|
1. Wu, L.S., et al., TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis, 2010. 48(1): p. 56-62. 2. Lee, E.B., V.M. Lee, and J.Q. Trojanowski, Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci, 2011. 13(1): p. 38-50. 3. Sephton, C.F., et al., Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem, 2011. 286(2): p. 1204-15. 4. Tollervey, J.R., et al., Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci, 2011. 14(4): p. 452-8. 5. Buratti, E., et al., TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem, 2005. 280(45): p. 37572-84. 6. Freibaum, B.D., et al., Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res, 2010. 9(2): p. 1104-20. 7. Buratti, E., et al., Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J, 2001. 20(7): p. 1774-84. 8. Mohagheghi, F., et al., TDP-43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor. Hum Mol Genet, 2016. 25(3): p. 534-45. 9. De Conti, L., et al., TDP-43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways. Nucleic Acids Res, 2015. 43(18): p. 8990-9005. 10. Colombrita, C., et al., From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models. Biochim Biophys Acta, 2015. 1849(12): p. 1398-410. 11. Ling, S.C., et al., ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A, 2010. 107(30): p. 13318-23. 12. Ayala, Y.M., T. Misteli, and F.E. Baralle, TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc Natl Acad Sci U S A, 2008. 105(10): p. 3785-9. 13. Polymenidou, M., et al., Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci, 2011. 14(4): p. 459-68. 14. Godena, V.K., et al., TDP-43 regulates Drosophila neuromuscular junctions growth by modulating Futsch/MAP1B levels and synaptic microtubules organization. PLoS One, 2011. 6(3): p. e17808. 15. Romano, M., F. Feiguin, and E. Buratti, TBPH/TDP-43 modulates translation of Drosophila futsch mRNA through an UG-rich sequence within its 5'UTR. Brain Res, 2016. 1647: p. 50-6. 16. Ayala, Y.M., et al., Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol, 2005. 348(3): p. 575-88. 17. Fan, Z., X. Chen, and R. Chen, Transcriptome-wide analysis of TDP-43 binding small RNAs identifies miR-NID1 (miR-8485), a novel miRNA that represses NRXN1 expression. Genomics, 2014. 103(1): p. 76-82. 18. King, I.N., et al., The RNA-binding protein TDP-43 selectively disrupts microRNA-1/206 incorporation into the RNA-induced silencing complex. J Biol Chem, 2014. 289(20): p. 14263-71. 19. Zhang, Z., et al., Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations. PLoS One, 2013. 8(10): p. e76055. 20. Liu, X., et al., Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J, 2012. 31(23): p. 4415-27. 21. Guo, F., et al., Regulation of MALAT1 expression by TDP43 controls the migration and invasion of non-small cell lung cancer cells in vitro. Biochem Biophys Res Commun, 2015. 465(2): p. 293-8. 22. Higashi, S., et al., TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress. J Neurochem, 2013. 126(2): p. 288-300. 23. Elvira, G., et al., Characterization of an RNA granule from developing brain. Mol Cell Proteomics, 2006. 5(4): p. 635-51. 24. Wang, I.F., et al., TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem, 2008. 105(3): p. 797-806. 25. Neumann, M., et al., Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006. 314(5796): p. 130-3. 26. Deng, H.X., et al., Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature, 2011. 477(7363): p. 211-5. 27. Zhang, Y.J., et al., Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments. Mol Neurodegener, 2010. 5: p. 33. 28. Liachko, N.F., C.R. Guthrie, and B.C. Kraemer, Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci, 2010. 30(48): p. 16208-19. 29. Cohen, T.J., et al., An acetylation switch controls TDP-43 function and aggregation propensity. Nat Commun, 2015. 6: p. 5845. 30. Igaz, L.M., et al., Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. J Biol Chem, 2009. 284(13): p. 8516-24. 31. Nonaka, T., et al., Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet, 2009. 18(18): p. 3353-64. 32. Zhang, Y.J., et al., Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A, 2009. 106(18): p. 7607-12. 33. Igaz, L.M., et al., Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest, 2011. 121(2): p. 726-38. 34. Qin, H., et al., TDP-43 N terminus encodes a novel ubiquitin-like fold and its unfolded form in equilibrium that can be shifted by binding to ssDNA. Proc Natl Acad Sci U S A, 2014. 111(52): p. 18619-24. 35. Mompean, M., et al., The TDP-43 N-terminal domain structure at high resolution. FEBS J, 2016. 283(7): p. 1242-60. 36. Johnson, B.S., et al., A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A, 2008. 105(17): p. 6439-44. 37. Li, H.Y., et al., Hyperphosphorylation as a defense mechanism to reduce TDP-43 aggregation. PLoS One, 2011. 6(8): p. e23075. 38. Bozzo, F., et al., Structural insights into the multi-determinant aggregation of TDP-43 in motor neuron-like cells. Neurobiol Dis, 2016. 94: p. 63-72. 39. Chang, C.K., et al., The N-terminus of TDP-43 promotes its oligomerization and enhances DNA binding affinity. Biochem Biophys Res Commun, 2012. 425(2): p. 219-24. 40. Zhang, Y.J., et al., The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet, 2013. 22(15): p. 3112-22. 41. Winton, M.J., et al., A90V TDP-43 variant results in the aberrant localization of TDP-43 in vitro. FEBS Lett, 2008. 582(15): p. 2252-6. 42. Kuo, P.H., et al., The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids. Nucleic Acids Res, 2014. 42(7): p. 4712-22. 43. Kuo, P.H., et al., Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res, 2009. 37(6): p. 1799-808. 44. Lukavsky, P.J., et al., Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol, 2013. 20(12): p. 1443-9. 45. Chiang, C.H., et al., Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation. Sci Rep, 2016. 6: p. 21581. 46. Huang, Y.C., et al., Inhibition of TDP-43 aggregation by nucleic acid binding. PLoS One, 2013. 8(5): p. e64002. 47. Moreno, F., et al., A novel mutation P112H in the TARDBP gene associated with frontotemporal lobar degeneration without motor neuron disease and abundant neuritic amyloid plaques. Acta Neuropathol Commun, 2015. 3: p. 19. 48. Furukawa, Y., et al., A molecular mechanism realizing sequence-specific recognition of nucleic acids by TDP-43. Sci Rep, 2016. 6: p. 20576. 49. Schnabel, J., Protein folding: The dark side of proteins. Nature, 2010. 464(7290): p. 828-9. 50. Chouard, T., Structural biology: Breaking the protein rules. Nature, 2011. 471(7337): p. 151-3. 51. Chen, T.C., et al., The Nearest-Neighbor Effect on Random-Coil NMR Chemical Shifts Demonstrated Using a Low-Complexity Amino-Acid Sequence. Protein Pept Lett, 2016. 23(11): p. 967-975. 52. Johnson, B.S., et al., TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem, 2009. 284(30): p. 20329-39. 53. Capitini, C., et al., TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells. PLoS One, 2014. 9(1): p. e86720. 54. Jiang, L.L., et al., Structural transformation of the amyloidogenic core region of TDP-43 protein initiates its aggregation and cytoplasmic inclusion. J Biol Chem, 2013. 288(27): p. 19614-24. 55. Mompean, M., et al., Structural Evidence of Amyloid Fibril Formation in the Putative Aggregation Domain of TDP-43. J Phys Chem Lett, 2015. 6(13): p. 2608-15. 56. Wang, I.F., et al., The self-interaction of native TDP-43 C terminus inhibits its degradation and contributes to early proteinopathies. Nat Commun, 2012. 3: p. 766. 57. Budini, M., et al., Cellular model of TAR DNA-binding protein 43 (TDP-43) aggregation based on its C-terminal Gln/Asn-rich region. J Biol Chem, 2012. 287(10): p. 7512-25. 58. Walker, A.K., et al., ALS-associated TDP-43 induces endoplasmic reticulum stress, which drives cytoplasmic TDP-43 accumulation and stress granule formation. PLoS One, 2013. 8(11): p. e81170. 59. Estes, P.S., et al., Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis. Dis Model Mech, 2013. 6(3): p. 721-33. 60. Sun, C.S., et al., The influence of pathological mutations and proline substitutions in TDP-43 glycine-rich peptides on its amyloid properties and cellular toxicity. PLoS One, 2014. 9(8): p. e103644. 61. Zhu, L., et al., An ALS-mutant TDP-43 neurotoxic peptide adopts an anti-parallel beta-structure and induces TDP-43 redistribution. Hum Mol Genet, 2014. 23(25): p. 6863-77. 62. Gopal, P.P., et al., Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc Natl Acad Sci U S A, 2017. 114(12): p. E2466-E2475. 63. Ihara, R., et al., RNA binding mediates neurotoxicity in the transgenic Drosophila model of TDP-43 proteinopathy. Hum Mol Genet, 2013. 22(22): p. 4474-84. 64. Braun, R.J., et al., Neurotoxic 43-kDa TAR DNA-binding protein (TDP-43) triggers mitochondrion-dependent programmed cell death in yeast. J Biol Chem, 2011. 286(22): p. 19958-72. 65. Choksi, D.K., et al., TDP-43 Phosphorylation by casein kinase Iepsilon promotes oligomerization and enhances toxicity in vivo. Hum Mol Genet, 2014. 23(4): p. 1025-35. 66. Dong, H., et al., Curcumin abolishes mutant TDP-43 induced excitability in a motoneuron-like cellular model of ALS. Neuroscience, 2014. 272: p. 141-53. 67. Li, Z., et al., The FTD/ALS-associated RNA-binding protein TDP-43 regulates the robustness of neuronal specification through microRNA-9a in Drosophila. Hum Mol Genet, 2013. 22(2): p. 218-25. 68. Mitchell, J.C., et al., Wild type human TDP-43 potentiates ALS-linked mutant TDP-43 driven progressive motor and cortical neuron degeneration with pathological features of ALS. Acta Neuropathol Commun, 2015. 3: p. 36. 69. Janssens, J., et al., Overexpression of ALS-associated p.M337V human TDP-43 in mice worsens disease features compared to wild-type human TDP-43 mice. Mol Neurobiol, 2013. 48(1): p. 22-35. 70. Liu, Y.C., P.M. Chiang, and K.J. Tsai, Disease animal models of TDP-43 proteinopathy and their pre-clinical applications. Int J Mol Sci, 2013. 14(10): p. 20079-111. 71. Xu, Y.F., et al., Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice. Mol Neurodegener, 2011. 6: p. 73. 72. Alami, N.H., et al., Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron, 2014. 81(3): p. 536-43. 73. Radivojac, P., et al., Prediction of boundaries between intrinsically ordered and disordered protein regions. Pac Symp Biocomput, 2003: p. 216-27. 74. Obradovic, Z., et al., Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins, 2005. 61 Suppl 7: p. 176-82. 75. Dosztanyi, Z., et al., IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 2005. 21(16): p. 3433-4. 76. Toretsky, J.A. and P.E. Wright, Assemblages: functional units formed by cellular phase separation. J Cell Biol, 2014. 206(5): p. 579-88. 77. Molliex, A., et al., Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell, 2015. 163(1): p. 123-33. 78. Lin, Y., et al., Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol Cell, 2015. 60(2): p. 208-19. 79. Patel, A., et al., A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell, 2015. 162(5): p. 1066-77. 80. Burke, K.A., et al., Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II. Mol Cell, 2015. 60(2): p. 231-41. 81. Schmidt, H.B. and R. Rohatgi, In Vivo Formation of Vacuolated Multi-phase Compartments Lacking Membranes. Cell Rep, 2016. 16(5): p. 1228-36. 82. Conicella, A.E., et al., ALS Mutations Disrupt Phase Separation Mediated by alpha-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain. Structure, 2016. 24(9): p. 1537-49. 83. Frey, S., R.P. Richter, and D. Gorlich, FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science, 2006. 314(5800): p. 815-7. 84. Xiang, S., et al., The LC Domain of hnRNPA2 Adopts Similar Conformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei. Cell, 2015. 163(4): p. 829-39. 85. Cioce, M. and A.I. Lamond, Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol, 2005. 21: p. 105-31. 86. Lallemand-Breitenbach, V. and H. de The, PML nuclear bodies. Cold Spring Harb Perspect Biol, 2010. 2(5): p. a000661. 87. Buchan, J.R., mRNP granules. Assembly, function, and connections with disease. RNA Biol, 2014. 11(8): p. 1019-30. 88. Greenfield, N.J., Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc, 2006. 1(6): p. 2876-90. 89. Sreerama, N. and R.W. Woody, Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem, 2000. 287(2): p. 252-60. 90. Whitmore, L. and B.A. Wallace, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res, 2004. 32(Web Server issue): p. W668-73. 91. Piotto, M., V. Saudek, and V. Sklenar, Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR, 1992. 2(6): p. 661-5. 92. Hyberts, S.G., et al., Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J Biomol NMR, 2012. 52(4): p. 315-27. 93. Delaglio, F., et al., NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR, 1995. 6(3): p. 277-93. 94. Goddard, T.D. and D.G. Kneller, Sparky 3. San Francisco, University of California. 2005. 95. Hyberts, S.G., et al., FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation. J Biomol NMR, 2009. 45(3): p. 283-94. 96. Chou, C.Y., Y.H. Hsieh, and G.G. Chang, Applications of analytical ultracentrifugation to protein size-and-shape distribution and structure-and-function analyses. Methods, 2011. 54(1): p. 76-82. 97. Borcherds, W., et al., Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat Chem Biol, 2014. 10(12): p. 1000-2. 98. Sun, Y. and A. Chakrabartty, Phase to Phase with TDP-43. Biochemistry, 2017. 56(6): p. 809-823. 99. Brangwynne, C.P., P. Tompa, and R.V. Pappu, Polymer physics of intracellular phase transitions. NATURE PHYSICS, 2015. 11,: p. 899-904. 100. Lim, L., et al., ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43. PLoS Biol, 2016. 14(1): p. e1002338. 101. Mompean, M., et al., Electrostatic Repulsion Governs TDP-43 C-terminal Domain Aggregation. PLoS Biol, 2016. 14(4): p. e1002447. 102. Nott, T.J., et al., Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell, 2015. 57(5): p. 936-47. 103. Zhang, H., et al., RNA Controls PolyQ Protein Phase Transitions. Mol Cell, 2015. 60(2): p. 220-30. 104. Beck, M., et al., The quantitative proteome of a human cell line. Mol Syst Biol, 2011. 7: p. 549. 105. Wang, W., et al., The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat Med, 2016. 22(8): p. 869-78.
|