跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 14:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威霖
研究生(外文):Wei-Lin Chen
論文名稱:肝細胞癌所分泌之胱抑素C作為類鐸受器4促進劑之研究
論文名稱(外文):Hepatocellular carcinoma cells-secreted Cystatin-C as TLR4 agonist
指導教授:曾炳輝
指導教授(外文):Ping-Hui Tseng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:71
中文關鍵詞:類鐸受器4胱抑素C肝細胞癌
外文關鍵詞:TLR4Cystatin-CHepatocellular carcinoma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肝癌的致死率在目前所有癌症中仍名列前茅,其中最常看到的肝癌種類為肝細胞癌(Hepatocellular carcinoma, HCC)。在臨床和流行病學研究中顯示肝細胞癌的成因中最常見的則是肝臟慢性發炎而轉變成肝細胞癌的狀況。在細胞的發炎反應中類鐸受器扮演了一個重要的角色。TLR4為已經研究相當透徹的類鐸受器成員。可以活化TLR4的促進劑中最常被提出的為LPS。在我們先前的實驗中看到以肝癌細胞長時間培養於含有LPS的環境中持續活化TLR4可以使細胞中TLR4表現量增加,以及因為let-7的功能被抑制,所以使得肝癌細胞容易轉變成具有癌症前驅性特性的細胞。然而因為在臨床上較少有因為LPS刺激而促使肝癌發展的研究被提出,所以我們便假設是否在肝臟的環境中含有可以促進肝癌細胞生長的物質。在此篇研究中我們將肝癌細胞長時間培養於收集肝癌細胞Huh7培養24小時的培養液Huh7 CM,由結果可以觀察到在長時間處理Huh7 CM後同樣可以使肝癌細胞中的TLR4表現量增加。另外,在此篇研究中為了證實這些轉變為具有癌症前驅性特性的肝癌細胞是否可以影響生物體內腫瘤的發展,所以我們將經過長時間處理LPS且TLR4表現量上升的肝癌細胞注射到實驗小鼠體內觀察其對於腫瘤生長的影響。結果顯示TLR4表現量增加的肝癌細胞確實可以促進腫瘤的生長與惡化。除此之外我們也想要徹底的了解Huh7 CM中是哪種物質可以影響TLR4的活性,在先前的實驗中我們篩選並分析出胱抑素C是最有可能影響肝癌細胞生長的內源性分子。所以在我們此篇研究中另一個主軸便是想要釐清胱抑素C是否可以如同LPS一樣可以活化TLR4並且促進肝癌細胞的生長。我們藉由將肝癌細胞Huh7直接處理胱抑素C並觀察細胞中TLR4的下游訊息傳遞活化情形,由結果觀察到胱抑素C確實可以促進TLR4的活化。另外我們也藉由colony formation assay來觀察胱抑素C對於肝癌細胞的生長影響,實驗結果顯示出,當Huh7細胞處理胱抑素C後可以使colony生成的數目增加。最後我們更想要連結胱抑素C促進肝癌細胞的生長作用是透過活化TLR4的下游訊息傳遞來進行的,因此我們將Huh7細胞中的TLR4 knockdown並處理胱抑素C,由實驗結果我們可以看到處理胱抑素C後TLR4 knockdown的Huh7細胞colony數目增加的現象被抑制了。所以總結實驗結果我們確定了肝癌Huh7可以分泌胱抑素C到細胞外環境中,透過活化TLR4的下游訊息傳遞來促進肝癌細胞的生長。
Hepatocellular carcinoma is the most common type of primary liver cancer in adults, which is usually accompany with high lethality. Shariff, M.I. et al. indicate that chronic inflammation of liver is the major risk factor for HCC development, and toll-like receptors, play important roles in the inflammatory response. In our preliminary data, sustained TLR4 activation by LPS increased TLR4 expression and stemness property in HCC cell lines. However, there are rare record indicating the association of LPS with HCC. According to these results, we want to further confirm the stemness property in HCC cell lines in vivo, and we hypothesize that endogenous molecules induced by long-term LPS exposure secreted from liver cells, instead of LPS promote TLR4-dependent cell proliferation. In this study, PLC5 cells with LPS long-term treatment were subcutaneous injected into SCID mice, and the results show that the growth and progression are increased in the line with LPS long-term treatment. Meanwhile, the TLR4 expression is increased in HCC cells with Huh7 CM long-term treatment. In previous studies, Cystatin C show as the candidate of endogenous molecule that activates TLR4 pathway in Huh7 CM. Thus, we want to investigate whether Cystatin C promotes HCC cells proliferation through TLR4 activation. To demonstrate that, Huh7 cells were treated with Cystatin C recombinant protein, and the result indicates that TLR4 downstream signal pathway was activated, and the growth of HCC cells was promoted by Cystatin C treatment. Furthermore, TLR4 activation and cell proliferation was decreased when TLR4 knock-down Huh7 cells were treated with Cystatin C or Huh7 cells were treated with CM from Cystatin C silencing cells. In conclusion, we suggest that Cystatin C was secreted from Huh7 cells in extracellular environment and it promotes growth of HCC cell through activation TLR4 downstream signal pathway.
目錄
中文摘要 i
Abstract ii
中英文對照表 iii
目錄 vi
圖目錄 vii
第一章 緒論 1
1-1 腫瘤為環境與癌症之間的關係 1
1-2 慢性發炎與肝癌 2
1-3 類鐸受器在癌症中扮演的角色 3
1-4 癌症前驅細胞與TLR4 5
1-5 肝癌與TLR4 9
1-6 TLR4的促進劑 11
1-7 肝癌的發展與TLR4內源性促進劑 13
1-8 胱抑素C 15
1-9 胱抑素C與癌症 16
第二章 研究動機與目的 17
2-1 研究動機 17
2-2 研究目的 18
第三章 實驗材料與方法 19
3-1 實驗材料 19
3-2 實驗方法 23
第四章 研究結果 31
4-1 藉由Huh7 CM長時間處理肝癌細胞以模擬肝癌細胞處於腫瘤微環境中對TLR4表現量的影響 31
4-2 慢性發炎對於肝癌細胞生成腫瘤能力的影響 34
4-3 確認胱抑素C在不同癌症細胞株中的表現量 36
4-4 胱抑素C對於肝癌細胞生長的影響 40
4-5 胱抑素C對於肝癌細胞中TLR4下游訊息傳遞的活化 41
4-6 胱抑素C透過TLR4來活化TLR4下游訊息傳遞 44
4-7 胱抑素C藉由TLR4來調控肝癌細胞的生長 45
第五章 結論與討論 47
第六章 圖表 56
第七章 參考資料 66


圖目錄
圖1. 模擬PLC5處於慢性發炎的狀態下TLR4的表現變化 56
圖2. 藉由異種移植觀察經過模擬慢性發炎培養之PLC5細胞在老鼠模型中對於腫瘤生成的影響 57
圖3. 檢測Huh7 CM中胱抑素C的蛋白濃度 58
圖4. 檢測不同的癌症細胞株細胞中胱抑素C的表現量與conditioned medium中胱抑素C的濃度 59
圖5. 檢測不同的肝癌細胞株中胱抑素C的表現量及conditioned medium中胱抑素C的濃度 60
圖6. 觀察Huh7 CM中的胱抑素C含量下降時對於Huh7細胞生長情況的影響 61
圖7. 觀察存在於medium中的胱抑素C對於Huh7細胞生長情況的影響
62
圖8. 觀察處理胱抑素C後Huh7細胞內TLR4的訊息傳遞路徑活化情形
63
圖9. 觀察在進行TLR4基因敲落的Huh7細胞處理胱抑素C後,細胞內TLR4的訊息傳遞路徑活化情形 64
圖10. 觀察在Huh7細胞進行TLR4基因敲落並處理LPS、Huh7 CM及胱抑素C後對於細胞的生長影響 65
Whiteside, T. L. (2008) The tumor microenvironment and its role in promoting
tumor growth. Oncogene 27, 5904-5912
2. Leonardi, G. C., Candido, S., Cervello, M., Nicolosi, D., Raiti, F., Travali, S.,
Spandidos, D. A., and Libra, M. (2012) The tumor microenvironment in
hepatocellular carcinoma (review). Int J Oncol 40, 1733-1747
3. W, H., Q, L., L, W., W, C., N, L., and X, C. (2007) TLR4 signaling promotes
immune escape of human lung cancer cells by inducing immunosuppressive
cytokines and apoptosis resistance. . Molecular immunology 44, 2850-2859
4. Chen, R., Alvero, A. B., Silasi, D. A., Steffensen, K. D., and Mor, G. (2008)
Cancers take their Toll—the function and regulation of Toll-like receptors in cancer
cells. Oncogene 27, 225-233
5. Nathan, C. (2002) Points of control in inflammation. Nature 420, 846-852
6. Balkwill, F., and Mantovani, A. (2001) Inflammation and cancer: back to Virchow?
Lancet 357, 539-545
7. Hanahan, D., and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100, 57-70
8. Colotta, F., Allavena, P., Sica, A., Garlanda, C., and Mantovani, A. (2009) Cancer-
related inflammation, the seventh hallmark of cancer: links to genetic instability.
Carcinogenesis 30, 1073-1081
9. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation.
Cell 144, 646-674
10. De Falco, M., Lucariello, A., Iaquinto, S., Esposito, V., Guerra, G., and De Luca,
A. (2015) Molecular Mechanisms of Helicobacter pylori Pathogenesis. J Cell
Physiol 230, 1702-1707
11. Francescone, R., Hou, V., and Grivennikov, S. I. (2015) Cytokines, IBD, and
colitis-associated cancer. Inflamm Bowel Dis 21, 409-418
12. Zampino, R., Marrone, A., Restivo, L., Guerrera, B., Sellitto, A., Rinaldi, L.,
Romano, C., and Adinolfi, L. E. (2013) Chronic HCV infection and inflammation:
Clinical impact on hepatic and extra-hepatic manifestations. World J Hepatol 5,
528-540
13. Dapito, D. H., Mencin, A., Gwak, G. Y., Pradere, J. P., Jang, M. K., Mederacke, I.,
Caviglia, J. M., Khiabanian, H., Adeyemi, A., Bataller, R., Lefkowitch, J. H.,
Bower, M., Friedman, R., Sartor, R. B., Rabadan, R., and Schwabe, R. F. (2012)
Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4.
Cancer Cell 21, 504-516
14. Areschoug, T., and Gordon, S. (2008) Pattern recognition receptors and their role
in innate immunity: focus on microbial protein ligands. Contrib Microbiol 15, 45-
60
15. Yoshimura, A., Naka, T., and Kubo, M. (2007) SOCS proteins, cytokine signalling
and immune regulation. Nat Rev Immunol 7, 454-465
16. Kawai, T., and Akira, S. (2010) The role of pattern-recognition receptors in innate
immunity: update on Toll-like receptors. Nat Immunol 11, 373-384
17. Akira, S., and Takeda, K. (2004) Toll-like receptor signalling. Nat Rev Immunol 4,
499-511
18. Huebener, P., and Schwabe, R. F. (2013) Regulation of wound healing and organ
fibrosis by toll-like receptors. Biochim Biophys Acta 1832, 1005-1017
19. Matzinger, P. (2002) The danger model: a renewed sense of self. Science 296,
301-305
20. Scheibner, K. A., Lutz, M. A., Boodoo, S., Fenton, M. J., Powell, J. D., and
Horton, M. R. (2006) Hyaluronan fragments act as an endogenous danger signal
by engaging TLR2. J Immunol 177, 1272-1281
21. Scaffidi, P., Misteli, T., and Bianchi, M. E. (2002) Release of chromatin protein
HMGB1 by necrotic cells triggers inflammation. Nature 418, 191-195
22. Panayi, G. S., Corrigall, V. M., and Henderson, B. (2004) Stress cytokines: pivotal
proteins in immune regulatory networks; Opinion. Curr Opin Immunol 16, 531-
534
23. Dasu, M. R., Ramirez, S., and Isseroff, R. R. (2012) Toll-like receptors and
diabetes: a therapeutic perspective. Clin Sci (Lond) 122, 203-214
24. Schmausser, B., Andrulis, M., Endrich, S., Muller-Hermelink, H. K., and Eck, M.
(2005) Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an
implication for interaction with Helicobacter pylori. Int J Med Microbiol 295,
179-185
25. Chochi, K., Ichikura, T., Kinoshita, M., Majima, T., Shinomiya, N., Tsujimoto, H.,
Kawabata, T., Sugasawa, H., Ono, S., Seki, S., and Mochizuki, H. (2008)
Helicobacter pylori augments growth of gastric cancers via the
lipopolysaccharide-toll-like receptor 4 pathway whereas its lipopolysaccharide
attenuates antitumor activities of human mononuclear cells. Clin Cancer Res 14,
2909-2917
26. Fukata, M., and Abreu, M. T. (2007) TLR4 signalling in the intestine in health and
disease. Biochem Soc Trans 35, 1473-1478
27. Spruss, A., Kanuri, G., Wagnerberger, S., Haub, S., Bischoff, S. C., and Bergheim,
I. (2009) Toll-like receptor 4 is involved in the development of fructose-induced
hepatic steatosis in mice. Hepatology 50, 1094-1104
28. Shi, W., Su, L., Li, Q., Sun, L., Lv, J., Li, J., and Cheng, B. (2014) Suppression of
toll-like receptor 2 expression inhibits the bioactivity of human hepatocellular
carcinoma. Tumour Biol 35, 9627-9637
29. Wang, L., Zhu, R., Huang, Z., Li, H., and Zhu, H. (2013) Lipopolysaccharide-
induced toll-like receptor 4 signaling in cancer cells promotes cell survival and
proliferation in hepatocellular carcinoma. Dig Dis Sci 58, 2223-2236
30. Shiozawa, Y., Nie, B., Pienta, K. J., Morgan, T. M., and Taichman, R. S. (2013)
Cancer stem cells and their role in metastasis. Pharmacol Ther 138, 285-293
31. Nouri, M., Caradec, J., Lubik, A. A., Li, N., Hollier, B. G., Takhar, M.,
Altimirano-Dimas, M., Chen, M., Roshan-Moniri, M., Butler, M., Lehman, M.,
Bishop, J., Truong, S., Huang, S. C., Cochrane, D., Cox, M., Collins, C., Gleave,
M., Erho, N., Alshalafa, M., Davicioni, E., Nelson, C., Gregory-Evans, S., Karnes,
R. J., Jenkins, R. B., Klein, E. A., and Buttyan, R. (2017) Therapy-induced
developmental reprogramming of prostate cancer cells and acquired therapy
resistance. Oncotarget 8, 18949-18967
32. Wang, Y., Yang, J., Zheng, H., Tomasek, G. J., Zhang, P., McKeever, P. E., Lee, E.
Y., and Zhu, Y. (2009) Expression of mutant p53 proteins implicates a lineage
relationship between neural stem cells and malignant astrocytic glioma in a
murine model. Cancer Cell 15, 514-526
33. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M.
F. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl
Acad Sci U S A 100, 3983-3988
34. Ali Hosseini Rad, S. M., Bavarsad, M. S., Arefian, E., Jaseb, K., Shahjahani, M.,
and Saki, N. (2013) The Role of microRNAs in Stemness of Cancer Stem Cells.
Oncol Rev 7, e8
35. Kendellen, M. F., Bradford, J. W., Lawrence, C. L., Clark, K. S., and Baldwin, A.
S. (2014) Canonical and non-canonical NF-kappaB signaling promotes breast
cancer tumor-initiating cells. Oncogene 33, 1297-1305
36. Wamsley, J. J., Kumar, M., Allison, D. F., Clift, S. H., Holzknecht, C. M.,
Szymura, S. J., Hoang, S. A., Xu, X., Moskaluk, C. A., Jones, D. R., Bekiranov,
S., and Mayo, M. W. (2015) Activin upregulation by NF-kappaB is required to
maintain mesenchymal features of cancer stem-like cells in non-small cell lung
cancer. Cancer Res 75, 426-435
37. Shyh-Chang, N., Zhu, H., Yvanka de Soysa, T., Shinoda, G., Seligson, M. T.,
Tsanov, K. M., Nguyen, L., Asara, J. M., Cantley, L. C., and Daley, G. Q. (2013)
Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155,
778-792
38. Peng, S., Chen, L. L., Lei, X. X., Yang, L., Lin, H., Carmichael, G. G., and Huang,
Y. (2011) Genome-wide studies reveal that Lin28 enhances the translation of
genes important for growth and survival of human embryonic stem cells. Stem
Cells 29, 496-504
39. Desjardins, A., Bouvette, J., and Legault, P. (2014) Stepwise assembly of multiple
Lin28 proteins on the terminal loop of let-7 miRNA precursors. Nucleic Acids Res
42, 4615-4628
40. Roush, S., and Slack, F. J. (2008) The let-7 family of microRNAs. Trends Cell
Biol 18, 505-516
41. Schultz, J., Lorenz, P., Gross, G., Ibrahim, S., and Kunz, M. (2008) MicroRNA
let-7b targets important cell cycle molecules in malignant melanoma cells and
interferes with anchorage-independent growth. Cell Res 18, 549-557
42. Chang, S. S., Jiang, W. W., Smith, I., Poeta, L. M., Begum, S., Glazer, C., Shan,
S., Westra, W., Sidransky, D., and Califano, J. A. (2008) MicroRNA alterations in
head and neck squamous cell carcinoma. Int J Cancer 123, 2791-2797
43. Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., Huang, Y., Hu, X., Su, F.,
Lieberman, J., and Song, E. (2007) let-7 regulates self renewal and tumorigenicity
of breast cancer cells. Cell 131, 1109-1123
44. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-
Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., Downing, J. R., Jacks, T.,
Horvitz, H. R., and Golub, T. R. (2005) MicroRNA expression profiles classify
human cancers. Nature 435, 834-838
45. O'Neill, L. A., Sheedy, F. J., and McCoy, C. E. (2011) MicroRNAs: the fine-tuners
of Toll-like receptor signalling. Nat Rev Immunol 11, 163-175
46. Androulidaki, A., Iliopoulos, D., Arranz, A., Doxaki, C., Schworer, S.,
Zacharioudaki, V., Margioris, A. N., Tsichlis, P. N., and Tsatsanis, C. (2009) The
kinase Akt1 controls macrophage response to lipopolysaccharide by regulating
microRNAs. Immunity 31, 220-231
47. Chen, X. M., Splinter, P. L., O'Hara, S. P., and LaRusso, N. F. (2007) A cellular
micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to
cholangiocyte immune responses against Cryptosporidium parvum infection. J
Biol Chem 282, 28929-28938
48. Teng, G. G., Wang, W. H., Dai, Y., Wang, S. J., Chu, Y. X., and Li, J. (2013) Let-
7b is involved in the inflammation and immune responses associated with
Helicobacter pylori infection by targeting Toll-like receptor 4. PLoS One 8,
e56709
49. Wang, C. H., Wey, K. C., Mo, L. R., Chang, K. K., Lin, R. C., and Kuo, J. J.
(2015) Current trends and recent advances in diagnosis, therapy, and prevention of
hepatocellular carcinoma. Asian Pac J Cancer Prev 16, 3595-3604
50. Teoh, W. W., Xie, M., Vijayaraghavan, A., Yaligar, J., Tong, W. M., Goh, L. K.,
and Sabapathy, K. (2015) Molecular characterization of hepatocarcinogenesis
using mouse models. Dis Model Mech 8, 743-753
51. Testro, A. G., and Visvanathan, K. (2009) Toll-like receptors and their role in
gastrointestinal disease. J Gastroenterol Hepatol 24, 943-954
52. Yang, J., Li, M., and Zheng, Q. C. (2015) Emerging role of Toll-like receptor 4 in
hepatocellular carcinoma. J Hepatocell Carcinoma 2, 11-17
53. Soares, J. B., Pimentel-Nunes, P., Roncon-Albuquerque, R., and Leite-Moreira, A.
(2010) The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic
liver diseases. Hepatol Int 4, 659-672
54. Miura, K., Ishioka, M., Minami, S., Horie, Y., Ohshima, S., Goto, T., and Ohnishi,
H. (2016) Toll-like Receptor 4 on Macrophage Promotes the Development of
Steatohepatitis-related Hepatocellular Carcinoma in Mice. J Biol Chem 291,
11504-11517
55. Mancek-Keber, M., and Jerala, R. (2015) Postulates for validating TLR4 agonists.
Eur J Immunol 45, 356-370
56. Murphy, M. E. (2013) The HSP70 family and cancer. Carcinogenesis 34, 1181-
1188
57. Tang, D., Kang, R., Zeh, H. J., 3rd, and Lotze, M. T. (2010) High-mobility group
box 1 and cancer. Biochim Biophys Acta 1799, 131-140
58. Klein, J. R., Hoon, D. S., Nangauyan, J., Okun, E., and Cochran, A. J. (1989) S-
100 protein stimulates cellular proliferation. Cancer Immunol Immunother 29,
133-138
59. Helfman, D. M., Kim, E. J., Lukanidin, E., and Grigorian, M. (2005) The
metastasis associated protein S100A4: role in tumour progression and metastasis.
Br J Cancer 92, 1955-1958
60. Smiley, S. T., King, J. A., and Hancock, W. W. (2001) Fibrinogen stimulates
macrophage chemokine secretion through toll-like receptor 4. J Immunol 167,
2887-2894
61. Okamura, Y., Watari, M., Jerud, E. S., Young, D. W., Ishizaka, S. T., Rose, J.,
Chow, J. C., and Strauss, J. F., 3rd. (2001) The extra domain A of fibronectin
activates Toll-like receptor 4. J Biol Chem 276, 10229-10233
62. Dharnidharka, V. R., Kwon, C., and Stevens, G. (2002) Serum cystatin C is
superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J
Kidney Dis 40, 221-226
63. Shlipak, M. G., Sarnak, M. J., Katz, R., Fried, L. F., Seliger, S. L., Newman, A.
B., Siscovick, D. S., and Stehman-Breen, C. (2005) Cystatin C and the risk of
death and cardiovascular events among elderly persons. N Engl J Med 352, 2049-
2060
64. Djousse, L., Kurth, T., and Gaziano, J. M. (2008) Cystatin C and risk of heart
failure in the Physicians' Health Study (PHS). Am Heart J 155, 82-86
65. Luc, G., Bard, J. M., Lesueur, C., Arveiler, D., Evans, A., Amouyel, P., Ferrieres,
J., Juhan-Vague, I., Fruchart, J. C., Ducimetiere, P., and Group, P. S. (2006)
Plasma cystatin-C and development of coronary heart disease: The PRIME Study.
Atherosclerosis 185, 375-380
66. Mi, W., Pawlik, M., Sastre, M., Jung, S. S., Radvinsky, D. S., Klein, A. M.,
Sommer, J., Schmidt, S. D., Nixon, R. A., Mathews, P. M., and Levy, E. (2007)
Cystatin C inhibits amyloid-beta deposition in Alzheimer's disease mouse models.
Nat Genet 39, 1440-1442
67. Xu, Y., Ding, Y., Li, X., and Wu, X. (2015) Cystatin C is a disease-associated
protein subject to multiple regulation. Immunol Cell Biol 93, 442-451
68. Yan, Y., Zhou, K., Wang, L., Zhou, Y., Chen, X., and Fan, Q. (2015) Expression of
cystatin C and its effect on EC9706 cells in esophageal carcinoma. Int J Clin Exp
Pathol 8, 10102-10111
69. Omar, M., Abdel-Razek, W., Abo-Raia, G., Assem, M., and El-Azab, G. (2015)
Evaluation of Serum Cystatin C as a Marker of Early Renal Impairment in
Patients with Liver Cirrhosis. Int J Hepatol 2015, 309042
70. Kolwijck, E., Kos, J., Obermajer, N., Span, P. N., Thomas, C. M., Massuger, L. F.,
and Sweep, F. C. (2010) The balance between extracellular cathepsins and cystatin
C is of importance for ovarian cancer. Eur J Clin Invest 40, 591-599
71. Kopitz, C., Anton, M., Gansbacher, B., and Kruger, A. (2005) Reduction of
experimental human fibrosarcoma lung metastasis in mice by adenovirus-
mediated cystatin C overexpression in the host. Cancer Res 65, 8608-8612
72. Zavrsnik, J., Butinar, M., Prebanda, M. T., Krajnc, A., Vidmar, R., Fonovi, A. M.,
Grubb, A., Turk, V., Turk, B., and Vasiljeva, O. (2017) Cystatin C deficiency
suppresses tumor growth in a breast cancer model through decreased proliferation
of tumor cells. Oncotarget
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top