跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/17 03:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李易珊
研究生(外文):Yi-Shan Li
論文名稱:探討參與不尋常胺基酸3,5-dihydroxyphenylglycine生合成之關鍵酵素:第三型聚酮合成酶及輔因子非依存性氧化酶
論文名稱(外文):Study of key enzymes involved in the biosynthesis of unusual amino acid 3,5-dihydroxyphenylglycine: type III polyketide synthase (DpgA) and cofactor-free oxygenase (DpgC)
指導教授:李宗璘李宗璘引用關係
指導教授(外文):Tsung-Lin Li
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:149
中文關鍵詞:第三型聚酮合成酶輔因子非依存性氧化酶
外文關鍵詞:type III polyketide synthasecofactor-free oxygenase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
天然二級代謝物的結構類型多樣且複雜豐富,具有廣泛的生物活性,成為新穎藥物研發的重要來源。藉由研究生合成酵素的功能,可以促進生物催化劑的分子設計研究及產生多樣性衍生物。第三型聚酮合成酶DpgA及輔因子非依存性氧化酶DpgC為參與醣胜肽類抗生素萬古黴素(vancomycin)以及teicoplanin中不尋常胺基酸3, 5-dihydroxyphenylglycine (DPG)生合成之關鍵酵素。DpgA是催化聚酮肽鏈的延長以及環化反應進而形成dihydroxyphenylacetyl-CoA (DPA-CoA),然而其分子催化機轉依然不清楚。因此,我們想利用合成二種DPA-CoA中間產物di- and tri-ketidyl-CoA (DK-CoA and TK-CoA)進行其催化作用機制探討。每個中間產物進一步的與穩定同位素碳-13 (13C)標定的malonyl-CoA (MA-CoA)在DpgA、B及D催化下可以得到各種碳-13標定DPA-CoA。我們並以一次、二次、三次質譜及核磁共振解析碳-13原子在DPA-CoA上的分佈位置,藉以窺知DpgA其反應機制,特別的是polyketidyl-CoA可以當作起始單元分子以及延長單元分子進行縮合反應。然而若缺乏末端羧基的polyketone-CoA則只能當作延長單元分子。由此得知此末端羧基為環化反應中扮演重要的角色,且環化反應可能不需要酵素的參與。
另一方面,DpgC的作用是利用消耗一分子氧氣使DPA-CoA生成3,5-dihydroxyphenylglyoxylate (DPGx),而罕見的DpgC不需任何的輔因子卻具有催化四個電子氧化反應的能力,然而其分子作用機轉大部分仍不清楚,包括如何催化位置上碳-氫鍵氧化反應與硫酯键水解。在此篇研究中,我們利用合成一系列基質類似物、使用氧-18 (18O)穩定同位素標定及X光蛋白結晶學,解析出DpgC的反應作用機制及蛋白複合體結構,有助於從分子層面上完善其催化機轉。DPA-CoA與氧氣首先形成一籠形複合體,然後於a碳位置上重組形成過氧陰離子(peroxide anion)。此過氧陰離子接著攻擊硫酯键,形成一個四元環分子二氧雜環丁烷,並伴隨著不均勻斷裂(hetrolytic cleavage)最後產生DPGx。期待此一研究成果,可以拓展這些酵素功能上的運用,將有助於創造更多獨特的小分子化合物。
Secondary metabolites are rich in molecular complexity and diversity in addition to varied biological activities. The study of enzymes involved in the synthesis of secondary metabolites could facilitate biocatalyst design and thus expand the scope of secondary metabolites. The type III polyketide synthase DpgA and the cofactor-free oxygenase DpgC catalyze two key steps in the biosynthesis of the essential building block 3,5-dihydroxyphenylglycine (DPG), a non-proteinogenic amino-acid building unit in the vancomycin and teicoplanin family of antibiotics. The reactions of DpgA include polyketone chain-length elongation and subsequent ring cyclization reactions to form dihydroxyphenylacetyl-CoA (DPA-CoA), while the detailed mechanisms behind these reactions remain elusive. To better understand the catalytic details, two labile DPA-CoA intermediates, di- and tri-ketidyl-CoA (DK-CoA and TK-CoA), were designed and chemically synthesized. Each intermediate along with [13C3]-malonyl-CoA (MA-CoA) in the presence of DpgABD was able to form 13C-enriched DPA-CoA. The product was subjected to NMR and MSn analyses, by which the positions of 13C atoms in the partially 13C-enriched DPA-CoA were determined, thus shedding new light on how polyketide chain length elongates and cyclizes in the DpgA-dependent enzyme reaction. In contrast to the conventional mechanism, polyketidyl-CoA can act as the starter or extender, whereas polyketone-CoA without the terminal carboxyl group can only serve as an extender. As a result, the terminal carboxyl group is crucial for ring cyclization that likely occurs on CoA instead of the enzyme.
DpgC was known to catalyze conversion of 3,5-dihydroxyphenylglyoxylate (DPGx) from DPA-CoA at the expense of one molecule of dioxygen. Oddly, DpgC is an enzyme that contains no cofactor but capable of catalyzing a 4-electron oxidation reaction. Despite this interesting fact, the catalytic mechanism that virtually governs both  C-H oxidation and thioester hydrolysis remains largely unknown. To answer this question, we came to probe this catalytic issue by utilizing an array of synthetic analogues as well as the 18O stable isotope labelling technique. We also took advantage of X-ray crystallography to obtain crystal structures of DpgC in complex with ligands in a hope to visualize the chemical transformation. In conjunction with chemical examinations, our analysis have detailed the catalytic mechanism at the molecular level, where dioxygen and DPA-CoA first form a caged complex and then recombine to form a peroxide anion species at a-C. This peroxide anion then attacks thioester carbon to form a four-membered dioxetane species that subsequently undergoes hetrolytic cleavage to form DPGx. We believe the molecular detailing of the given enzymes has paved a strong foundation for future biocatalyst design, which should accelerate development of unnatural natural products, for example, in tackling difficult-to-treat diseases.
Contents
中文摘要........i
Abstract........iii
Contents........v
List of Figures........vii
List of Tables........ix
Chapter 1. Introduction........1-4
1.1 The emergence of drug resistant pathogens........1
1.2 Nonproteinogenic amino acid 3,5-dihydroxyphenylglycine........1
1.3 DpgA........2
1.4 DpgC........4
Chapter 2. DpgA........5-20
2.1. Materials and Methods........5
2.1.1. Cloning, expression and purification........5
2.1.2. Site-directed mutagenesis........6
2.1.3. Enzymatic assay........7
2.1.4. Preparation of [13C3]malonyl-CoA and [13C4]acetoacetyl-CoA........7
2.1.5. Synthesis of Diketide anhydride........7
2.1.6. Synthesis of Triketide anhydride........9
2.1.7. Enzyme assays with di- and tri-ketidyl-CoA........11
2.1.8. Compound characterization........11
2.2. Results and Discussion........12
2.2.1. Synthesis of polyketidyl-CoA intermediates........12
2.2.2. Synthesis of polyketidyl-CoA intermediates: Determination of the true reaction route........13
2.2.3. Distribution of 13C atoms in DPA-CoA........14
2.2.4. Unexpected starter and extender........15
2.2.5. Where does chain cyclization occur?........17
2.2.6. KS/NRPS-related type III PKSs might be evolutionarily related........18
2.3. Conclusions........20
Chapter 3. DpgC........21-34
3.1. Materials and Methods........21
3.1.1. Cloning, expression and purification........21
3.1.2. Analytical ultracentrifuge analysis........21
3.1.3. Enzymatic assay........22
3.1.4. Incubations with 18O2........23
3.1.5. Crystallization and data collection........23
3.1.6. Structure determination and refinement........24
3.1.7. Synthesis of phenylacetyl-NAC analogues........24
3.1.8 Synthesis of 2-fluoro-2-phenylacetyl-NAC analogues........25
3.1.9. Compound characterization........26
3.2. Results and Discussion........27
3.2.1. Enzyme specificity........27
3.2.2. Stereoselectivity of DpgC........29
3.2.3. Stable isotope labelling analysis........30
3.2.4. Overall structure description........32
3.2.5. Active Site of DpgC........32
3.3. Summary........34
Reference........77
Appendix........85

List of Figures
Figure 1. Biosynthesis of DPG and possible mechanisms of DpgA........35
Figure 2. ClustalW alignment of CHSs........36
Figure 3. Synthetic protocol and assay strategy........37
Figure 4. Mass spectra for diketidyl-CoA and triketidyl-CoA........38
Figure 5. Preparation of [13C3]-malonyl- and [13C4]-acetoacetyl-CoA using succinyl-CoA transferase........40
Figure 6. LC traces for DpgABD enzymatic reactions........41
Figure 7. NMR, MS and MSn spectra for DPA-CoA........43
Figure 8. Distribution of 13C atoms (●) in the presence of two [13C3]MA-CoA and one DK-CoA for the formation of DPA-CoA........44
Figure 9. Catalytic mechanism of DpgA........45
Figure 10. Polyketone chain cyclization in the formation of DPA-CoA........46
Figure 11. Homology modeling of DpgA........48
Figure 12. Phylogenetic tree of 29 peptides........49
Figure 13. SDS-PAGE analysis, gel filtration chromatography and analytical ultracentrifugation analysis for DpgC........50
Figure 14. Structure and mass spectra of chemically synthesized aliphatic ring-NAC derivatives........51
Figure 15. Structure and mass spectra of chemically synthesized N-acetyl derivatives....52
Figure 16. HPLC traces and mass spectra for the DpgC products obtained in N-acetyl derivatives reactions........53
Figure 17. HPLC traces for the DpgC products obtained in N-acetyl derivatives reactions........54
Figure 18. Structure and mass spectra of chemically synthesized substitution on C-NAC derivatives........55
Figure 19. HPLC traces for the DpgC products obtained in substitution on C-CoA derivatives reactions and mass spectra of standard........56
Figure 20. Mass spectra for the DpgC products obtained in substitution on C-CoA derivatives reactions........57
Figure 21. TIC traces for the DpgC products obtained in substitution on C-CoA derivatives reactions and mass spectra of standard........58
Figure 22. Structure and mass spectra of chemically synthesized substitution on benzene-NAC derivatives........59
Figure 23. HPLC traces for the DpgC products obtained in substitution on benzene-CoA derivatives reactions........60
Figure 24. Mass spectra for the DpgC products obtained in substitution on benzene-CoA derivatives reactions........61
Figure 25. Chiral resolution for the DpgC products........62
Figure 26. Schematic of the assay analyzing oxygen incorporation into DPGx........63
Figure 27. MS and MS2 spectra for DPGx........64
Figure 28. MS spectra for phenylglyoxlate........65
Figure 29. Two proposed catalytic mechanism carried out in DpgC........66
Figure 30. Overall structure of DpgC........67
Figure 31. The CoA substrate binding site of DpgC........68
Figure 32. The active site of DpgC/CoA complex structure........69
Figure 33. The active site of DpgC/p-tolylglyoxlate complex structure........70
Figure 34. The active site of DpgC/phenylglyoxlate complex structure........71
Figure 35. Superimposition of DpgC·p-tolylglyoxlate, DpgC·phenylglyoxlate and DPA-NH-CoA bound DpgC structures........72

List of Tables
Table 1. Structures of aliphatic ring-CoA and N-acetyl derivatives and their availability in enzymatic reactions........73
Table 2. Structures of substitution on C-CoA derivatives and their availability in enzymatic reactions........74
Table 3. Structures of substitution on benzene-CoA derivatives and their availability in enzymatic reactions........75
Table 4. Data collection and refinement statistics for DpgC structures........76
Reference

1. Walsh, C., Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775-81 (2000).
2. Fischbach, M. A.; Walsh, C. T., Antibiotics for emerging pathogens. Science 325, 1089-93 (2009).
3. Zhou, H.; Xie, X.; Tang, Y., Engineering natural products using combinatorial biosynthesis and biocatalysis. Current opinion in biotechnology 19, 590-596 (2008).
4. Keasling, J. D., Manufacturing molecules through metabolic engineering. Science 330, 1355-1358 (2010).
5. Liu, Y. C.; Li, Y. S.; Lyu, S. Y.; Hsu, L. J.; Chen, Y. H.; Huang, Y. T.; Chan, H. C.; Huang, C. J.; Chen, G. H.; Chou, C. C.; Tsai, M. D.; Li, T. L., Interception of teicoplanin oxidation intermediates yields new antimicrobial scaffolds. Nature chemical biology 7, 304-309 (2011).
6. Kahne, D.; Leimkuhler, C.; Lu, W.; Walsh, C., Glycopeptide and lipoglycopeptide antibiotics. Chemical reviews 105, 425-48 (2005).
7. Li, T. L.; Choroba, O. W.; Hong, H.; Williams, D. H.; Spencer, J. B., Biosynthesis of the vancomycin group of antibiotics: characterisation of a type III polyketide synthase in the pathway to (S)-3,5-dihydroxyphenylglycine. Chemical communications (Cambridge, England) 2156-7 (2001).
8. Chen, H.; Tseng, C. C.; Hubbard, B. K.; Walsh, C. T., Glycopeptide antibiotic biosynthesis: enzymatic assembly of the dedicated amino acid monomer (S)-3,5-dihydroxyphenylglycine. Proceedings of the National Academy of Sciences of the United States of America 98, 14901-14906 (2001).
9. Tseng, C. C.; McLoughlin, S. M.; Kelleher, N. L.; Walsh, C. T., Role of the active site cysteine of DpgA, a bacterial type III polyketide synthase. Biochemistry 43, 970-980 (2004).
10. Pfeifer, V.; Nicholson, G. J.; Ries, J.; Recktenwald, J.; Schefer, A. B.; Shawky, R. M.; Schroder, J.; Wohlleben, W.; Pelzer, S., A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine. The Journal of biological chemistry 276, 38370-38377 (2001).
11. Jez, J. M.; Ferrer, J. L.; Bowman, M. E.; Dixon, R. A.; Noel, J. P., Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39, 890-902 (2000).
12. Austin, M. B.; Noel, J. P., The chalcone synthase superfamily of type III polyketide synthases. Natural product reports 20, 79-110 (2003).
13. Watanabe, K.; Praseuth, A. P.; Wang, C. C., A comprehensive and engaging overview of the type III family of polyketide synthases. Current opinion in chemical biology 11, 279-286 (2007).
14. Funa, N.; Awakawa, T.; Horinouchi, S., Pentaketide resorcylic acid synthesis by type III polyketide synthase from Neurospora crassa. The Journal of biological chemistry 282, 14476-14481 (2007).
15. Springob, K.; Samappito, S.; Jindaprasert, A.; Schmidt, J.; Page, J. E.; De-Eknamkul, W.; Kutchan, T. M., A polyketide synthase of Plumbago indica that catalyzes the formation of hexaketide pyrones. The FEBS journal 274, 406-417 (2007).
16. Abe, I.; Utsumi, Y.; Oguro, S.; Morita, H.; Sano, Y.; Noguchi, H., A plant type III polyketide synthase that produces pentaketide chromone. Journal of the American Chemical Society 127, 1362-1363 (2005).
17. Abe, I.; Morita, H., Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Natural product reports 27, 809-838 (2010).
18. Khosla, C.; Tang, Y.; Chen, A. Y.; Schnarr, N. A.; Cane, D. E., Structure and mechanism of the 6-deoxyerythronolide B synthase. Annual review of biochemistry 76, 195-221 (2007).
19. Hertweck, C.; Luzhetskyy, A.; Rebets, Y.; Bechthold, A., Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Natural product reports 24, 162-190 (2007).
20. Leadlay, P. F., Combinatorial approaches to polyketide biosynthesis. Current opinion in chemical biology 1, 162-8. (1997).
21. Katsuyama, Y., and Horinouchi, S. Microbial type III polyketide synthases. in Comprehensive Natural Products II, Chemistry and Biology (L. Mander, H. W. L. ed.), Elsevier Ltd., Oxford. pp 147-170 (2010).
22. Ferrer, J. L.; Jez, J. M.; Bowman, M. E.; Dixon, R. A.; Noel, J. P., Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nature structural biology 6, 775-784 (1999).
23. Jez, J. M.; Ferrer, J. L.; Bowman, M. E.; Austin, M. B.; Schroder, J.; Dixon, R. A.; Noel, J. P., Structure and mechanism of chalcone synthase-like polyketide synthases. Journal of industrial microbiology & biotechnology 27, 393-398 (2001).
24. Austin, M. B.; Bowman, M. E.; Ferrer, J. L.; Schroder, J.; Noel, J. P., An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chemistry & biology 11, 1179-1194 (2004).
25. Sankaranarayanan, R.; Saxena, P.; Marathe, U. B.; Gokhale, R. S.; Shanmugam, V. M.; Rukmini, R., A novel tunnel in mycobacterial type III polyketide synthase reveals the structural basis for generating diverse metabolites. Nature structural & molecular biology 11, 894-900 (2004).
26. Tseng, C. C.; Vaillancourt, F. H.; Bruner, S. D.; Walsh, C. T., DpgC is a metal- and cofactor-free 3,5-dihydroxyphenylacetyl-CoA 1,2-dioxygenase in the vancomycin biosynthetic pathway. Chemistry & biology 11, 1195-203 (2004).
27. van Wageningen, A. M.; Kirkpatrick, P. N.; Williams, D. H.; Harris, B. R.; Kershaw, J. K.; Lennard, N. J.; Jones, M.; Jones, S. J.; Solenberg, P. J., Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chemistry & biology 5, 155-62 (1998).
28. Agnihotri, G.; Liu, H. W., Enoyl-CoA hydratase. reaction, mechanism, and inhibition. Bioorganic & medicinal chemistry 11, 9-20 (2003).
29. Widboom, P. F.; Fielding, E. N.; Liu, Y.; Bruner, S. D., Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis. Nature 447, 342-5 (2007).
30. Fielding, E. N.; Widboom, P. F.; Bruner, S. D., Substrate recognition and catalysis by the cofactor-independent dioxygenase DpgC. Biochemistry 46, 13994-4000 (2007).
31. Holden, H. M.; Benning, M. M.; Haller, T.; Gerlt, J. A., The crotonase superfamily: divergently related enzymes that catalyze different reactions involving acyl coenzyme a thioesters. Accounts of chemical research 34, 145-57 (2001).
32. Gerratana, B.; Arnett, S. O.; Stapon, A.; Townsend, C. A., Carboxymethylproline synthase from Pectobacterium carotorova: a multifaceted member of the crotonase superfamily. Biochemistry 43, 15936-45 (2004).
33. Truglio, J. J.; Theis, K.; Feng, Y.; Gajda, R.; Machutta, C.; Tonge, P. J.; Kisker, C., Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis. The Journal of biological chemistry 278, 42352-60 (2003).
34. Eberhard, E. D.; Gerlt, J. A., Evolution of function in the crotonase superfamily: the stereochemical course of the reaction catalyzed by 2-ketocyclohexanecarboxyl-CoA hydrolase. Journal of the American Chemical Society 126, 7188-9 (2004).
35. Fetzner, S.; Steiner, R. A., Cofactor-independent oxidases and oxygenases. Applied microbiology and biotechnology 86, 791-804 (2010).
36. Di Russo, N. V.; Condurso, H. L.; Li, K.; Bruner, S. D.; Roitberg, A. E., Oxygen diffusion pathways in a cofactor-independent dioxygenase. Chemical science 6, 6341-6348 (2015).
37. Bugg, T. D., How to break the rules of dioxygen activation. Chemistry & biology 21, 168-9 (2014).
38. Stec, B.; Stieglitz, K. A., Not so clear on oxygen. Comment on Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis by Widboom et al. (2007), Nature (London), 447, 342-345. Acta crystallographica. Section D, Biological crystallography 64, 1000-2 (2008).
39. Adams, R.; Chiles, H. M.; Rassweiler, C. F., Organic Syntheses (Coll.), 1, 10-11 (1941).
40. Sharma, V. K.; Shahriari-Zavareh, H.; Garratt, P. J.; Sondheimer, F., Syntheses of 2-carbomethoxy-5,10-dimethyl-6,8-didehydro[13]annulenone, a potential precursor of macrocyclic azulene analogs and (Z)- and (E)-14-carbethoxy-2-carbomethoxy-5,10-dimethyl-6,8-didehydro[13]fulvenes. The Journal of Organic Chemistry 48, 2379–2383 (1983).
41. Kiegiel, J.; Józwik, J.; Wozniak, K.; Jurczak, J., Synthesis and asymmetric hydrogenation of 3,5-dioxoheptanedioates. Preparation of enantiomerically pure substituted δ-valerolactones Tetrahedron Letters 41, 4959–4963 (2000).
42. Mitz, M. A.; Axelrod, A. E.; Hofmann, K., The Synthesis of Higher Aliphatic β-Keto Acids. Journal of the American Chemical Society 72, 1231–1232 (1950).
43. Spiteller, D.; Waterman, C. L.; Spencer, J. B., A method for trapping intermediates of polyketide biosynthesis with a nonhydrolyzable malonyl-coenzyme A analogue. Angewandte Chemie (International ed. in English) 44, 7079-82 (2005).
44. Katsuyama, Y.; Miyazono, K.; Tanokura, M.; Ohnishi, Y.; Horinouchi, S., Structural and biochemical elucidation of mechanism for decarboxylative condensation of beta-keto acid by curcumin synthase. The Journal of biological chemistry 286, 6659-68 (2011).
45. Li, T. L.; Spiteller, D.; Spencer, J. B., Identification of a pentaketide stilbene produced by a type III polyketide synthase from Pinus sylvestris and characterisation of free coenzyme A intermediates. Chembiochem : a European journal of chemical biology 10, 896-901 (2009).
46. Austin, M. B.; Saito, T.; Bowman, M. E.; Haydock, S.; Kato, A.; Moore, B. S.; Kay, R. R.; Noel, J. P., Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase. Nature chemical biology 2, 494-502 (2006).
47. Otwinowski, Z.; Minor, W., Processing of X-ray diffraction data collected in oscillation mode. Methods in enzymology 276, 307-26 (1997).
48. Kantardjieff, K. A.; Rupp, B., Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein science : a publication of the Protein Society 12, 1865-71 (2003).
49. McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J., Phaser crystallographic software. Journal of applied crystallography 40, 658-674 (2007).
50. Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta crystallographica. Section D, Biological crystallography 66, 213-21 (2010).
51. Emsley, P.; Cowtan, K., Coot: model-building tools for molecular graphics. Acta crystallographica. Section D, Biological crystallography 60, 2126-32 (2004).
52. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K., Features and development of Coot. Acta crystallographica. Section D, Biological crystallography 66, 486-501 (2010).
53. Adams, P. D.; Grosse-Kunstleve, R. W.; Hung, L. W.; Ioerger, T. R.; McCoy, A. J.; Moriarty, N. W.; Read, R. J.; Sacchettini, J. C.; Sauter, N. K.; Terwilliger, T. C., PHENIX: building new software for automated crystallographic structure determination. Acta crystallographica. Section D, Biological crystallography 58, 1948-54 (2002).
54. Afonine, P.; Grosse-Kunstleve, RW,; Adams, P. D., The PHENIX Refinement Framework. CCP4 Newsletter 42, contribution 8 (2005).
55. Haigh, D.; Jefcott, L. J.; Magee, K.; McNab, H., Anomalous fluorinations of 3-aryl-2-hydroxypropanoic esters by diethylaminosulfur trifluoride (DAST). Journal of the Chemical Society, Perkin Transactions 1 24, 2895-2900 (1996).
56. Lippard S. J., Progress in Inorganic Chemistry. An Interscience publication. John Wiley & Sons Ltd.; Vol. 32, pp 462-463 (2009).
57. Jacob, C.; Giles, G. I.; Giles, N. M.; Sies, H., Sulfur and selenium: the role of oxidation state in protein structure and function. Angewandte Chemie (International ed. in English) 42, 4742-58 (2003).
58. Bell, R. P., The Reversible Hydration of Carbonyl Compounds. Advances in Physical Organic Chemistry 4, 1-29 (1966).
59. Buschmann, H. J.; Füldner, H. H.; Knoche, W., The Reversible Hydration of Carbonyl Compounds in Aqueous Solution. Part I, The Keto/Gem-diol Equilibrium. Berichte der Bunsengesellschaft für physikalische Chemie 84, 41–44 (1980).
60. Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28, 2731-9 (2011).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top