|
Allegrucci, C., Thurston, A., Lucas, E., and Young, L. (2005). Epigenetics and the germline. Reproduction 129, 137-149. Alsop, D., Matsumoto, J., Brown, S., and Van Der Kraak, G. (2008). Retinoid requirements in the reproduction of zebrafish. Gen Comp Endocrinol 156, 51-62. Baron, D., Cocquet, J., Xia, X., Fellous, M., Guiguen, Y., and Veitia, R.A. (2004). An evolutionary and functional analysis of FoxL2 in rainbow trout gonad differentiation. J Mol Endocrinol 33, 705-715. Beer, R.L., and Draper, B.W. (2013). nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary. Dev Biol 374, 308-318. Bertho, S., Pasquier, J., Pan, Q., Le Trionnaire, G., Bobe, J., Postlethwait, J.H., Pailhoux, E., Schartl, M., Herpin, A., and Guiguen, Y. (2016). Foxl2 and Its Relatives Are Evolutionary Conserved Players in Gonadal Sex Differentiation. Sex Dev 10, 111-129. Bohne, A., Sengstag, T., and Salzburger, W. (2014). Comparative transcriptomics in East African cichlids reveals sex- and species-specific expression and new candidates for sex differentiation in fishes. Genome Biol Evol 6, 2567-2585. Boulanger, L., Pannetier, M., Gall, L., Allais-Bonnet, A., Elzaiat, M., Le Bourhis, D., Daniel, N., Richard, C., Cotinot, C., Ghyselinck, N.B., et al. (2014). FOXL2 is a female sex-determining gene in the goat. Curr Biol 24, 404-408. Bowles, J., and Koopman, P. (2007). Retinoic acid, meiosis and germ cell fate in mammals. Development 134, 3401-3411. Brend, T., and Holley, S.A. (2009). Zebrafish whole mount high-resolution double fluorescent in situ hybridization. J Vis Exp. Carlsson, P., and Mahlapuu, M. (2002). Forkhead transcription factors: key players in development and metabolism. Dev Biol 250, 1-23. Crespo, B., Lan-Chow-Wing, O., Rocha, A., Zanuy, S., and Gomez, A. (2013). foxl2 and foxl3 are two ancient paralogs that remain fully functional in teleosts. Gen Comp Endocrinol 194, 81-93. Crisponi, L., Deiana, M., Loi, A., Chiappe, F., Uda, M., Amati, P., Bisceglia, L., Zelante, L., Nagaraja, R., Porcu, S., et al. (2001). The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27, 159-166. Dranow, D.B., Tucker, R.P., and Draper, B.W. (2013). Germ cells are required to maintain a stable sexual phenotype in adult zebrafish. Dev Biol 376, 43-50. Draper, B.W., McCallum, C.M., and Moens, C.B. (2007). nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol 305, 589-598. Elkouby, Y.M., and Mullins, M.C. (2016). Methods for the analysis of early oogenesis in Zebrafish. Dev Biol. Forbes, A., and Lehmann, R. (1998). Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125, 679-690. Gao, Y., Jia, D., Hu, Q., and Li, D. (2016). Foxl3, a Target of miR-9, Stimulates Spermatogenesis in Spermatogonia During Natural Sex Change in Monopterus albus. Endocrinology 157, 4388-4399. Gupta, T., Marlow, F.L., Ferriola, D., Mackiewicz, K., Dapprich, J., Monos, D., and Mullins, M.C. (2010). Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet 6, e1001073. Hamaguchi, S. (1982). A light- and electron-microscopic study on the migration of primordial germ cells in the teleost, Oryzias latipes. Cell Tissue Res 227, 139-151. Handel, M.A., and Schimenti, J.C. (2010). Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11, 124-136. Hannenhalli, S., and Kaestner, K.H. (2009). The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10, 233-240. Hess, R.A., and França, L.R. (2007). Spermatogenesis and cycle of the seminiferous epithelium. CY Cheng (Ed), Molecular mechanisms in spermatogenesis, Landes Bioscience (2007) pp, 1-15. Hodgkin, J. (1992). Genetic sex determination mechanisms and evolution. Bioessays 14, 253-261. Hsu, C.-w. (2011). Investigation of sexually dimorphic zebrafish gene expression and gonad development. In Department of Life Sciences and Institute of Genome Sciences (National Yang-MingUniveristy), pp, 1-47. Huang, S., Ye, L., and Chen, H. (2017). Sex determination and maintenance: the role of DMRT1 and FOXL2. Asian J Androl. Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R., and Joung, J.K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227-229. Jao, L.E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110, 13904-13909. Jasurda, J.S., Jung, D.O., Froeter, E.D., Schwartz, D.B., Hopkins, T.D., Farris, C.L., McGee, S., Narayan, P., and Ellsworth, B.S. (2014). The forkhead transcription factor, FOXP3: a critical role in male fertility in mice. Biol Reprod 90, 4. Kaestner, K.H., Silberg, D.G., Traber, P.G., and Schutz, G. (1997). The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev 11, 1583-1595. Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., and Mishina, M. (2004). A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7, 133-144. Kent, J., Wheatley, S.C., Andrews, J.E., Sinclair, A.H., and Koopman, P. (1996). A male-specific role for SOX9 in vertebrate sex determination. Development 122, 2813-2822. Kikuchi, K., and Hamaguchi, S. (2013). Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn 242, 339-353. Koprunner, M., Thisse, C., Thisse, B., and Raz, E. (2001). A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15, 2877-2885. Korpelainen, H. (1990). Sex ratios and conditions required for environmental sex determination in animals. Biol Rev Camb Philos Soc 65, 147-184. Lesch, B.J., and Page, D.C. (2012). Genetics of germ cell development. Nat Rev Genet 13, 781-794. Li, M.H., Yang, H.H., Li, M.R., Sun, Y.L., Jiang, X.L., Xie, Q.P., Wang, T.R., Shi, H.J., Sun, L.N., Zhou, L.Y., et al. (2013). Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology 154, 4814-4825. Li, S., Mao, Z., Han, W., Sun, Z., Yan, W., Chen, H., and Yan, S. (1993). In vitro oocyte maturation in the zebra fish, Brachydanio rerio, and the fertilization and development of the mature egg. Chin J Biotechnol 9, 247-255. Liu, H., Lamm, M.S., Rutherford, K., Black, M.A., Godwin, J.R., and Gemmell, N.J. (2015). Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol Sex Differ 6, 26. Matson, C.K., Murphy, M.W., Sarver, A.L., Griswold, M.D., Bardwell, V.J., and Zarkower, D. (2011). DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101-104. McLaren, A. (2003). Primordial germ cells in the mouse. Dev Biol 262, 1-15. Myosho, T., Otake, H., Masuyama, H., Matsuda, M., Kuroki, Y., Fujiyama, A., Naruse, K., Hamaguchi, S., and Sakaizumi, M. (2012). Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191, 163-170. Nüsslein-Volhard, C.a.D., R. (2002). Zebrafish: a practical approach. New York: Oxford University Press: 303p Nakamura, S., Kobayashi, K., Nishimura, T., and Tanaka, M. (2011). Ovarian germline stem cells in the teleost fish, medaka (Oryzias latipes). Int J Biol Sci 7, 403-409. Nakamura, S., Watakabe, I., Nishimura, T., Picard, J.Y., Toyoda, A., Taniguchi, Y., di Clemente, N., and Tanaka, M. (2012). Hyperproliferation of mitotically active germ cells due to defective anti-Mullerian hormone signaling mediates sex reversal in medaka. Development 139, 2283-2287. Nishimura, T., Sato, T., Yamamoto, Y., Watakabe, I., Ohkawa, Y., Suyama, M., Kobayashi, S., and Tanaka, M. (2015). Sex determination. foxl3 is a germ cell-intrinsic factor involved in sperm-egg fate decision in medaka. Science 349, 328-331. Pan, Y.-j. (2014). Investigation of PI3K/Akt function during zebrafish gonad development. In Department of Life Sciences and Institute of Genome Sciences (National Yang-MingUniveristy), pp, 1-59. Rodriguez-Mari, A., Canestro, C., BreMiller, R.A., Catchen, J.M., Yan, Y.L., and Postlethwait, J.H. (2013). Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS One 8, e73951. Rodriguez-Mari, A., Yan, Y.L., Bremiller, R.A., Wilson, C., Canestro, C., and Postlethwait, J.H. (2005). Characterization and expression pattern of zebrafish Anti-Mullerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr Patterns 5, 655-667. Rouiller-Fabre, V., Carmona, S., Merhi, R.A., Cate, R., Habert, R., and Vigier, B. (1998). Effect of anti-Mullerian hormone on Sertoli and Leydig cell functions in fetal and immature rats. Endocrinology 139, 1213-1220. Sada, A., Suzuki, A., Suzuki, H., and Saga, Y. (2009). The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science 325, 1394-1398. Schulz, R.W., de Franca, L.R., Lareyre, J.J., Le Gac, F., Chiarini-Garcia, H., Nobrega, R.H., and Miura, T. (2010). Spermatogenesis in fish. Gen Comp Endocrinol 165, 390-411. Schulz, R.W., Menting, S., Bogerd, J., Franca, L.R., Vilela, D.A., and Godinho, H.P. (2005). Sertoli cell proliferation in the adult testis--evidence from two fish species belonging to different orders. Biol Reprod 73, 891-898. Siegfried, K.R., and Nusslein-Volhard, C. (2008). Germ line control of female sex determination in zebrafish. Dev Biol 324, 277-287. Silva, P., Rocha, M.J., Cruzeiro, C., Malhao, F., Reis, B., Urbatzka, R., Monteiro, R.A., and Rocha, E. (2012). Testing the effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens as found in the Douro River (Portugal) on the maturation of fish gonads--a stereological study using the zebrafish (Danio rerio) as model. Aquat Toxicol 124-125, 1-10. Sinclair, A., and Smith, C. (2009). Females battle to suppress their inner male. Cell 139, 1051-1053. Slanchev, K., Stebler, J., de la Cueva-Mendez, G., and Raz, E. (2005). Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A 102, 4074-4079. Smith-Vikos, T., de Lencastre, A., Inukai, S., Shlomchik, M., Holtrup, B., and Slack, F.J. (2014). MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr Biol 24, 2238-2246. Suster, M.L., Kikuta, H., Urasaki, A., Asakawa, K., and Kawakami, K. (2009). Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol 561, 41-63. Takahashi, H. (1977b). Juvenile hermaphroditism in the zebrafish, Brachydanio rerio. Bulletin of the Faculty of Fisheres Hokkaido University 28, 57-65. Thisse, C., and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3, 59-69. Tong, S.K., Hsu, H.J., and Chung, B.C. (2010). Zebrafish monosex population reveals female dominance in sex determination and earliest events of gonad differentiation. Dev Biol 344, 849-856. Tzung, K.W., Goto, R., Saju, J.M., Sreenivasan, R., Saito, T., Arai, K., Yamaha, E., Hossain, M.S., Calvert, M.E., and Orban, L. (2015). Early Depletion of Primordial Germ Cells in Zebrafish Promotes Testis Formation. Stem Cell Reports 5, 156. Uhlenhaut, N.H., Jakob, S., Anlag, K., Eisenberger, T., Sekido, R., Kress, J., Treier, A.C., Klugmann, C., Klasen, C., Holter, N.I., et al. (2009). Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130-1142. von Hofsten, J., and Olsson, P.E. (2005). Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reprod Biol Endocrinol 3, 63. von Schalburg, K.R., Yasuike, M., Yazawa, R., de Boer, J.G., Reid, L., So, S., Robb, A., Rondeau, E.B., Phillips, R.B., Davidson, W.S., et al. (2011). Regulation and expression of sexual differentiation factors in embryonic and extragonadal tissues of Atlantic salmon. BMC Genomics 12, 31. Von Stetina, J.R., and Orr-Weaver, T.L. (2011). Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol 3, a005553. Wang X.G., Bartfai R., Sleptsova-Freidrich I., and L., O. (2007). The timing and extent of ‘juvenile ovary’ phase are highly variable during zebrafish testis differentiation. Journal of Fish Biology pp., 1329-1338. Weidinger, G., Stebler, J., Slanchev, K., Dumstrei, K., Wise, C., Lovell-Badge, R., Thisse, C., Thisse, B., and Raz, E. (2003). dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 13, 1429-1434. Weigel, D., and Jackle, H. (1990). The fork head domain: a novel DNA binding motif of eukaryotic transcription factors? Cell 63, 455-456. Westerfield, M. (2007). The Zebrafish Book: A Guide for the Laboratory use of Zebrafish (Danio rerio). Ed 5 University of Oregon Press, Eugene, OR. Wilson, C.A., High, S.K., McCluskey, B.M., Amores, A., Yan, Y.L., Titus, T.A., Anderson, J.L., Batzel, P., Carvan, M.J., 3rd, Schartl, M., et al. (2014). Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics 198, 1291-1308. Yamaguchi, T., Yamaguchi, S., Hirai, T., and Kitano, T. (2007). Follicle-stimulating hormone signaling and Foxl2 are involved in transcriptional regulation of aromatase gene during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem Biophys Res Commun 359, 935-940. Yang, Y.J., Wang, Y., Li, Z., Zhou, L., and Gui, J.F. (2017). Sequential, Divergent, and Cooperative Requirements of Foxl2a and Foxl2b in Ovary Development and Maintenance of Zebrafish. Genetics 205, 1551-1572. Yano, A., Guyomard, R., Nicol, B., Jouanno, E., Quillet, E., Klopp, C., Cabau, C., Bouchez, O., Fostier, A., and Guiguen, Y. (2012). An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 22, 1423-1428. Yoon, C., Kawakami, K., and Hopkins, N. (1997). Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157-3165.
|