|
1. Edde, B., et al., Posttranslational glutamylation of alpha-tubulin. Science, 1990. 247(4938): p. 83-5. 2. Wang, W.J., et al., De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly. Elife, 2015. 4. 3. Izquierdo, D., et al., Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion. Cell Rep, 2014. 8(4): p. 957-65. 4. Vincensini, L., T. Blisnick, and P. Bastin, 1001 model organisms to study cilia and flagella. Biol Cell, 2011. 103(3): p. 109-30. 5. Baccetti, B., R. Dallai, and B. Fratello, The spermatozoon of arthropoda. XXII. The 12+0', 14+0' or aflagellate sperm of protura. J Cell Sci, 1973. 13(2): p. 321-35. 6. Prensier, G., et al., Motile flagellum with a "3 + 0" ultrastructure. Science, 1980. 207(4438): p. 1493-4. 7. Christensen, S.T., et al., Sensory cilia and integration of signal transduction in human health and disease. Traffic, 2007. 8(2): p. 97-109. 8. Garcia-Gonzalo, F.R., et al., Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling. Dev Cell, 2015. 34(4): p. 400-9. 9. Bettencourt-Dias, M., et al., Centrosomes and cilia in human disease. Trends Genet, 2011. 27(8): p. 307-15. 10. Wang, W.J., et al., The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J Cell Biol, 2011. 193(4): p. 727-39. 11. Ozlu, N., et al., An essential function of the C. elegans ortholog of TPX2 is to localize activated aurora A kinase to mitotic spindles. Dev Cell, 2005. 9(2): p. 237-48. 12. Goto, H., A. Inoko, and M. Inagaki, Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell Mol Life Sci, 2013. 70(20): p. 3893-905. 13. Cole, D.G., et al., Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol, 1998. 141(4): p. 993-1008. 14. Benzing, T. and B. Schermer, Transition zone proteins and cilia dynamics. Nat Genet, 2011. 43(8): p. 723-4. 15. Tanos, B.E., et al., Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev, 2013. 27(2): p. 163-8. 16. Chen, Z., et al., CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell, 2002. 3(3): p. 339-50. 17. Schmidt, T.I., et al., Control of centriole length by CPAP and CP110. Curr Biol, 2009. 19(12): p. 1005-11. 18. Oda, T., et al., Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis. Genes Cells, 2014. 19(12): p. 927-40. 19. Ikezu, S. and T. Ikezu, Tau-tubulin kinase. Front Mol Neurosci, 2014. 7: p. 33. 20. Goetz, S.C., K.F. Liem, Jr., and K.V. Anderson, The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell, 2012. 151(4): p. 847-58. 21. Bouskila, M., et al., TTBK2 kinase substrate specificity and the impact of spinocerebellar-ataxia-causing mutations on expression, activity, localization and development. Biochem J, 2011. 437(1): p. 157-67. 22. Joo, K., et al., CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc Natl Acad Sci U S A, 2013. 110(15): p. 5987-92. 23. Lu, Q., et al., Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol, 2015. 17(4): p. 531. 24. Zhang, J., N. Naslavsky, and S. Caplan, Rabs and EHDs: alternate modes for traffic control. Biosci Rep, 2012. 32(1): p. 17-23. 25. Reiter, J.F., O.E. Blacque, and M.R. Leroux, The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep, 2012. 13(7): p. 608-18. 26. Chih, B., et al., A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol, 2011. 14(1): p. 61-72. 27. Sorokin, S., Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol, 1962. 15: p. 363-77. 28. Gilula, N.B. and P. Satir, The ciliary necklace. A ciliary membrane specialization. J Cell Biol, 1972. 53(2): p. 494-509. 29. Yang, T.T., et al., Superresolution Pattern Recognition Reveals the Architectural Map of the Ciliary Transition Zone. Sci Rep, 2015. 5: p. 14096. 30. Lee, E., et al., An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol, 2008. 18(24): p. 1899-906. 31. Blacque, O.E., et al., The WD repeat-containing protein IFTA-1 is required for retrograde intraflagellar transport. Mol Biol Cell, 2006. 17(12): p. 5053-62. 32. Cajanek, L. and E.A. Nigg, Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc Natl Acad Sci U S A, 2014. 111(28): p. E2841-50. 33. Xu, Q., et al., Phosphatidylinositol phosphate kinase PIPKIgamma and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat Commun, 2016. 7: p. 10777. 34. Mali, P., et al., RNA-guided human genome engineering via Cas9. Science, 2013. 339(6121): p. 823-6.
|