跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 08:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳詣晟
研究生(外文):Yi-Cheng Wu
論文名稱:胸腺嘧啶合成酶誘發細胞轉型機制之探討
論文名稱(外文):The mechanism for thymidylate synthase-induced cellular transformation
指導教授:張智芬
指導教授(外文):Zee-Fen Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:胸腺嘧啶合成酶單碳代謝粒線體亞甲基四氫葉酸脫氫酶
外文關鍵詞:TSone carbon metabolismMTHFD2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Thymidylate synthase (TS)為合成dTTP中的重要酵素,已有文獻指出腫瘤組織的TS表現量較高,且與病患較差的預後呈正相關,但目前對於TS造成癌化的機制仍不清楚。在過去黃承煒的研究結果中,他發現TS造成癌化現象可被高度表現methylenetetrahydrofolate reductase (MTHFR)所抑制。為避免穩定細胞株的偏差性,我建立不同TS表現量細胞株,其表現量均接近人類大腸癌細胞內TS含量,這些穩定細胞株也具癌化現象,我也建立cystathionine-β-synthase (CBS)表現株,可將homocysteine轉變為cystathionine,在這樣的細胞株加上CBS的co-factor vitamin B6,TS無法造成癌化現象,而大量表現MTHFR也能抑制TS之癌化現象。由這些研究結果,顯示單碳連結folate-methionine循環的改變,參與TS造成之癌化現象。另外,透過microarray分析,發現被TS調控上升的基因當中,有58個基因受CBS調控下降,這些基因與膽固醇生合成和發炎反應相關,顯示TS造成的轉型可能與影響這兩種路徑有關。此外,我亦觀察到MTHFD2在TS細胞中表現量上升,MTHFD2的功能為在粒線體中產生10-formyltetrahydrofolate (10-formyl THF),此化合物參與purine合成的反應。我的研究發現在人類大腸癌細胞內同時減少MTHFD2及TS表現量,可有效抑制細胞生長,這代表MTHFD2之抑制劑應可和5-FU合併使用,治療大腸癌。
Thymidylate synthase (TS) is an essential enzyme for de novo synthesis of dTTP. Several clinical studies have shown that TS expression is highly elevated in tumor tissues and that high TS expression have been associated with poor prognosis of patients. A previous study has indicated that TS overexpression transforms 3T3 fibroblasts. Cheng-Wei Huang in our laboratory has previously shown that overexpression of methylenetetrahydrofolate reductase (MTHFR) that increases 5-mTHF flux for coupling methionine cycle prevents TS-induced transformation. To avoid the clone variation, I generated other TS stable clones with the expression level in the range similar to that in different cancer cell lines. These clones also developed transformed phenotypes. Overexpression of cystathionine-β-synthase (CBS) that diminishes homocysteine-mediated methylation inhibition also intervened TS-induced transformation. These results reveal that the involvement of disturbing folate-methionine cycle by TS overexpression in transformation. The gene expression profiles in these stable clones were analyzed by microarray. Among genes upregulated by TS, there are 58 genes downregulated in TS+CBS cells. These genes are related to cholesterol biosynthesis and inflammation response. Furthermore, the level of MTHD2, which is responsible for 10-formyltetrahydrofolate formation in mitochondria and participates in purine synthesis, is increased by TS overexpression. Finally, I found that decreasing TS and MTHFD2 suppresses the growth of colon cancer cells. Thus, MTHFD2 inhibition is able to sensitize cancer cells to 5-FdU treatment.
中文摘要................................................I
英文摘要................................................II
目錄...................................................III
緒論....................................................1
I. TS與dTTP合成.....................................1
II. TS與癌症的關聯性..................................2
III. TS與單碳代謝(One-carbon metabolism)...............4
實驗動機..................................................10
實驗材料與方法...........................................11
I. Chemicals and reagents..........................11
II. Plasmids........................................11
III. Antibodies......................................12
IV. Cell culture, transfection, and stable line construction............................................12
V. Virus production and infection..................13
VI. Western blot analysis...........................14
VII. Soft-agar assay.................................14
VIII. Colony formation assay..........................15
IX. Methionine sensitivity assay....................15
X. FdU treatment and WST-1 assay...................15
XI. RNA extraction and qPCR.........................16
XII. cDNA preparation and qPCR.......................16
XIII. dNTP pool measurement...........................17
XIV. Statistical analysis............................17
實驗結果.................................................18
I. 表現CBS可抑制TS誘導的細胞轉型.....................18
II. TS過量表現影響細胞對methionine之敏感度............20
III. 分析TS與TS+CBS影響之基因表現......................21
IV. TS細胞之生長依賴MTHFD2...........................24
V. TS和MTHFD2在癌細胞生長之相互關係..................25
VI. MTHFD2 knockdown影響HCT116與SW620大腸癌細胞株 對5-FdU之敏感度..........................................26
討論....................................................28
圖表....................................................35
參考文獻.................................................54
附錄....................................................59
Bebenek K, Roberts JD, Kunkel TA. (1992). The effect of dNTP pool imbalances on frameshift fidelity during DNA replication. J Bio Chem. 267(6): p3589-3596.
Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B. (2011). Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell. 145(3): p435–446.
Carreras CW, Santi DV. (1995). The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem. 64: p721-762.
Danenberg PV. (1977). Thymidylate synthase: a target enzyme in cancer chemotherapy. Biochim Biophys Acta. 473(2): p73-79.
D'Angiolella V, Donato V, Forrester FM, Jeong YT, Pellacani C, Kudo Y, Saraf A, Florens L, Washburn MP, Pagano M. (2012). Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell. 149(5): p1023-1034.
Di Pietro E, Sirois J, Tremblay ML, MacKenzie RE. (2002). Mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is essential for embryonic development. Mol Cell Biol. 22(12):4158-66.
Edler D, Hallström M, Johnston PG, Magnusson I, Ragnhammar P, Blomgren H. (2000). Thymidylate synthase expression: an independent prognostic factor for local recurrence, distant metastasis, disease-free and overall survival in rectal cancer. Clin Cancer Res. 6(4): p1378-1384.
Friedkin M, Kornberg A. (1957). The enzymatic conversion of deoxyuridylic acid to thymidylic acid and the participation of tetrahydrofolic acid. Fed Proc Fed Am Soc Exp Biol. 16(183): p609-614.
Hardy LW, Finer-Moore JS, Montfort WR, Jones MO, Santi DV, Stroud RM. (1987). Atomic structure of thymidylate synthase: target for rational drug design. Science. 235(4787): p448-455.
Huennekens FM. (1994). The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv Enzyme Regul. 34: p397–419.
Jamaluddin MD, Chen I, Yang F, Jiang X, Jan M, Liu X, Schafer AI, Durante W, Yang X, Wang H. (2007). Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin A gene. Blood. 110(10): p3648-3655.
Johnston PG, Liang CM, Henry S, Chabner BA, Allegra CJ. (1991). Production and characterization of monoclonal antibodies that localize thymidylate synthase in the cytoplasm of human cells and tissue. Cancer Res. 51(24): p6668-6676.
Kamynina E, Lachenauer ER, DiRisio AC, Liebenthal RP, Field MS, Stover PJ. (2017). Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis. Proc Natl Acad Sci U S A. 114(12): E2319-E2326.
Kunz BA, Kohalmi SE, Kunkel TA, Mathews CK, McIntosh EM, Reidy JA. (1994). Deoxyribonucleoside triphosphate levels: A critical factor in the maintenance of genetic stability. Mutat Res. 318(1): p1-64.
Lee GY, Haverty PM, Li L, Kljavin NM, Bourgon R, Lee J, Stern H, Modrusan Z, Seshagiri S, Zhang Z, Davis D, Stokoe D, Settleman J, de Sauvage FJ, Neve RM. (2014). Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res. 74(11): p3114–3126.
Leichman CG, Lenz HJ, Leichman L, Danenberg K, Baranda J, Groshen S, Boswell W, Metzger R, Tan M, Danenberg PV. (1997). Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol. 15(10): p3223-3229.
Leichman CG. (2001). Predictive and prognostic markers in gastrointestinal cancers. Curr Opin Oncol. 13(4): p291-299.
Lenz HJ, Hayashi K, Salonga D, Danenberg KD, Danenberg PV, Metzger R, Banerjee D, Bertino JR, Groshen S, Leichman LP, Leichman CG. (1998). p53 mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival. Clin Cancer Res. 4(5): p1243-1250.
Longley DB, Harkin DP, Johnston PG. (2003). 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5): p330–338.
Mizutani Y, Wada H, Yoshida O, Fukushima M, Nonomura M, Nakao M, Miki T. (2003). Significance of thymidylate synthase activity in renal cell carcinoma. Clin Cancer Res. 9(4): p1453-1460.
Momb J, Lewandowski JP, Bryant JD, Fitch R, Surman DR, Vokes SA, Appling DR. (2013). Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice. Proc. Natl. Acad. Sci. USA. 110, 549–554.
Navalgund LG, Rossana C, Muench AJ, Johnson LF. (1980). Cell cycle regulation of thymidylate synthetase gene expression in cultured mouse fibroblasts. J Biol Chem. 255(15): p7386-7390.
Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, Huang J, Asplund A, Mootha VK. (2014). Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 5: 3128.
Nomura T, Nakagawa M, Fujita Y, Hanada T, Mimata H, Nomura Y. (2002). Clinical significance of thymidylate synthase expression in bladder cancer. Int. J. Urol. 9(7): p368-376.
Pestalozzi BC, Peterson HF, Gelber RD, Goldhirsch A, Gusterson BA, Trihia H, Lindtner J, Cortés-Funes H, Simmoncini E, Byrne MJ, Golouh R, Rudenstam CM, Castiglione-Gertsch M, Allegra CJ, Johnston PG. (1997). Prognostic importance of thymidylate synthase expression in early breast cancer. J Clin Oncol. 15(5): p1923-1931.
Poole A, Penny D, Sjöberg BM. (2001). Confounded cytosine! Tinkering and the evolution of DNA. Nat Rev Mol Cell Biol. 2(2): p147-151.
Rahman L, Voeller D, Rahman M, Lipkowitz S, Allegra C, Barrett JC, Kaye FJ, Zajac-Kaye M. (2004). Thymidylate synthase as an oncogene: a novel role for an essential DNA synthesis enzyme. Cancer Cell. 5(4): p341-351.
Shintani Y, Ohta M, Hirabayashi H, Tanaka H, Iuchi K, Nakagawa K, Maeda H, Kido T, Miyoshi S, Matsuda H. (2003). New prognostic indicator for non-small-cell lung cancer, quantitation of thymidylate synthase by real-time reverse transcription polymerase chain reaction. Int. J. Cancer 104(6): p790-795.
Suzuki M, Tsukagoshi S, Saga Y, Ohwada M, Sato I. (1999). Enhanced expression of thymidylate synthase may be of prognostic importance in advanced cervical cancer. Oncology.57(1): p50-54.
Tentes IK, Schmidt WM, Krupitza G, Steger GG, Mikulits W, Kortsaris A, Mader RM. (2010). Long-term persistence of acquired resistance to 5-fluorouracil in the colon cancer cell line SW620. Exp Cell Res. 316(19):3172-81.
Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B. (2012). Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 148(1-2): p259-272.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top