跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/21 18:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊婷雲
研究生(外文):Ting-Yun Chuang
論文名稱:探討糖皮質激素對抑制發炎與肌肉分化之分子機轉
論文名稱(外文):Characterization of the dual functions of glucocorticoids in anti-inflammation and myogenesis
指導教授:郭津岑
指導教授(外文):Jean-Cheng Kuo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:54
中文關鍵詞:糖皮質激素發炎肌肉生成腫瘤壞死因子粒線體
外文關鍵詞:DexamethasoneInflammationMyogenesisTNF-alphaMitochondria
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肌肉萎縮症主要的臨床特徵為骨骼肌逐漸萎縮並且發炎,這些症狀導致病患後期失去步行能力最終死亡,到現在為止還未有任何治療可以阻止或是治癒肌肉萎縮所造成的傷害,但主要用於治療炎症的糖皮質激素像是dexamethasone(Dex)則可以延緩肌肉萎縮的速度並且穩定肌肉強度,然而在某些情況下糖皮質激素不僅無法治療肌肉病變甚至導致肌肉萎縮,因此我們想要了解Dex在抑制發炎與肌肉分化中的詳細機制。為了研究Dex在抑制發炎的詳細機制我們使用巨噬細胞Raw264.7細胞株,我們發現Dex會經由11與21羥基抑制腫瘤壞死因子的分泌而不影響蛋白或是mRNA的表現,而Dex也會經由11與21羥基降低p38 MAPK磷酸化表現近一步抑制釋放腫瘤壞死因子 tumor necrosis factor-alpha converting enzyme (TACE)的酵素活性。
另一方面為了研究Dex對於肌肉分化的影響我們使用老鼠肌母細胞C2C12細胞株,我們發現在肌肉分化過程中需要kinesin family member 5b (kif5b),而在體外實驗中Dex會加快kif5b的速度,這也顯示Dex可能會經由kif5b影響肌肉生成,因為kif5b負責運送肌原纖維的組成蛋白與粒線體,所以我們更進一步探討在肌肉分化過程中Dex使否會經由加快kif5b的速度而影響粒線體,海馬能量測定儀的結果顯示在分化三天後Dex會促進粒線體功能但會降低細胞中ATP總量,我們推測可能因為Dex會提升kif5b的速度而消耗掉ATP,總結這些實驗我們發現Dex不只會經由降低p38 MAPK與TACE酵素活性影響腫瘤壞死因子的釋放來抑制發炎,還會經由加快kif5b速度影響肌肉分化。
Muscular dystrophy, a group of muscle diseases, contains main clinical features that are progressive loss of skeletal muscle and prominent muscle inflammation, results in loss of walking ability and death in the late stage. To date, there is no available treatment to stop or reverse any form of muscular dystrophy, while glucocorticoids, such as dexamethasone (Dex), are therapeutically applied to inhibit inflammation, slow muscle degeneration and stabilize muscle strength. However, in some cases, glucocorticoids also cause to reduce myopathy ineffectively or to promote muscle atrophy in vivo and in vitro with unknown mechanisms. Therefore, we aim to investigate the detailed mechanisms of Dex in anti-inflammation and myogenesis. To study the effect of Dex in anti-inflammation, we used macrophages RAW264.7 cells. We find that Dex inhibits the secretion of tumor necrosis factor-alpha (TNF-alpha, a pro-inflammatory cytokine, instead of protein and mRNA expression through its 11- and 21-hydroxyl groups. Dex, via its 11- and 21-hydroxyl groups, inhibits p38 MAPK phosphorylation level and further suppresses the enzymatic activity of tumor necrosis factor-α-converting enzyme (TACE) that releases membrane form of TNF-. To study the effect of Dex in myogenesis, we used murine myoblasts C2C12 cells. We find that the expression of kinesin family member 5b (kif5b) is required for myogenesis, since the motor activity of purified kif5b proteins is accelerated by Dex treatment, suggesting the important role of kif5b in Dex-regulated myogenesis. Because kif5b is responsible for localizing myofibril components and mitochondria, we further determine whether Dex functions in mitochondria-mediated energy production through kif5b motor proteins during myogenesis. We find that Dex treatment significantly increases the basal expiration and ATP production of C2C12 cells after 3 days myogenesis induction by Seahorse XFe24 Extracellular Flux Analyzer. By analyzing the amount of total ATP, we find that Dex treatment significantly suppressed the amount of ATP in C2C12 cells after 3 days myogenesis induction. These data indicate that Dex may consume more ATP because of promoting kif5b motility. In summary, we find that Dex not only function in anti-inflammation through suppressing p38 MAPK signaling and TACE activity for TNF- secretion, but also directly targets kif5b motor proteins to accelerate its motility that is required for myogenesis.
中文摘要....i
英文摘要....ii
目錄....iv
第一章 研究背景與動機....1
2.1 Dexamethasone (Dex)....1
2.2 發炎反應....2
2.3 Tumor Necrosis factor-alpha converting enzyme (TACE)....3
2.4 肌肉生成 (Myogenesis)....3
2.5 肌肉再生 (Muscle regeneration)....4
2.6 Kinesin family membrane 5B(Kif5b)....5
2.7 研究動機....6
第二章 實驗材料與方法....7
2.1 細胞株 (Cell line)....7
2.2 抗體 (Antibody)....7
2.4 西方墨點法 (western blot)....9
2.5 RNA萃取....9
2.6 Genomic DNA萃取....10
2.7 即時聚合酶鏈鎖反應 (Quantitative real time polymerase chain reaction)....10
2.8 酵素免疫分析法 (Enzyme-Linked ImmunoSorbent Assay)....10
2.9 Tumor Necrosis factor-alpha converting enzyme 活性測試....11
2.10 TACE Inhibitor Screening Assay Kit....11
2.11 ATP 定量....12
2.12 吉姆薩染色 (Giemsa stain)....12
2.13 粒線體功能分析....13
第三章 實驗結果....15
3.1 Dex不影響腫瘤壞死因子-蛋白表現但影響分泌出細胞外的量....15
3.2 Dex可能經由抑制p38磷酸化降低TACE酵素活性....15
3.3 Dex會經由11與21羥基降低p38磷酸化與TACE酵素活性進而影響腫瘤壞死因子-....16
3.5 Dex短時間不會經由kif5b影響粒線體....17
3.6 Dex可能影響NMHC-II-A、NMHC-II-B與Clip170蛋白運送而促進肌肉分化....19
3.7 肌肉分化過程中Dex會影響粒線體功能....19
3.8 Kif5b為Dex影響肌肉分化的分子之一....20
第四章 實驗討論....21
第五章 圖和圖例....24
Figure 1. Dex抑制腫瘤壞死因子-分泌到細胞外....25
Figure 2. Dex抑制p38磷酸化並且降低TCAE酵素活性....26
Figure 3. 結構示意圖....28
Figure 4. Dex失去21號與11號碳上的羥基後,抑制腫瘤壞死因子-分泌的能力會下降....29
Figure 5. Dex失去21號與11號碳上的羥基後無法抑制腫腫瘤壞死因子-回饋刺激產生的mRNA....30
Figure 6. Dex失去21號與11號碳上的羥基後降低p38磷酸化與抑制TACE酵素活性的能力降低....31
Figure 7. Dex會促進C2C12肌母細胞分化與融合....32
Figure 8. Dex短時間不經由kif5b影響粒線體功能與ATP總量....33
Figure 9. Dex會影響肌肉分化、粒線體與微管相關蛋白的表現....35
Figure 10. 在肌肉分化過程中Dex會影響ATP總量與粒線體耗氧率....36
Figure 11. 缺乏kif5b會影響肌肉分化....37
第六章 參考資料....38
第七章 附錄....41
1. Cain, D.W. and Cidlowski, J.A. (2017) Immune regulation by glucocorticoids. Nat Rev Immunol 17 (4), 233-247.
2. Lee, S.W. et al. (1988) Glucocorticoids selectively inhibit the transcription of the interleukin 1 beta gene and decrease the stability of interleukin 1 beta mRNA. Proc Natl Acad Sci U S A 85 (4), 1204-8.
3. Kern, J.A. et al. (1988) Dexamethasone inhibition of interleukin 1 beta production by human monocytes. Posttranscriptional mechanisms. J Clin Invest 81 (1), 237-44.
4. Bhattacharyya, S. et al. (2007) Macrophage glucocorticoid receptors regulate Toll-like receptor 4-mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood 109 (10), 4313-9.
5. Angelini, C. (2007) The role of corticosteroids in muscular dystrophy: a critical appraisal. Muscle Nerve 36 (4), 424-35.
6. Golumbek, P.T. et al. (2007) Strength and corticosteroid responsiveness of mdx mice is unchanged by RAG2 gene knockout. Neuromuscul Disord 17 (5), 376-84.
7. Sun, L. et al. (2008) Glucocorticoids differentially regulate degradation of MyoD and Id1 by N-terminal ubiquitination to promote muscle protein catabolism. Proc Natl Acad Sci U S A 105 (9), 3339-44.
8. te Pas, M.F. et al. (2000) Glucocorticoid inhibition of C2C12 proliferation rate and differentiation capacity in relation to mRNA levels of the MRF gene family. Mol Biol Rep 27 (2), 87-98.
9. Belanto, J.J. et al. (2010) Dexamethasone induces dysferlin in myoblasts and enhances their myogenic differentiation. Neuromuscul Disord 20 (2), 111-21.
10. Akira, S. and Takeda, K. (2004) Toll-like receptor signalling. Nat Rev Immunol 4 (7), 499-511.
11. O'Neill, L.A. et al. (2013) The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol 13 (6), 453-60.
12. Wajant, H. et al. (2003) Tumor necrosis factor signaling. Cell Death Differ 10 (1), 45-65.
13. Parameswaran, N. and Patial, S. (2010) Tumor necrosis factor-alpha signaling in macrophages. Crit Rev Eukaryot Gene Expr 20 (2), 87-103.
14. Palladino, M.A. et al. (2003) Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov 2 (9), 736-46.
15. Mezyk, R. et al. (2003) Structure and functions of tumor necrosis factor-alpha converting enzyme. Acta Biochim Pol 50 (3), 625-45.
16. Adrain, C. et al. (2012) Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335 (6065), 225-8.
39
17. Diaz-Rodriguez, E. et al. (2002) Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding. Mol Biol Cell 13 (6), 2031-44.
18. Soond, S.M. et al. (2005) ERK-mediated phosphorylation of Thr735 in TNFalpha-converting enzyme and its potential role in TACE protein trafficking. J Cell Sci 118 (Pt 11), 2371-80.
19. Fan, H. et al. (2003) Characterization of growth factor-induced serine phosphorylation of tumor necrosis factor-alpha converting enzyme and of an alternatively translated polypeptide. J Biol Chem 278 (20), 18617-27.
20. Khokha, R. et al. (2013) Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 13 (9), 649-65.
21. Xu, P. et al. (2012) TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci Signal 5 (222), ra34.
22. Mok, G.F. and Sweetman, D. (2011) Many routes to the same destination: lessons from skeletal muscle development. Reproduction 141 (3), 301-12.
23. Perry, R.L. and Rudnick, M.A. (2000) Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci 5, D750-67.
24. Berkes, C.A. and Tapscott, S.J. (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16 (4-5), 585-95.
25. Barbieri, E. et al. (2011) Morphofunctional and Biochemical Approaches for Studying Mitochondrial Changes during Myoblasts Differentiation. J Aging Res 2011, 845379.
26. Herzberg, N.H. et al. (1993) Mitochondria in cultured human muscle cells depleted of mitochondrial DNA. Eur J Cell Biol 61 (2), 400-8.
27. Korohoda, W. et al. (1993) Chloramphenicol, an inhibitor of mitochondrial protein synthesis, inhibits myoblast fusion and myotube differentiation. Folia Histochem Cytobiol 31 (1), 9-13.
28. Rochard, P. et al. (2000) Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem 275 (4), 2733-44.
29. Turner, N.J. and Badylak, S.F. (2012) Regeneration of skeletal muscle. Cell Tissue Res 347 (3), 759-74.
30. Karalaki, M. et al. (2009) Muscle regeneration: cellular and molecular events. In Vivo 23 (5), 779-96.
31. Woehlke, G. and Schliwa, M. (2000) Walking on two heads: the many talents of kinesin. Nat Rev Mol Cell Biol 1 (1), 50-8.
40
32. Fransson, S. et al. (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344 (2), 500-10.
33. Sheng, Z.H. and Cai, Q. (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13 (2), 77-93.
34. Wang, Z. et al. (2013) Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions. Development 140 (3), 617-26.
35. Yi, P. et al. (2015) KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation. Mol Biol Cell 26 (1), 29-42.
36. Tal, M.C. et al. (2009) Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A 106 (8), 2770-5.
37. Duan, R. and Gallagher, P.J. (2009) Dependence of myoblast fusion on a cortical actin wall and nonmuscle myosin IIA. Dev Biol 325 (2), 374-85.
38. Solomon, F. (1986) Direct identification of microtubule-associated proteins by selective extraction of cultured cells. Methods Enzymol 134, 139-47.
39. Hong, J. et al. (2014) Mitochondrial complex I deficiency enhances skeletal myogenesis but impairs insulin signaling through SIRT1 inactivation. J Biol Chem 289 (29), 20012-25.
40. Alter, J. et al. (2008) Inhibition of myoblast differentiation by tumor necrosis factor alpha is mediated by c-Jun N-terminal kinase 1 and leukemia inhibitory factor. J Biol Chem 283 (34), 23224-34.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 三黃瀉心湯經由抑制p38MAPkinase相關路徑治療內毒素引發之低血壓及肺部傷害
2. 發炎相關細胞激素基因多型性與慢性阻塞性肺臟疾病之相關性研究
3. 減重手術對於胰島素阻抗,發炎反應,內皮增生, 動脈硬化及心血管疾病風險之研究
4. 靜脈注射phosphodiesterase抑制劑及皮質類固醇對嚴重胎便吸入症候群動物模式之影響
5. 白藜蘆醇及槲皮素對 C2C12 肌管細胞糖化壓力之影響
6. 貞耆四君子湯可減輕順鉑引發的毒害並藉由挽救肌肉萎縮之發生以延長惡病質小鼠之存活率
7. 人類心臟纖維母細胞上5, 8-Dihydroxy-4', 7-dimethoxyflavone誘發HO-1表現的機制及其抗發炎作用
8. 發炎反應下磷脂醯甘油誘導心磷脂組成與粒線體活性的改變
9. 一氧化碳釋放分子(CORMs)在巴拉刈引發肺間質發炎和纖維化的效果
10. Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) 和Bcl-2-associated death promoter (BAD) 在發炎反應造成微神經膠細胞和膀胱癌細胞死亡機制
11. 粒線體DNA拷貝數、發炎與高齡身體功能衰退(老化表現型)之相關性研究
12. 探討腫瘤壞死因子刺激人類心臟纖維母細胞表現COX-2及Mevastatin抗發炎作用
13. 探討檳榔鹼對血癌細胞毒殺機制與老鼠氣喘模式免疫反應之影響
14. 抑制肝醣合成酶激酶-3改善内毒血症引起的急性腎衰竭:小鼠模式的研究
15. 抑制肝醣合成酶激酶-3改善内毒血症引起的急性腎衰竭:小鼠模式的研究
 
無相關期刊