liu, Laijun Xing, and Mingchun Li. 2012. “Effects of the N-Terminal and C-Terminal Domains of Meiothermus ruber CBS-01 Trehalose Synthase on Thermostability and Activity.” Extremophiles 16 (3): 377–85.
Wang, Yung Lin, Sih Yao Chow, Yi Ting Lin, Yu Chiao Hsieh, Guan-Chiun Lee, and Shwu Huey Liaw. 2014. “Structures of Trehalose Synthase From Deinococcus radiodurans Reveal That a Closed Conformation Is Involved in Catalysis of the Intramolecular Isomerization.” Acta Crystallographica Section D Biological Crystallography 70 (Pt 12): 3144–54.
Wannet, Wim J B, Huub J M Op den Camp, Hendrik W Wisselink, Chris van der Drift, Leo J L D Van Griensven, and Godfried D Vogels. 1998. “Purification and Characterization of Trehalose Phosphorylase From the Commercial Mushroom Agaricus bisporus.” Biochimica Et Biophysica Acta (BBA) - General Subjects 1425 (1): 177–88.
Wei, Yu-Tuo, Qi-Xia Zhu, Zhao-Fei Luo, Fu-Shen Lu, Fa-Zhong Chen, Qing-Yan Wang, Kun Huang, Jian-Zhong Meng, Rong Wang, and Ri-Bo Huang. 2004. “Cloning, Expression and Identification of a New Trehalose Synthase Gene From Thermobifida fusca Genome.” Acta Biochimica Et Biophysica Sinica 36 (7): 477–84.
Wei, Yong-Jun. 2017. “Structural and functional studies on residue 253 involved in the substrate- induced closed conformation and the reaction specificity of trehalose synthase from Deinococcus radiodurans.” Master’s thesis, National Yang-Ming University.
Withers, S. 2001. “Mechanisms of Glycosyl Transferases and Hydrolases.” Carbohydrate Polymers 44 (4): 325–37.
Wyatt, G R, and G F KALE. 1957. “The Chemistry of Insect Hemolymph. II. Trehalose and Other Carbohydrates.” The Journal of General Physiology 40 (6): 833–47.
Xiuli, Wu, Ding Hongbiao, Yue Ming, and Qiao Yu. 2009. “Gene Cloning, Expression, and Characterization of a Novel Trehalose Synthase From Arthrobacter aurescens.” Applied Microbiology and Biotechnology 83 (3): 477–82.
Xu, Zheng, Sha Li, Jie Li, Yan Li, Xiaohai Feng, Renxiao Wang, Hong Xu, and Jiahai Zhou. 2013. “The Structural Basis of Erwinia rhapontici Isomaltulose Synthase.” PLoS ONE 8 (9): e74788.
Yamamoto, Keizo, Akifumi Nakayama, Yuka Yamamoto, and Shiro Tabata. 2004. “Val216 Decides the Substrate Specificity of α-Glucosidase in Saccharomyces cerevisiae.” The FEBS Journal 271 (16): 3414–20.
Yamamoto, Keizo, Hideo Miyake, Masami Kusunoki, and Shigeyoshi Osaki. 2010. “Crystal Structures of Isomaltase From Saccharomyces cerevisiae and in Complex with Its Competitive Inhibitor Maltose.” The FEBS Journal 277 (20): 4205–14.
Yamamoto, Keizo, Hideo Miyake, Masami Kusunoki, and Shigeyoshi Osaki. 2011. “Steric Hindrance by 2 Amino Acid Residues Determines the Substrate Specificity of Isomaltase From Saccharomyces cerevisiae.” Journal of Bioscience and Bioengineering 112 (6): 545–50.
Yamamoto, T, K Maruta, H Watanabe, H Yamashita, M Kubota, S Fukuda, and M Kurimoto. 2001. “Trehalose-Producing Operon treYZ From Arthrobacter ramosus S34.” Bioscience, Biotechnology, and Biochemistry 65 (6): 1419–23.
Yan, Junyan, Yu Qiao, Jun Hu, and Hongbiao Ding. 2013. “Cloning, Expression and Characterization of a Trehalose Synthase Gene From Rhodococcus opacus.” The Protein Journal 32 (3): 223–29.
Yue, Ming, Xiu Li Wu, Wei Na Gong, and Hong Biao Ding. 2009. “Molecular Cloning and Expression of a Novel Trehalose Synthase Gene From Enterobacter hormaechei.” Microbial Cell Factories 8: 34.
Zdzieblo, A, and J Synowiecki. 2006. “Production of trehalose by intramolecular transglucosylation of maltose catalysed by a new enzyme from Thermus thermophilus HB-8 .” Food Chemistry 96 (1): 8–13.
Zhang, Ran, Yuan T Pan, Shouming He, Michael Lam, Gary D Brayer, Alan D Elbein, and Stephen G Withers. 2011. “Mechanistic Analysis of Trehalose Synthase From Mycobacterium smegmatis.” Journal of Biological Chemistry 286 (41): 35601–9.
Zheng, Yu-Guo, Li-Qun Jin, and Yin-Chu Shen. 2004. “Resin-Catalyzed Degradation of Validamycin a for Production of Validoxylamine A.” Catalysis Communications 5 (9): 519–25.
Zheng, Zhaojuan, Ying Xu, Ye Sun, Wending Mei, and Jia Ouyang. 2015. “Biocatalytic Production of Trehalose From Maltose by Using Whole Cells of Permeabilized Recombinant Escherichia coli.” PLoS ONE 10 (10): e0140477.
Zhu, Yueming, Dongsheng Wei, Jun Zhang, Yufan Wang, Hengyi Xu, Laijun Xing, and Mingchun Li. 2010. “Overexpression and Characterization of a Thermostable Trehalose Synthase From Meiothermus ruber.” Extremophiles 14 (1): 1–8.
Zhu, Yueming, Jun Zhang, Dongsheng Wei, Yufan Wang, Xiaoyun CHEN, Laijun Xing, and Mingchun Li. 2008. “Isolation and Identification of a Thermophilic Strain Producing Trehalose Synthase From Geothermal Water in China.” Bioscience, Biotechnology, and Biochemistry 72 (8): 2019–24.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊