|
1. WHO. http://www.who.int/cancer/en/. 2017. 2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA: a cancer journal for clinicians, 2016. 66(1): p. 7-30. 3. Balbin, O.A., et al., Reconstructing targetable pathways in lung cancer by integrating diverse omics data. Nature communications, 2013. 4. 4. Cheng, T.-Y.D., et al., The international epidemiology of lung cancer: latest trends, disparities, and tumor characteristics. Journal of Thoracic Oncology, 2016. 11(10): p. 1653-1671. 5. Feld, R., L.V. Rubinstein, and T.H. Weisenberger, Sites of recurrence in resected stage I non-small-cell lung cancer: a guide for future studies. Journal of Clinical Oncology, 1984. 2(12): p. 1352-1358. 6. Werner, J., et al., Advanced-stage pancreatic cancer: therapy options. Nature reviews Clinical oncology, 2013. 10(6): p. 323-333. 7. Lanuti, M., Surgical Management of Oligometastatic Non–Small Cell Lung Cancer. Thoracic Surgery Clinics, 2016. 26(3): p. 287-294. 8. Remon, J., E. Le Rhun, and B. Besse, Leptomeningeal carcinomatosis in non-small cell lung cancer patients: a continuing challenge in the personalized treatment era. Cancer Treatment Reviews, 2016. 9. Scott, C.D. and D.H. Harpole, The biology of pulmonary metastasis. Thoracic surgery clinics, 2016. 26(1): p. 1-6. 10. Reddy, A.T., S.P. Lakshmi, and R.C. Reddy, PPARγ as a Novel Therapeutic Target in Lung Cancer. PPAR research, 2016. 2016. 11. Popper, H.H., Progression and metastasis of lung cancer. Cancer and Metastasis Reviews, 2016. 35(1): p. 75-91. 12. Reymond, N., B.B. d'Agua, and A.J. Ridley, Crossing the endothelial barrier during metastasis. Nature Reviews Cancer, 2013. 13(12): p. 858-870. 13. Langley, R.R. and I.J. Fidler, The seed and soil hypothesis revisited—The role of tumor‐stroma interactions in metastasis to different organs. International Journal of Cancer, 2011. 128(11): p. 2527-2535. 14. Peinado, H., et al., Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer, 2017. 15. Alix-Panabières, C., S. Mader, and K. Pantel, Epithelial-mesenchymal plasticity in circulating tumor cells. Journal of Molecular Medicine, 2016: p. 1-10. 16. Paul, C.D., P. Mistriotis, and K. Konstantopoulos, Cancer cell motility: lessons from migration in confined spaces. Nature Reviews Cancer, 2016. 17. Ribelles, N., et al., The seed and soil hypothesis revisited: current state of knowledge of inherited genes on prognosis in breast cancer. Cancer treatment reviews, 2014. 40(2): p. 293-299. 18. Fidler, I.J., The pathogenesis of cancer metastasis: the'seed and soil'hypothesis revisited. Nature Reviews Cancer, 2003. 3(6): p. 453-458. 19. Labelle, M. and R.O. Hynes, The initial hours of metastasis: the importance of cooperative host–tumor cell interactions during hematogenous dissemination. Cancer discovery, 2012. 2(12): p. 1091-1099. 20. Thiery, J.P., Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2002. 2(6): p. 442-454. 21. Glazer, T.A. and A.G. Shuman, Distant Metastases and Palliative Care, in Salivary Gland Neoplasms. 2016, Karger Publishers. p. 182-188. 22. Muller, W.A., Mechanisms of leukocyte transendothelial migration. Annual Review of Pathology: Mechanisms of Disease, 2011. 6: p. 323-344. 23. Gupta, G.P., et al., Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature, 2007. 446(7137): p. 765-770. 24. Shoushtari, A.N., R.Z. Szmulewitz, and C.W. Rinker-Schaeffer, Metastasis-suppressor genes in clinical practice: lost in translation? Nature reviews Clinical oncology, 2011. 8(6): p. 333-342. 25. Joyce, J.A. and J.W. Pollard, Microenvironmental regulation of metastasis. Nature Reviews Cancer, 2009. 9(4): p. 239-252. 26. Vanharanta, S. and J. Massagué, Origins of metastatic traits. Cancer cell, 2013. 24(4): p. 410-421. 27. Steeg, P.S., Targeting metastasis. Nature Reviews Cancer, 2016. 16(4): p. 201-218. 28. Valastyan, S. and R.A. Weinberg, Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011. 147(2): p. 275-292. 29. Wan, L., K. Pantel, and Y. Kang, Tumor metastasis: moving new biological insights into the clinic. Nature medicine, 2013. 19(11): p. 1450-1464. 30. Li, J., A. Mahajan, and M.-D. Tsai, Ankyrin repeat: a unique motif mediating protein− protein interactions. Biochemistry, 2006. 45(51): p. 15168-15178. 31. Al-Khodor, S., et al., Ankyrin-repeat containing proteins of microbes: a conserved structure with functional diversity. Trends in microbiology, 2010. 18(3): p. 132. 32. Brautigan, D.L., Protein Ser/Thr phosphatases–the ugly ducklings of cell signalling. FEBS Journal, 2013. 280(2): p. 324-325. 33. Shi, Y., Serine/threonine phosphatases: mechanism through structure. Cell, 2009. 139(3): p. 468-484. 34. Prickett, T.D. and D.L. Brautigan, The α4 regulatory subunit exerts opposing allosteric effects on protein phosphatases PP6 and PP2A. Journal of Biological Chemistry, 2006. 281(41): p. 30503-30511. 35. Stefansson, B., et al., Protein phosphatase 6 regulatory subunits composed of ankyrin repeat domains. Biochemistry, 2008. 47(5): p. 1442-1451. 36. Wengrod, J., et al., Phosphorylation of eIF2α by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Science signaling, 2015. 8(367): p. ra27. 37. Wu, N., et al., MicroRNA‐373, a new regulator of protein phosphatase 6, functions as an oncogene in hepatocellular carcinoma. Febs Journal, 2011. 278(12): p. 2044-2054. 38. Zhong, W., et al., Hypertrophic growth in cardiac myocytes is mediated by Myc through a Cyclin D2‐dependent pathway. The EMBO journal, 2006. 25(16): p. 3869-3879. 39. Douglas, P., et al., Protein phosphatase 6 interacts with the DNA-dependent protein kinase catalytic subunit and dephosphorylates γ-H2AX. Molecular and cellular biology, 2010. 30(6): p. 1368-1381. 40. Ohama, T., et al., Protein Ser/Thr phosphatase-6 is required for maintenance of E-cadherin at adherens junctions. BMC cell biology, 2013. 14(1): p. 42. 41. Couzens, A.L., et al., Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci. Signal., 2013. 6(302): p. rs15-rs15. 42. Golden, R.J., et al., An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature, 2017. 542(7640): p. 197-202. 43. Molli, P.R., et al., PAK signaling in oncogenesis. Oncogene, 2009. 28(28): p. 2545-2555. 44. Eswaran, J., et al., Molecular pathways: targeting p21-activated kinase 1 signaling in cancer—opportunities, challenges, and limitations. Clinical Cancer Research, 2012. 18(14): p. 3743-3749. 45. Jang, I., et al., Pak1/LIMK1/cofilin pathway contributes to tumor migration and invasion in human non-small cell lung carcinomas and cell lines. The Korean Journal of Physiology & Pharmacology, 2012. 16(3): p. 159-165. 46. Liu, Y., et al., The P21-activated kinase expression pattern is different in non-small cell lung cancer and affects lung cancer cell sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors. Medical Oncology, 2016. 33(3): p. 1-11. 47. Chen, S., et al., Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 2015. 160(6): p. 1246-1260. 48. Chu, Y.-W., et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. American journal of respiratory cell and molecular biology, 1997. 17(3): p. 353-360. 49. Neviani, P., et al., The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer cell, 2005. 8(5): p. 355-368. 50. Radu, M., et al., PAK signalling during the development and progression of cancer. Nature reviews Cancer, 2014. 14(1): p. 13-25. 51. Rudolph, J., et al., Inhibitors of p21-Activated Kinases (PAKs) Miniperspective. Journal of medicinal chemistry, 2014. 58(1): p. 111-129. 52. Senapedis, W., et al., Therapeutic potential of targeting PAK signaling. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2016. 16(1): p. 75-88. 53. Plückthun, A., Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annual review of pharmacology and toxicology, 2015. 55: p. 489-511.
|