跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 21:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王嚴瑋
研究生(外文):Yan-Wei Wang
論文名稱:探討斑馬魚性腺上Foxl3的表現及功能
論文名稱(外文):Investigation of Foxl3 expression and function in zebrafish gonad
指導教授:鍾邦柱
指導教授(外文):Bon-Chu Chung
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:67
中文關鍵詞:斑馬魚性腺
外文關鍵詞:zebrafishgonad
相關次數:
  • 被引用被引用:0
  • 點閱點閱:489
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
斑馬魚為一種脊椎模式動物,常被用來研究疾病發育,但是目前對斑馬魚的性別決定以及性腺分化的調控機制仍不清楚。最近有一個轉錄因子Foxl3,被認為會促進稻田魚的卵子形成和抑制生殖細胞分化成為精子。因此想探討Foxl3對斑馬魚的功能與表現。本研究先透過原位雜交法來觀察斑馬魚性腺上foxl3 mRNA的表現,斑馬魚在出生後第八天性腺會開始表現出foxl3,並且持續表現在有經歷過增生的生殖群細胞,然而雄性在出生一個月後性腺的foxl3表現量會大幅下降並且消失,但在雌性卵巢裡的生殖細胞仍保有foxl3訊號,但是當這群細胞進入到減數分裂zygotene I時期之後的過程中foxl3會消失。另外,為了探討foxl3基因的功能,我透過CRISPR-Cas9系統建立出foxl3的突變魚,並且得到四種突變基因型的F1突變魚,初步看到破壞foxl3的F0突變魚和F0突變魚互相交配的F1子代會擁有比較高比例的雄性。還有為了觀察foxl3+生殖細胞的細胞分裂情形,利用Tol2系統來建立出在foxl3+細胞帶有表現EGFP的轉基因魚,初步看到在F0魚的性腺上有綠色螢光的表現。這些結果顯示出斑馬魚的foxl3會參與在生殖細胞分化成卵子的過程。
Zebrafish (Danio rerio) is a vertebrate model animal. It has been widely used studies in development and disease. However, the mechanisms of sex determination and gonadal differentiation in zebrafish still remain unclear. Forkhead box L3 (Foxl3) is a transcription factor that suppresses germ cell from entering spermatogenesis in medaka. Here, I examined the mRNA expression of foxl3 in gonad of zebrafish by in situ hybridization. foxl3 transcripts can be detected in the gonad starting from 8 days post fertilization and continued to be expressed in some proliferating germ cell that divide synchronously forming a cyst in bi-potential gonad. At one month post fertilization, foxl3 signal was declined in testis, but the signal remained in cystic germ cells of ovary. After cystic germ cells entered meiosis, foxl3 signal disappeared after the zygotene stage of prophase meiosis I during oogenesis. To investigate foxl3 function, I generated foxl3 mutant by CRISPR-Cas9 system, and obtained four types of F1 mutants. My initial results indicated that disruption of foxl3 may lead to more male fishes in F0 mutant and F0-incross offspring. To observe the division of foxl3+ germ cells during gonad development, I also generated transgenic fish via Tol2 system which enables EGFP expression under the control of foxl3 promoter. F0 fish appeared to exhibit green fluorescence in the gonad. In summary, these results show that foxl3 of zebrafish may be involved in the differentiation of germ cells into oocytes.
摘要 I
Abstract II
Table of Contents III
List of Tables V
List of Figures VI
Chapter 1 Introduction 1
1.1 Sex determination 1
1.2 Gonadal differentiation by antagonistic signals 2
1.3 Gonadal differentiation involve in gametogenesis 4
Mitosis in oocyte and spermatocyte development 4
Meiosis in oocyte and spermatocyte development 5
The mechanism of meiosis 6
1.4 Stages of oocyte in zebrafish during oogenesis 7
Oogonia (diameter=7-20 μm) 7
Primary growth stage (stage I diameter=7-140 μm) 7
Cortical alveolus stage (stage II diameter=140-340 μm) 7
Vitellogenesis stage (stage III diameter=340-690 μm) 8
Maturational stage (stage IV diameter=690-730 μm) 8
Complete egg (stage V diameter=730-750 μm) 8
1.5 Forkhead box (Fox) family 8
Forkhead box L2 (FOXL2) 9
Forkhead box L3 (Foxl3) 10
1.6 Motivation 11
Chapter2 Materials and methods 12
2.1 Zebrafish and husbandry 12
2.2 Measuring of the body length of zebrafish 12
2.3 cDNA synthesis 12
2.4 Reverse-transcriptional PCR (RT-PCR) 13
2.5 Plasmid cloning 13
2.6 RNA probe synthesis 14
2.7 Whole-mount in situ hybridization 15
2.8 EdU treatment 16
2.9 Generation of knockout fish by CRISPR-Cas9 16
2.10 Capillary Electrophoresis 17
2.11 Generation of Tg(foxl3:EGFP) transgenic fish 17
2.12 Genotyping 17
2.13 Photography 18
2.14 Statistical analysis 18
Chapter 3 Results 19
3.1 foxl2a expresses in gonad during gonadal development 19
3.2 foxl3 expresses in gonad during gonadal development 19
3.3 Sexual dimorphic expression of foxl3 between adult gonads 20
3.4 foxl3 is expressed in proliferating progenitor germ cell 21
3.5 foxl3 is disappeared after germ cell entry into meiosis 22
3.6 Generation of foxl3 knockout zebrafish 23
Evaluation and screening of gRNA in zebrafish 23
Analysis of F1 heterozygous knockout fish 24
3.7 Establishment of Tg(foxl3:EGFP) transgenic zebrafish 25
Proximal promoter region of foxl3 25
Chapter 4 Discussions 26
4.1 Expression of foxl2 and foxl3 in gonads 26
4.2 The expression of foxl3 during gonadal differentiation 27
4.3 The phenotype of Foxl3 knockout fish 28
Future work 30
References 31
Tables 38
Figure legends 43
Figures 48

List of Tables
Table 1. The standard body lengths in zebrafish at different days post fertilization 38
Table 2. The oligonucleotide sequences used in this study 39
Table3. The list of plasmids used in this study 40
Table 4. The duration of proteinase K treatment at different stage zebrafish for in situ hybridization 41
Table 5. The batch of foxl3 knockout fish. 42

List of Figures
Introductory Fig. I1. Oocyte development in vertebrates. 48
Introductory Fig. I2. Phase of meiosis and gametogenesis 49
Introductory Fig. I3. Gametogenesis in mammals between male and female. 50
Introductory Fig. I4. Stages of early oocytes in zebrafish. 51
Introductory Fig. I5. Stages of oocyte development. 52
Introductory Fig. I6. Domain organization of Foxl1, Foxl2 and Foxl3 in zebrafish. 53
Introductory Fig. I7. Phylogenetic tree of Foxl family in different species. 54

Method Fig. M1. Generation of GFP+: gSAlzGFFM789A transgenic fish by gene trap 55
Method Fig. M2. Maps of foxl2, foxl3, nanos2 and egfp plasmids. 56
Method Fig. M3. pT7-gRNA construct. 57
Method Fig. M4. foxl3 transgenic construct. 58

Fig. 1. The expression of foxl2 appears in gonad of TL strain from 8dpf. 59
Fig. 2. foxl3 expression pattern in TL and Nadia strain. 60
Fig. 3. foxl3 consistently expresses in ovary instead of testis. 61
Fig. 4. foxl3 is expressed in a subset of pre-meiotic germ cell. 62
Fig. 5. foxl3+ germ cells are in proliferating cyst. 63
Fig. 6. foxl3 disappears after the leptotene stage of meiosis I prophase. 64
Fig. 7. Generation of foxl3 knockout fish. 65
Fig. 8. Detection of green fluorescence in foxl3:EGFP transgenic fish. 66
Fig. 9. Expression of foxl3 in zebrafish during germ cell development. 67
Allegrucci, C., Thurston, A., Lucas, E., and Young, L. (2005). Epigenetics and the germline. Reproduction 129, 137-149.
Alsop, D., Matsumoto, J., Brown, S., and Van Der Kraak, G. (2008). Retinoid requirements in the reproduction of zebrafish. Gen Comp Endocrinol 156, 51-62.
Baron, D., Cocquet, J., Xia, X., Fellous, M., Guiguen, Y., and Veitia, R.A. (2004). An evolutionary and functional analysis of FoxL2 in rainbow trout gonad differentiation. J Mol Endocrinol 33, 705-715.
Beer, R.L., and Draper, B.W. (2013). nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary. Dev Biol 374, 308-318.
Bertho, S., Pasquier, J., Pan, Q., Le Trionnaire, G., Bobe, J., Postlethwait, J.H., Pailhoux, E., Schartl, M., Herpin, A., and Guiguen, Y. (2016). Foxl2 and Its Relatives Are Evolutionary Conserved Players in Gonadal Sex Differentiation. Sex Dev 10, 111-129.
Bohne, A., Sengstag, T., and Salzburger, W. (2014). Comparative transcriptomics in East African cichlids reveals sex- and species-specific expression and new candidates for sex differentiation in fishes. Genome Biol Evol 6, 2567-2585.
Boulanger, L., Pannetier, M., Gall, L., Allais-Bonnet, A., Elzaiat, M., Le Bourhis, D., Daniel, N., Richard, C., Cotinot, C., Ghyselinck, N.B., et al. (2014). FOXL2 is a female sex-determining gene in the goat. Curr Biol 24, 404-408.
Bowles, J., and Koopman, P. (2007). Retinoic acid, meiosis and germ cell fate in mammals. Development 134, 3401-3411.
Brend, T., and Holley, S.A. (2009). Zebrafish whole mount high-resolution double fluorescent in situ hybridization. J Vis Exp.
Carlsson, P., and Mahlapuu, M. (2002). Forkhead transcription factors: key players in development and metabolism. Dev Biol 250, 1-23.
Crespo, B., Lan-Chow-Wing, O., Rocha, A., Zanuy, S., and Gomez, A. (2013). foxl2 and foxl3 are two ancient paralogs that remain fully functional in teleosts. Gen Comp Endocrinol 194, 81-93.
Crisponi, L., Deiana, M., Loi, A., Chiappe, F., Uda, M., Amati, P., Bisceglia, L., Zelante, L., Nagaraja, R., Porcu, S., et al. (2001). The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27, 159-166.
Dranow, D.B., Tucker, R.P., and Draper, B.W. (2013). Germ cells are required to maintain a stable sexual phenotype in adult zebrafish. Dev Biol 376, 43-50.
Draper, B.W., McCallum, C.M., and Moens, C.B. (2007). nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol 305, 589-598.
Elkouby, Y.M., and Mullins, M.C. (2016). Methods for the analysis of early oogenesis in Zebrafish. Dev Biol.
Forbes, A., and Lehmann, R. (1998). Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125, 679-690.
Gao, Y., Jia, D., Hu, Q., and Li, D. (2016). Foxl3, a Target of miR-9, Stimulates Spermatogenesis in Spermatogonia During Natural Sex Change in Monopterus albus. Endocrinology 157, 4388-4399.
Gupta, T., Marlow, F.L., Ferriola, D., Mackiewicz, K., Dapprich, J., Monos, D., and Mullins, M.C. (2010). Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet 6, e1001073.
Hamaguchi, S. (1982). A light- and electron-microscopic study on the migration of primordial germ cells in the teleost, Oryzias latipes. Cell Tissue Res 227, 139-151.
Handel, M.A., and Schimenti, J.C. (2010). Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11, 124-136.
Hannenhalli, S., and Kaestner, K.H. (2009). The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10, 233-240.
Hess, R.A., and França, L.R. (2007). Spermatogenesis and cycle of the seminiferous epithelium. CY Cheng (Ed), Molecular mechanisms in spermatogenesis, Landes Bioscience (2007) pp, 1-15.
Hodgkin, J. (1992). Genetic sex determination mechanisms and evolution. Bioessays 14, 253-261.
Hsu, C.-w. (2011). Investigation of sexually dimorphic zebrafish gene expression and gonad development. In Department of Life Sciences and Institute of Genome Sciences (National Yang-MingUniveristy), pp, 1-47.
Huang, S., Ye, L., and Chen, H. (2017). Sex determination and maintenance: the role of DMRT1 and FOXL2. Asian J Androl.
Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R., and Joung, J.K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227-229.
Jao, L.E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110, 13904-13909.
Jasurda, J.S., Jung, D.O., Froeter, E.D., Schwartz, D.B., Hopkins, T.D., Farris, C.L., McGee, S., Narayan, P., and Ellsworth, B.S. (2014). The forkhead transcription factor, FOXP3: a critical role in male fertility in mice. Biol Reprod 90, 4.
Kaestner, K.H., Silberg, D.G., Traber, P.G., and Schutz, G. (1997). The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev 11, 1583-1595.
Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., and Mishina, M. (2004). A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7, 133-144.
Kent, J., Wheatley, S.C., Andrews, J.E., Sinclair, A.H., and Koopman, P. (1996). A male-specific role for SOX9 in vertebrate sex determination. Development 122, 2813-2822.
Kikuchi, K., and Hamaguchi, S. (2013). Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn 242, 339-353.
Koprunner, M., Thisse, C., Thisse, B., and Raz, E. (2001). A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15, 2877-2885.
Korpelainen, H. (1990). Sex ratios and conditions required for environmental sex determination in animals. Biol Rev Camb Philos Soc 65, 147-184.
Lesch, B.J., and Page, D.C. (2012). Genetics of germ cell development. Nat Rev Genet 13, 781-794.
Li, M.H., Yang, H.H., Li, M.R., Sun, Y.L., Jiang, X.L., Xie, Q.P., Wang, T.R., Shi, H.J., Sun, L.N., Zhou, L.Y., et al. (2013). Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology 154, 4814-4825.
Li, S., Mao, Z., Han, W., Sun, Z., Yan, W., Chen, H., and Yan, S. (1993). In vitro oocyte maturation in the zebra fish, Brachydanio rerio, and the fertilization and development of the mature egg. Chin J Biotechnol 9, 247-255.
Liu, H., Lamm, M.S., Rutherford, K., Black, M.A., Godwin, J.R., and Gemmell, N.J. (2015). Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol Sex Differ 6, 26.
Matson, C.K., Murphy, M.W., Sarver, A.L., Griswold, M.D., Bardwell, V.J., and Zarkower, D. (2011). DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101-104.
McLaren, A. (2003). Primordial germ cells in the mouse. Dev Biol 262, 1-15.
Myosho, T., Otake, H., Masuyama, H., Matsuda, M., Kuroki, Y., Fujiyama, A., Naruse, K., Hamaguchi, S., and Sakaizumi, M. (2012). Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191, 163-170.
Nüsslein-Volhard, C.a.D., R. (2002). Zebrafish: a practical approach. New York: Oxford University Press: 303p
Nakamura, S., Kobayashi, K., Nishimura, T., and Tanaka, M. (2011). Ovarian germline stem cells in the teleost fish, medaka (Oryzias latipes). Int J Biol Sci 7, 403-409.
Nakamura, S., Watakabe, I., Nishimura, T., Picard, J.Y., Toyoda, A., Taniguchi, Y., di Clemente, N., and Tanaka, M. (2012). Hyperproliferation of mitotically active germ cells due to defective anti-Mullerian hormone signaling mediates sex reversal in medaka. Development 139, 2283-2287.
Nishimura, T., Sato, T., Yamamoto, Y., Watakabe, I., Ohkawa, Y., Suyama, M., Kobayashi, S., and Tanaka, M. (2015). Sex determination. foxl3 is a germ cell-intrinsic factor involved in sperm-egg fate decision in medaka. Science 349, 328-331.
Pan, Y.-j. (2014). Investigation of PI3K/Akt function during zebrafish gonad development. In Department of Life Sciences and Institute of Genome Sciences (National Yang-MingUniveristy), pp, 1-59.
Rodriguez-Mari, A., Canestro, C., BreMiller, R.A., Catchen, J.M., Yan, Y.L., and Postlethwait, J.H. (2013). Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS One 8, e73951.
Rodriguez-Mari, A., Yan, Y.L., Bremiller, R.A., Wilson, C., Canestro, C., and Postlethwait, J.H. (2005). Characterization and expression pattern of zebrafish Anti-Mullerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr Patterns 5, 655-667.
Rouiller-Fabre, V., Carmona, S., Merhi, R.A., Cate, R., Habert, R., and Vigier, B. (1998). Effect of anti-Mullerian hormone on Sertoli and Leydig cell functions in fetal and immature rats. Endocrinology 139, 1213-1220.
Sada, A., Suzuki, A., Suzuki, H., and Saga, Y. (2009). The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science 325, 1394-1398.
Schulz, R.W., de Franca, L.R., Lareyre, J.J., Le Gac, F., Chiarini-Garcia, H., Nobrega, R.H., and Miura, T. (2010). Spermatogenesis in fish. Gen Comp Endocrinol 165, 390-411.
Schulz, R.W., Menting, S., Bogerd, J., Franca, L.R., Vilela, D.A., and Godinho, H.P. (2005). Sertoli cell proliferation in the adult testis--evidence from two fish species belonging to different orders. Biol Reprod 73, 891-898.
Siegfried, K.R., and Nusslein-Volhard, C. (2008). Germ line control of female sex determination in zebrafish. Dev Biol 324, 277-287.
Silva, P., Rocha, M.J., Cruzeiro, C., Malhao, F., Reis, B., Urbatzka, R., Monteiro, R.A., and Rocha, E. (2012). Testing the effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens as found in the Douro River (Portugal) on the maturation of fish gonads--a stereological study using the zebrafish (Danio rerio) as model. Aquat Toxicol 124-125, 1-10.
Sinclair, A., and Smith, C. (2009). Females battle to suppress their inner male. Cell 139, 1051-1053.
Slanchev, K., Stebler, J., de la Cueva-Mendez, G., and Raz, E. (2005). Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A 102, 4074-4079.
Smith-Vikos, T., de Lencastre, A., Inukai, S., Shlomchik, M., Holtrup, B., and Slack, F.J. (2014). MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr Biol 24, 2238-2246.
Suster, M.L., Kikuta, H., Urasaki, A., Asakawa, K., and Kawakami, K. (2009). Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol 561, 41-63.
Takahashi, H. (1977b). Juvenile hermaphroditism in the zebrafish, Brachydanio rerio. Bulletin of the Faculty of Fisheres Hokkaido University 28, 57-65.
Thisse, C., and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3, 59-69.
Tong, S.K., Hsu, H.J., and Chung, B.C. (2010). Zebrafish monosex population reveals female dominance in sex determination and earliest events of gonad differentiation. Dev Biol 344, 849-856.
Tzung, K.W., Goto, R., Saju, J.M., Sreenivasan, R., Saito, T., Arai, K., Yamaha, E., Hossain, M.S., Calvert, M.E., and Orban, L. (2015). Early Depletion of Primordial Germ Cells in Zebrafish Promotes Testis Formation. Stem Cell Reports 5, 156.
Uhlenhaut, N.H., Jakob, S., Anlag, K., Eisenberger, T., Sekido, R., Kress, J., Treier, A.C., Klugmann, C., Klasen, C., Holter, N.I., et al. (2009). Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130-1142.
von Hofsten, J., and Olsson, P.E. (2005). Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reprod Biol Endocrinol 3, 63.
von Schalburg, K.R., Yasuike, M., Yazawa, R., de Boer, J.G., Reid, L., So, S., Robb, A., Rondeau, E.B., Phillips, R.B., Davidson, W.S., et al. (2011). Regulation and expression of sexual differentiation factors in embryonic and extragonadal tissues of Atlantic salmon. BMC Genomics 12, 31.
Von Stetina, J.R., and Orr-Weaver, T.L. (2011). Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol 3, a005553.
Wang X.G., Bartfai R., Sleptsova-Freidrich I., and L., O. (2007). The timing and extent of ‘juvenile ovary’ phase are highly variable during zebrafish testis differentiation. Journal of Fish Biology pp., 1329-1338.
Weidinger, G., Stebler, J., Slanchev, K., Dumstrei, K., Wise, C., Lovell-Badge, R., Thisse, C., Thisse, B., and Raz, E. (2003). dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 13, 1429-1434.
Weigel, D., and Jackle, H. (1990). The fork head domain: a novel DNA binding motif of eukaryotic transcription factors? Cell 63, 455-456.
Westerfield, M. (2007). The Zebrafish Book: A Guide for the Laboratory use of Zebrafish (Danio rerio). Ed 5 University of Oregon Press, Eugene, OR.
Wilson, C.A., High, S.K., McCluskey, B.M., Amores, A., Yan, Y.L., Titus, T.A., Anderson, J.L., Batzel, P., Carvan, M.J., 3rd, Schartl, M., et al. (2014). Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics 198, 1291-1308.
Yamaguchi, T., Yamaguchi, S., Hirai, T., and Kitano, T. (2007). Follicle-stimulating hormone signaling and Foxl2 are involved in transcriptional regulation of aromatase gene during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem Biophys Res Commun 359, 935-940.
Yang, Y.J., Wang, Y., Li, Z., Zhou, L., and Gui, J.F. (2017). Sequential, Divergent, and Cooperative Requirements of Foxl2a and Foxl2b in Ovary Development and Maintenance of Zebrafish. Genetics 205, 1551-1572.
Yano, A., Guyomard, R., Nicol, B., Jouanno, E., Quillet, E., Klopp, C., Cabau, C., Bouchez, O., Fostier, A., and Guiguen, Y. (2012). An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 22, 1423-1428.
Yoon, C., Kawakami, K., and Hopkins, N. (1997). Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157-3165.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top