|
Reference
1. Walsh, C., Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775-81 (2000). 2. Fischbach, M. A.; Walsh, C. T., Antibiotics for emerging pathogens. Science 325, 1089-93 (2009). 3. Zhou, H.; Xie, X.; Tang, Y., Engineering natural products using combinatorial biosynthesis and biocatalysis. Current opinion in biotechnology 19, 590-596 (2008). 4. Keasling, J. D., Manufacturing molecules through metabolic engineering. Science 330, 1355-1358 (2010). 5. Liu, Y. C.; Li, Y. S.; Lyu, S. Y.; Hsu, L. J.; Chen, Y. H.; Huang, Y. T.; Chan, H. C.; Huang, C. J.; Chen, G. H.; Chou, C. C.; Tsai, M. D.; Li, T. L., Interception of teicoplanin oxidation intermediates yields new antimicrobial scaffolds. Nature chemical biology 7, 304-309 (2011). 6. Kahne, D.; Leimkuhler, C.; Lu, W.; Walsh, C., Glycopeptide and lipoglycopeptide antibiotics. Chemical reviews 105, 425-48 (2005). 7. Li, T. L.; Choroba, O. W.; Hong, H.; Williams, D. H.; Spencer, J. B., Biosynthesis of the vancomycin group of antibiotics: characterisation of a type III polyketide synthase in the pathway to (S)-3,5-dihydroxyphenylglycine. Chemical communications (Cambridge, England) 2156-7 (2001). 8. Chen, H.; Tseng, C. C.; Hubbard, B. K.; Walsh, C. T., Glycopeptide antibiotic biosynthesis: enzymatic assembly of the dedicated amino acid monomer (S)-3,5-dihydroxyphenylglycine. Proceedings of the National Academy of Sciences of the United States of America 98, 14901-14906 (2001). 9. Tseng, C. C.; McLoughlin, S. M.; Kelleher, N. L.; Walsh, C. T., Role of the active site cysteine of DpgA, a bacterial type III polyketide synthase. Biochemistry 43, 970-980 (2004). 10. Pfeifer, V.; Nicholson, G. J.; Ries, J.; Recktenwald, J.; Schefer, A. B.; Shawky, R. M.; Schroder, J.; Wohlleben, W.; Pelzer, S., A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine. The Journal of biological chemistry 276, 38370-38377 (2001). 11. Jez, J. M.; Ferrer, J. L.; Bowman, M. E.; Dixon, R. A.; Noel, J. P., Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39, 890-902 (2000). 12. Austin, M. B.; Noel, J. P., The chalcone synthase superfamily of type III polyketide synthases. Natural product reports 20, 79-110 (2003). 13. Watanabe, K.; Praseuth, A. P.; Wang, C. C., A comprehensive and engaging overview of the type III family of polyketide synthases. Current opinion in chemical biology 11, 279-286 (2007). 14. Funa, N.; Awakawa, T.; Horinouchi, S., Pentaketide resorcylic acid synthesis by type III polyketide synthase from Neurospora crassa. The Journal of biological chemistry 282, 14476-14481 (2007). 15. Springob, K.; Samappito, S.; Jindaprasert, A.; Schmidt, J.; Page, J. E.; De-Eknamkul, W.; Kutchan, T. M., A polyketide synthase of Plumbago indica that catalyzes the formation of hexaketide pyrones. The FEBS journal 274, 406-417 (2007). 16. Abe, I.; Utsumi, Y.; Oguro, S.; Morita, H.; Sano, Y.; Noguchi, H., A plant type III polyketide synthase that produces pentaketide chromone. Journal of the American Chemical Society 127, 1362-1363 (2005). 17. Abe, I.; Morita, H., Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Natural product reports 27, 809-838 (2010). 18. Khosla, C.; Tang, Y.; Chen, A. Y.; Schnarr, N. A.; Cane, D. E., Structure and mechanism of the 6-deoxyerythronolide B synthase. Annual review of biochemistry 76, 195-221 (2007). 19. Hertweck, C.; Luzhetskyy, A.; Rebets, Y.; Bechthold, A., Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Natural product reports 24, 162-190 (2007). 20. Leadlay, P. F., Combinatorial approaches to polyketide biosynthesis. Current opinion in chemical biology 1, 162-8. (1997). 21. Katsuyama, Y., and Horinouchi, S. Microbial type III polyketide synthases. in Comprehensive Natural Products II, Chemistry and Biology (L. Mander, H. W. L. ed.), Elsevier Ltd., Oxford. pp 147-170 (2010). 22. Ferrer, J. L.; Jez, J. M.; Bowman, M. E.; Dixon, R. A.; Noel, J. P., Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nature structural biology 6, 775-784 (1999). 23. Jez, J. M.; Ferrer, J. L.; Bowman, M. E.; Austin, M. B.; Schroder, J.; Dixon, R. A.; Noel, J. P., Structure and mechanism of chalcone synthase-like polyketide synthases. Journal of industrial microbiology & biotechnology 27, 393-398 (2001). 24. Austin, M. B.; Bowman, M. E.; Ferrer, J. L.; Schroder, J.; Noel, J. P., An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chemistry & biology 11, 1179-1194 (2004). 25. Sankaranarayanan, R.; Saxena, P.; Marathe, U. B.; Gokhale, R. S.; Shanmugam, V. M.; Rukmini, R., A novel tunnel in mycobacterial type III polyketide synthase reveals the structural basis for generating diverse metabolites. Nature structural & molecular biology 11, 894-900 (2004). 26. Tseng, C. C.; Vaillancourt, F. H.; Bruner, S. D.; Walsh, C. T., DpgC is a metal- and cofactor-free 3,5-dihydroxyphenylacetyl-CoA 1,2-dioxygenase in the vancomycin biosynthetic pathway. Chemistry & biology 11, 1195-203 (2004). 27. van Wageningen, A. M.; Kirkpatrick, P. N.; Williams, D. H.; Harris, B. R.; Kershaw, J. K.; Lennard, N. J.; Jones, M.; Jones, S. J.; Solenberg, P. J., Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chemistry & biology 5, 155-62 (1998). 28. Agnihotri, G.; Liu, H. W., Enoyl-CoA hydratase. reaction, mechanism, and inhibition. Bioorganic & medicinal chemistry 11, 9-20 (2003). 29. Widboom, P. F.; Fielding, E. N.; Liu, Y.; Bruner, S. D., Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis. Nature 447, 342-5 (2007). 30. Fielding, E. N.; Widboom, P. F.; Bruner, S. D., Substrate recognition and catalysis by the cofactor-independent dioxygenase DpgC. Biochemistry 46, 13994-4000 (2007). 31. Holden, H. M.; Benning, M. M.; Haller, T.; Gerlt, J. A., The crotonase superfamily: divergently related enzymes that catalyze different reactions involving acyl coenzyme a thioesters. Accounts of chemical research 34, 145-57 (2001). 32. Gerratana, B.; Arnett, S. O.; Stapon, A.; Townsend, C. A., Carboxymethylproline synthase from Pectobacterium carotorova: a multifaceted member of the crotonase superfamily. Biochemistry 43, 15936-45 (2004). 33. Truglio, J. J.; Theis, K.; Feng, Y.; Gajda, R.; Machutta, C.; Tonge, P. J.; Kisker, C., Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis. The Journal of biological chemistry 278, 42352-60 (2003). 34. Eberhard, E. D.; Gerlt, J. A., Evolution of function in the crotonase superfamily: the stereochemical course of the reaction catalyzed by 2-ketocyclohexanecarboxyl-CoA hydrolase. Journal of the American Chemical Society 126, 7188-9 (2004). 35. Fetzner, S.; Steiner, R. A., Cofactor-independent oxidases and oxygenases. Applied microbiology and biotechnology 86, 791-804 (2010). 36. Di Russo, N. V.; Condurso, H. L.; Li, K.; Bruner, S. D.; Roitberg, A. E., Oxygen diffusion pathways in a cofactor-independent dioxygenase. Chemical science 6, 6341-6348 (2015). 37. Bugg, T. D., How to break the rules of dioxygen activation. Chemistry & biology 21, 168-9 (2014). 38. Stec, B.; Stieglitz, K. A., Not so clear on oxygen. Comment on Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis by Widboom et al. (2007), Nature (London), 447, 342-345. Acta crystallographica. Section D, Biological crystallography 64, 1000-2 (2008). 39. Adams, R.; Chiles, H. M.; Rassweiler, C. F., Organic Syntheses (Coll.), 1, 10-11 (1941). 40. Sharma, V. K.; Shahriari-Zavareh, H.; Garratt, P. J.; Sondheimer, F., Syntheses of 2-carbomethoxy-5,10-dimethyl-6,8-didehydro[13]annulenone, a potential precursor of macrocyclic azulene analogs and (Z)- and (E)-14-carbethoxy-2-carbomethoxy-5,10-dimethyl-6,8-didehydro[13]fulvenes. The Journal of Organic Chemistry 48, 2379–2383 (1983). 41. Kiegiel, J.; Józwik, J.; Wozniak, K.; Jurczak, J., Synthesis and asymmetric hydrogenation of 3,5-dioxoheptanedioates. Preparation of enantiomerically pure substituted δ-valerolactones Tetrahedron Letters 41, 4959–4963 (2000). 42. Mitz, M. A.; Axelrod, A. E.; Hofmann, K., The Synthesis of Higher Aliphatic β-Keto Acids. Journal of the American Chemical Society 72, 1231–1232 (1950). 43. Spiteller, D.; Waterman, C. L.; Spencer, J. B., A method for trapping intermediates of polyketide biosynthesis with a nonhydrolyzable malonyl-coenzyme A analogue. Angewandte Chemie (International ed. in English) 44, 7079-82 (2005). 44. Katsuyama, Y.; Miyazono, K.; Tanokura, M.; Ohnishi, Y.; Horinouchi, S., Structural and biochemical elucidation of mechanism for decarboxylative condensation of beta-keto acid by curcumin synthase. The Journal of biological chemistry 286, 6659-68 (2011). 45. Li, T. L.; Spiteller, D.; Spencer, J. B., Identification of a pentaketide stilbene produced by a type III polyketide synthase from Pinus sylvestris and characterisation of free coenzyme A intermediates. Chembiochem : a European journal of chemical biology 10, 896-901 (2009). 46. Austin, M. B.; Saito, T.; Bowman, M. E.; Haydock, S.; Kato, A.; Moore, B. S.; Kay, R. R.; Noel, J. P., Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase. Nature chemical biology 2, 494-502 (2006). 47. Otwinowski, Z.; Minor, W., Processing of X-ray diffraction data collected in oscillation mode. Methods in enzymology 276, 307-26 (1997). 48. Kantardjieff, K. A.; Rupp, B., Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein science : a publication of the Protein Society 12, 1865-71 (2003). 49. McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J., Phaser crystallographic software. Journal of applied crystallography 40, 658-674 (2007). 50. Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta crystallographica. Section D, Biological crystallography 66, 213-21 (2010). 51. Emsley, P.; Cowtan, K., Coot: model-building tools for molecular graphics. Acta crystallographica. Section D, Biological crystallography 60, 2126-32 (2004). 52. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K., Features and development of Coot. Acta crystallographica. Section D, Biological crystallography 66, 486-501 (2010). 53. Adams, P. D.; Grosse-Kunstleve, R. W.; Hung, L. W.; Ioerger, T. R.; McCoy, A. J.; Moriarty, N. W.; Read, R. J.; Sacchettini, J. C.; Sauter, N. K.; Terwilliger, T. C., PHENIX: building new software for automated crystallographic structure determination. Acta crystallographica. Section D, Biological crystallography 58, 1948-54 (2002). 54. Afonine, P.; Grosse-Kunstleve, RW,; Adams, P. D., The PHENIX Refinement Framework. CCP4 Newsletter 42, contribution 8 (2005). 55. Haigh, D.; Jefcott, L. J.; Magee, K.; McNab, H., Anomalous fluorinations of 3-aryl-2-hydroxypropanoic esters by diethylaminosulfur trifluoride (DAST). Journal of the Chemical Society, Perkin Transactions 1 24, 2895-2900 (1996). 56. Lippard S. J., Progress in Inorganic Chemistry. An Interscience publication. John Wiley & Sons Ltd.; Vol. 32, pp 462-463 (2009). 57. Jacob, C.; Giles, G. I.; Giles, N. M.; Sies, H., Sulfur and selenium: the role of oxidation state in protein structure and function. Angewandte Chemie (International ed. in English) 42, 4742-58 (2003). 58. Bell, R. P., The Reversible Hydration of Carbonyl Compounds. Advances in Physical Organic Chemistry 4, 1-29 (1966). 59. Buschmann, H. J.; Füldner, H. H.; Knoche, W., The Reversible Hydration of Carbonyl Compounds in Aqueous Solution. Part I, The Keto/Gem-diol Equilibrium. Berichte der Bunsengesellschaft für physikalische Chemie 84, 41–44 (1980). 60. Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28, 2731-9 (2011).
|