|
1.Butel M-J. Probiotics, gut microbiota and health. Médecine et maladies infectieuses. 2014;44(1):1-8. 2.Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837-48. 3.Vyas U, Ranganathan N. Probiotics, prebiotics, and synbiotics: gut and beyond. Gastroenterology Research and Practice.2012. 4.Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. science. 2006;312(5778):1355-9. 5.Yelshyna D, Gago MF, Bicho E, Fernandes V, Gago NF, Costa L, et al. Compensatory postural adjustments in Parkinson’s disease assessed via a virtual reality environment. Behavioural brain research. 2016;296:384- 92. 6.Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. nature. 2010;464(7285):59-65. 7.Principi N, Esposito S. Gut microbiota and central nervous system development. Journal of Infection. 2016;73(6):536-46. 8.Burokas A, Moloney RD, Dinan TG, Cryan JF. Chapter one- microbiota regulation of the mammalian gut–brain axis. Advances in applied microbiology. 2015;91:1-62. 9.Gershon MD. The enteric nervous system: a second brain. Hospital Practice. 1999;34(7):31-52. 10.Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of gastroenterology: quarterly publication of the Hellenic Society of Gastroenterology. 2015;28(2):203. 11.Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF. The microbiome: stress, health and disease. Mammalian genome. 2014;25(1-2):49-74. 12.Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nature Reviews Microbiology. 2012;10(11):735-42. 13.Grenham S, Clarke G, Cryan JF, Dinan TG. Brain–gut– microbe communication in health and disease. Frontiers in physiology. 2011;2:94. 14.Cersosimo MG, Benarroch EE. Neural control of the gastrointestinal tract: implications for Parkinson disease. Movement Disorders. 2008;23(8):1065-75. 15.Foster JA, Neufeld K-AM. Gut–brain axis: how the microbiome influences anxiety and depression. Trends in neurosciences. 2013;36(5):305-12. 16.Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW. Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends in neurosciences. 2016;39(11):763-81. 17.Thayer JF, Sternberg EM. Neural concomitants of immunity—Focus on the vagus nerve. Neuroimage. 2009;47(3):908. 18.de Haan JJ, Hadfoune Mh, Lubbers T, Hodin C, Lenaerts K, Ito A, et al. Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2013;305(5):G383-G91. 19.Mezzacappa ES, Kelsey RM, Katkin ES, Sloan RP. Vagal rebound and recovery from psychological stress. Psychosomatic medicine. 2001;63(4):650-7. 20.Spalding TW, Jeffers LS, Porges SW, Hatfield BD. Vagal and cardiac reactivity to psychological stressors in trained and untrained men. Medicine & Science in Sports & Exercise. 2000. 21.Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458-62. 22.Ghia JE, Blennerhassett P, Kumar–Ondiveeran H, Verdu EF, Collins SM. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology. 2006;131(4):1122- 30. 23.Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences. 2011;108(38):16050-5. 24.Bercik P, Park A, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterology & Motility. 2011;23(12):1132-9. 25.De Lartigue G, de La Serre CB, Raybould HE. Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiology & behavior. 2011;105(1):100-5. 26.Horn T, Klein J. Neuroprotective effects of lactate in brain ischemia: dependence on anesthetic drugs. Neurochemistry international. 2013;62(3):251-7. 27.Moretti M, Valvassori SS, Varela RB, Ferreira CL, Rochi N, Benedet J, et al. Behavioral and neurochemical effects of sodium butyrate in an animal model of mania. Behavioural pharmacology. 2011;22(8):766-72. 28.Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509-17. 29.Fushimi T, Suruga K, Oshima Y, Fukiharu M, Tsukamoto Y, Goda T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. British Journal of Nutrition. 2006;95(05):916-24. 30.Demigné C, Morand C, Levrat M-A, Besson C, Moundras C, Rémésy C. Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. British Journal of Nutrition. 1995;74(02):209-19. 31.Todesco T, Rao AV, Bosello O, Jenkins D. Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. The American journal of clinical nutrition. 1991;54(5):860-5. 32.Bergman E. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological reviews. 1990;70(2):567-90. 33.Macpherson AJ, Slack E. The functional interactions of commensal bacteria with intestinal secretory IgA. Current opinion in gastroenterology. 2007;23(6):673-8. 34.Hakansson A, Molin G. Gut microbiota and inflammation. Nutrients. 2011;3(6):637-82. 35.Joint F. WHO Expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Córdoba, Argentina October. 2001:1-4. 36.Group JFWW, Group JFWW. Guidelines for the evaluation of probiotics in food. London: World Health Organization, ON, Canada: Food and Agriculture Organization. 2002. 37.Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biological psychiatry. 2013;74(10):720-6. 38.Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microbial ecology in health and disease. 2016;27(1):30971. 39.Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan J, Dinan T. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170(4):1179-88. 40.Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451- 63. 41.Rai SN, Yadav SK, Singh D, Singh SP. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. J Chem Neuroanat. 2016;71:41-9. 42.De Lau LM, Breteler MM. Epidemiology of Parkinson's disease. The Lancet Neurology. 2006;5(6):525-35. 43.Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39(6):889-909. 44.Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. The Lancet Neurology. 2008;7(1):97-109. 45.Sveinbjornsdottir S. The clinical symptoms of Parkinson's disease. Journal of Neurochemistry. 2016;139(S1):318-24. 46.Rajput A. Frequency and cause of Parkinson’s disease. Canadian Journal of Neurological Sciences/Journal Canadien des Sciences Neurologiques. 1992;19(S1):103- 7. 47.De Rijk M, Launer L, Berger K, Breteler M, Dartigues J, Baldereschi M, et al. Prevalence of Parkinson's disease in Europe: A collaborative study of. Neurology. 2000;54(5):S21-S3. 48.Golbe LI. Young‐onset Parkinson's disease A clinical review. Neurology. 1991;41(2 Part 1):168-168. 49.Samii A, Nutt JG, Ransom BR. Parkinson's disease. Lancet (London, England). 2004; 363: 1783-93 50.Parkinson J. An essay on the shaking palsy. The Journal of neuropsychiatry and clinical neurosciences. 2002;14(2):223-36. 51.Davie CA. A review of Parkinson's disease. British medical bulletin. 2008;86(1):109-27. 52.Yeragani VK, Tancer M, Chokka P, Baker GB. Arvid Carlsson, and the story of dopamine. Indian journal of psychiatry. 2010;52(1):87. 53.Carlsson A, Lindqvist M, Magnusson T. 3, 4- Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. 1957. 54.Abbott A. Neuroscience: The molecular wake-up call. Nature. 2007;447(7143):368-70. 55.Carlsson A. Thirty years of dopamine research. Advances in neurology. 1993;60:1-10. 56.Carlsson A. Basic concepts underlying recent developments in the field of Parkinson's disease. Contemporary neurology series. 1971;8:1. 57.Carlsson A. Speculations on the control of mental and motor functions by dopamine-modulated cortico-striato- thalamo-cortical feedback loops. The Mount Sinai journal of medicine, New York. 1988;55(1):6-10. 58.Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain. 1991;114(5):2283-301. 59.Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature. 1997;388(6645):839-40. 60.Braak H, Del Tredici K, Rüb U, de Vos RA, Steur ENJ, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of aging. 2003;24(2):197-211. 61.Wakabayashi K, Takahashi H. Neuropathology of autonomic nervous system in Parkinson's disease. European neurology. 1997;38(Suppl. 2):2-7. 62.Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson's disease. BioMed Research International. 2012. 63.Parker WD, Parks JK, Swerdlow RH. Complex I deficiency in Parkinson's disease frontal cortex. Brain research. 2008;1189:215-8. 64.Jenner P. Oxidative stress in Parkinson's disease. Annals of neurology. 2003;53(S3):S26-S38. 65.Dinis-Oliveira R, Remiao F, Carmo H, Duarte J, Navarro AS, Bastos M, et al. Paraquat exposure as an etiological factor of Parkinson's disease. Neurotoxicology. 2006;27(6):1110-22. 66.Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. science. 1997;276(5321):2045-7. 67.Bostantjopoulou S, Katsarou Z, Papadimitriou A, Veletza V, Hatzigeorgiou G, Lees A. Clinical features of parkinsonian patients with the α‐synuclein (G209A) mutation. Movement disorders. 2001;16(6):1007-13. 68.Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, et al. AlaSOPro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature genetics. 1998;18(2):106-8. 69.Abbas N, Lücking CB, Ricard S, Dürr A, Bonifati V, De Michele G, et al. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. Human molecular genetics. 1999;8(4):567-74. 70.Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605-8. 71.Lücking CB, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T, et al. Association between early-onset Parkinson's disease and mutations in the parkin gene. New England Journal of Medicine. 2000;342(21):1560-7. 72.Pramstaller PP, Schlossmacher MG, Jacques TS, Scaravilli F, Eskelson C, Pepivani I, et al. Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers. Annals of neurology. 2005;58(3):411-22. 73.Shimura H, Hattori N, Kubo S-i, Mizuno Y, Asakawa S, Minoshima S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature genetics. 2000;25(3):302-5. 74.Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Science. 2001;293(5528):263-9. 75.Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, et al. The ubiquitin pathway in Parkinson's disease. Nature. 1998;395(6701):451-2. 76.Gasser T. Overview of the genetics of parkinsonism. Advances in neurology. 2003;91:143. 77.Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 2004;304(5674):1158-60. 78.Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, et al. PINK1 mutations are associated with sporadic early‐onset parkinsonism. Annals of neurology. 2004;56(3):336-41. 79.Hatano Y, Li Y, Sato K, Asakawa S, Yamamura Y, Tomiyama H, et al. Novel PINK1 mutations in early‐ onset parkinsonism. Annals of neurology. 2004;56(3):424-7. 80.Van Duijn C, Dekker M, Bonifati V, Galjaard R, Houwing-Duistermaat J, Snijders P, et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. The American Journal of Human Genetics. 2001;69(3):629-34. 81.Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299(5604):256-9. 82.Xu J, Zhong N, Wang H, Elias JE, Kim CY, Woldman I, et al. The Parkinson's disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis. Human molecular genetics. 2005;14(9):1231-41. 83.Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A. DJ-1 is a redox-dependent molecular chaperone that inhibits α-synuclein aggregate formation. PLoS Biol. 2004;2(11):e362. 84.West A, Periquet M, Lincoln S, Lücking CB, Nicholl D, Bonifati V, et al. Complex relationship between Parkin mutations and Parkinson disease. American journal of medical genetics. 2002;114(5):584-91. 85.Singer TP, Ramsay RR. Mechanism of the neurotoxicity of MPTP: an update. FEBS letters. 1990;274(1-2):1-8. 86.Samii A, Calne DB. Research into the etiology of Parkinson’s disease. Parkinson disease, London, Martin Dunitz. 1999:229-36. 87.Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS. Environmental risk factors and Parkinson's disease: a metaanalysis. Environmental research. 2001;86(2):122- 7. 88.Nistico R, Mehdawy B, Piccirilli S, Mercuri N. Paraquat-and rotenone-induced models of Parkinson's disease. SAGE Publications; 2011. 89.Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson's disease. Journal of Neuroscience. 2003;23(34):10756-64. 90.Hoehn MM, Yahr MD. Parkinsonism onset, progression, and mortality. Neurology. 1967;17(5):427-427. 91.Schapira A. Progress in Parkinson’s disease. European journal of neurology. 2008;15(1):5-13. 92.Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. Jama. 2014;311(16):1670- 83. 93.Hauser RA, McDermott MP, Messing S. Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Archives of neurology. 2006;63(12):1756-60. 94.Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees A, et al. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology. 2008;71(7):474-80. 95.Hauser RA, Rascol O, Korczyn AD, Jon Stoessl A, Watts RL, Poewe W, et al. Ten‐year follow‐up of Parkinson's disease patients randomized to initial therapy with ropinirole or levodopa. Movement Disorders. 2007;22(16):2409-17. 96.Investigators PSGCC. Long-term effect of initiating pramipexole vs levodopa in early Parkinson disease. Archives of Neurology. 2009;66(5):563. 97.Fernandez HH, Chen JJ. Monoamine Oxidase‐B Inhibition in the Treatment of Parkinson's Disease. Pharmacotherapy: The journal of human pharmacology and drug therapy. 2007;27(12P2):174S-85S. 98.Pahwa R, Factor S, Lyons K, Ondo W, Gronseth G, Bronte-Stewart H, et al. Practice parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review) Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;66(7):983-95. 99.Przedborski S, Vila M. MPTP: a review of its mechanisms of neurotoxicity. Clinical Neuroscience Research. 2001;1(6):407-18. 100.Przedborski S, Vila M. The 1‐Methyl‐4‐Phenyl‐1, 2, 3, 6‐Tetrahydropyridine Mouse Model. Annals of the New York Academy of Sciences. 2003;991(1):189-98. 101.Luchtman DW, Shao D, Song C. Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson's disease. Physiology & behavior. 2009;98(1):130-8. 102.Matsuura K, Kabuto H, Makino H, Ogawa N. Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. Journal of neuroscience methods. 1997;73(1):45-8. 103.Ogawa N, Hirose Y, Ohara S, Ono T, Watanabe Y. A simple quantitative bradykinesia test in MPTP-treated mice. Research communications in chemical pathology and pharmacology. 1985;50(3):435-41. 104.Quinn LP, Perren MJ, Brackenborough KT, Woodhams PL, Vidgeon-Hart M, Chapman H, et al. A beam-walking apparatus to assess behavioural impairments in MPTP- treated mice: pharmacological validation with R-(−)- deprenyl. Journal of neuroscience methods. 2007;164(1):43-9. 105.Delaville C, De Deurwaerdère P, Benazzouz A. Noradrenaline and Parkinson's disease. Frontiers in systems neuroscience. 2011;5. 106.Cash R, Dennis T, L'Heureux R, Raisman R, Javoy-Agid F, Scatton B. Parkinson's disease and dementia Norepinephrine and dopamine in locus ceruleus. Neurology. 1987;37(1):42-42. 107.Gesi M, Soldani P, Giorgi F, Santinami A, Bonaccorsi I, Fornai F. The role of the locus coeruleus in the development of Parkinson's disease. Neuroscience & Biobehavioral Reviews. 2000;24(6):655-68. 108.Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Research Reviews. 2004;45(1):38-78. 109. Fornai F, di Poggio AB, Pellegrini A, Ruggieri S, Paparelli A. Noradrenaline in Parkinson's disease: from disease progression to current therapeutics. Current medicinal chemistry. 2007;14(22):2330-4. 110.Venda LL, Cragg SJ, Buchman VL, Wade-Martins R. α- Synuclein and dopamine at the crossroads of Parkinson's disease. Trends in neurosciences. 2010;33(12):559-68. 111.Jankovic J. Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery & Psychiatry. 2008;79(4):368-76. 112.Hartmann A. Postmortem studies in Parkinson's disease. Dialogues in clinical neuroscience. 2004;6(3):281. 113.Hastings TG. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. Journal of bioenergetics and biomembranes. 2009;41(6):469-72. 114.Lee D-H, Kim C-S, Lee YJ. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food and chemical toxicology. 2011;49(1):271-80. 115.Hauser DN, Hastings TG. Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism. Neurobiology of disease. 2013;51:35-42. 116.Subramaniam SR, Chesselet M-F. Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Progress in neurobiology. 2013;106:17-32. 117.Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson's disease. Annals of the new York Academy of Sciences. 2008;1147(1):93-104. 118.Machado A, Herrera A, Venero J, Santiago M, De Pablos R, Villarán R, et al. Inflammatory animal model for Parkinson's disease: the intranigral injection of LPS induced the inflammatory process along with the selective degeneration of nigrostriatal dopaminergic neurons. ISRN neurology. 2011;2011. 119.Hunter RL, Dragicevic N, Seifert K, Choi DY, Liu M, Kim HC, et al. Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. Journal of neurochemistry. 2007;100(5):1375-86. 120.Sanchez-Guajardo V, Tentillier N, Romero-Ramos M. The relation between α-synuclein and microglia in Parkinson’s disease: Recent developments. Neuroscience. 2015;302:47-58. 121.Zhang Q-S, Heng Y, Yuan Y-H, Chen N-H. Pathological α-synuclein exacerbates the progression of Parkinson’s disease through microglial activation. Toxicology letters. 2017;265:30-7. 122.Blum-Degena D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. Neuroscience letters. 1995;202(1):17-20. 123.Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neuroscience letters. 1994;165(1):208-10. 124.Prajapati P, Sripada L, Singh K, Bhatelia K, Singh R, Singh R. TNF-α regulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2015;1852(3):451- 61. 125.Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R. Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair. International Journal of Neuroscience. 2015;125(10):717-25. 126.Barcia C, Bahillo AS, Fernández‐Villalba E, Bautista V, Poza PY, Fernández‐Barreiro A, et al. Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia. 2004;46(4):402-9. 127.McGeer PL, McGeer EG. Glial reactions in Parkinson's disease. Movement Disorders. 2008;23(4):474-83. 128. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains. Acta neuropathologica. 2003;106(6):518-26. 129.Liu Y-W, Liu W-H, Wu C-C, Juan Y-C, Wu Y-C, Tsai H-P, et al. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain research. 2016;1631:1-12. 130.Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, De Silva HR, et al. The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron. 1995;14(2):467-75. 131.Kahle PJ, Neumann M, Ozmen L, Müller V, Jacobsen H, Schindzielorz A, et al. Subcellular localization of wild-type and Parkinson's disease-associated mutant α-synuclein in human and transgenic mouse brain. Journal of Neuroscience. 2000;20(17):6365-73. 132.Davidson WS, Jonas A, Clayton DF, George JM. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. Journal of Biological Chemistry. 1998;273(16):9443-9. 133.Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329(5999):1663-7. 134.Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell. 2005;123(3):383-96. 135.Choi B-K, Choi M-G, Kim J-Y, Yang Y, Lai Y, Kweon D- H, et al. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proceedings of the National Academy of Sciences. 2013;110(10):4087-92. 136.Wang L, Das U, Scott DA, Tang Y, McLean PJ, Roy S. α- synuclein multimers cluster synaptic vesicles and attenuate recycling. Current Biology. 2014;24(19):2319-26. 137.Scott D, Roy S. α-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis. Journal of Neuroscience. 2012;32(30):10129-35. 138.Janezic S, Threlfell S, Dodson PD, Dowie MJ, Taylor TN, Potgieter D, et al. Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proceedings of the National Academy of Sciences. 2013;110(42):E4016-E25. 139.Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, et al. Interplay between cytosolic dopamine, calcium, and α-synuclein causes selective death of substantia nigra neurons. Neuron. 2009;62(2):218-29. 140.Abeliovich A, Schmitz Y, Fariñas I, Choi-Lundberg D, Ho W-H, Castillo PE, et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25(1):239-52. 141.Lovinger DM, Alvarez VA. Alcohol and basal ganglia circuitry: Animal models. Neuropharmacology. 2017.
|