跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾雅嫺
研究生(外文):Ya-Hsien Tseng
論文名稱:利用誘導型多能幹細胞分化之神經細胞分析SUPT4H對於亨氏舞蹈症致病基因之影響
論文名稱(外文):The effect of SUPT4H knockdown on allelic HTT expression using human neurons derived from Huntington’s disease iPSCs
指導教授:鄭子豪
指導教授(外文):Tzu-Hao Cheng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:43
中文關鍵詞:亨氏舞蹈症
外文關鍵詞:Huntington;s diseaseiPSCHTTSUPT4H
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
亨氏舞蹈症 (Huntington’s disease, HD) 是一種顯性遺傳的神經退化性疾病。致病原因主要是由於Hntingtin (HTT) 基因在exon 1的位置,出現CAG三核苷酸重複序列異常擴增的現象,造成HTT突變基因所產生的蛋白質具有細胞毒性,最後導致神經細胞的死亡;同時,臨床診斷中發現,在HD病患的基底核其紋狀體區域神經萎縮的現象會比大腦皮質嚴重。SPT4是轉錄延伸因子,可以協助RNA polymerase II 在DNA模板上的轉錄穩定性。先前,實驗室研究發現,在酵母菌模式系統中剔除SPT4,會讓帶有過長CAG重複序列基因的表現量減少,但並不影響帶有短的CAG重複序列基因,顯示SPT4在轉錄層級上會有選擇性的調控。為了進一步探討SUPT4H (SPT4之同源基因)在人類神經細胞中對於HD致病基因表現的影響,我們以HD病患的誘導型多能幹細胞 (induced pluripotent stem cell, iPSC)建構基因改造之穩定細胞株,以Tet-on轉錄誘導系統進行SUPT4H默化,然後進行分析。結果發現在HD-iPSCs以及HD-iPSCs所分化的GABAergic neurons中,SUPT4H默化會導致HTT突變基因的表現量下降。並且在某些HD-iPSCs所分化的GABAergic neurons中,SUPT4H默化對於HTT突變基因相較於正常的HTT基因有更大的影響力。
Huntington’s disease (HD) is caused by abnormal expansion of CAG tri-nucleotide repeats in the first exon of Huntingtin (HTT) gene, which produces gene products with detrimental effects on neurons. HD, a dominantly progressive neurodegenerative disorder, is clinically associated with movement, cognitive, and emotional impairments. The pathological hallmark of disease is the atrophy of striatum, which is consist of more than 95% GABAergic medium spiny neurons (MSNs). The transcription elongation factor, Spt4, is involved in the process of genes transcription by enhancement of RNA polymerase II processivity on DNA templates. Our previous study, using yeast as a model system, showed that SPT4 inactivation results in a preferential transcription reduction of genes containing a long stretch of CAG tri-nucleotide repeats, while it only marginally affects the expression of genes with short or no CAG repeats. In order to investigate the effect of SUPT4H, the ortholog of yeast SPT4, on the expression of HTT alleles in HD, we introduced a shRNA specifically against SUPT4H under the control of Tet-on system in induced pluripotent stem cells (iPSCs) that are derived from HD patients. Using the engineered iPSCs and GABAergic neurons differentiated from the iPSCs, we demonstrated that the expression of mutant HTT is reduced upon the knockdown of SUPT4H. More importantly, in HD-iPSCs and their differentiated GABAergic neurons, mutant HTT is affected in a greater extent than its wild-type counterpart. These results suggest that preferential reduction of mutant HTT in GABAergic neurons of HD patients is achievable through SUPT4H knockdown.

致謝…………………………I
中文摘要…………………………II
Abstract…………………………III
contents…………………………IV
Introduction…………………………1
1.1. General introduction of Huntington’s disease…………………………1
1.2. The function of SUPT4H in transcription regulation…………………………1
1.3. Induced pluripotent stem cells (iPSCs)…………………………2
1.4. iPSCs of Huntington’s disease (HD-iPSCs)…………………………2
1.5. Differentiation of GABAergic neurons from iPSCs…………………………3
1.6. Tet-on system…………………………4
1.7. The aim of this study…………………………4
Material and methods
2.1 iPSCs maintenance…………………………6
2.2 Establishment of stable cell clones…………………………6
2.3 Clone screening by PCR and Western blot analysis…………………………6
2.4 Neural differentiation of HD-iPSCs…………………………7
2.5 SUPT4H knockdown by Tet-on inducible system…………………………8
2.6 Immunocytochemistry (ICC)…………………………8
2.7 Reverse transcription polymerase chain reaction (RT-PCR)…………………………9
2.8 Western blot analysis…………………………9
2.9 Statistical analysis…………………………10
RESULTS
3.1 Strategy of SUPT4H genetic knockdown in human HD-iPSCs…………………………11
3.2 Establishment of Tet-on inducible system for shRNA expression in GM23225 and iHDA1…………………………12
3.2.1 Establishment of genetically engineered clones using iHDA1 (43/17)…………………………12
3.2.2 Establishment of genetically engineered clones using GM23225 (72/17)…………………………12
3.3 Characterization of stemness property of Tet-on inducible stable clones…………………………13
3.4 SUPT4H knockdown in iPSC stable clones…………………………13
3.4.1 SUPT4H knockdown in 43Q-iPSCs (C221, C226 and L36)…………………………13
3.4.2 SUPT4H knockdown in 72Q-iPSCs (C219 and L1)…………………………14
3.5 Differentiation of GABAergic neurons from iPSC stable clones…………………………14
3.6 Change of HTT and TetR expression upon the process of neuron differentiation from HD-iPSCs…………………………15
3.7 SUPT4H knockdown in GABAergic neurons derived from iPSC clones…………………………16
3.7.1 SUPT4H knockdown in GABAergic neurons derived from 43Q-iPSC (C221, C226 and L36)…………………………16
3.7.2 SUPT4H knockdown in GABAergic neurons derived from 72Q-iPSC (C219 and L1)…………………………17
3.8 The degree of HTT down-regulation by SUPT4H knockdown in iPSC stable clones and GABAergic neurons derived from iPSC stable clones…………………………17
Discussion…………………………19
References…………………………23
Figure…………………………26
Table…………………………41
References
1. Zhang, N., et al., iPSC-based drug screening for Huntington׳s disease. Brain Research, 2016. 1638: p. 42-56.
2. Lin, L., et al., In Vitro Differentiation of Human Neural Progenitor Cells Into Striatal GABAergic Neurons. STEM CELLS Translational Medicine, 2015. 4(7): p. 775-788.
3. Bañez-Coronel, M., et al., RAN Translation in Huntington Disease. Neuron, 2015. 88(4): p. 667-677.
4. Lee, J.-M., et al., Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease. Cell, 2015. 162(3): p. 516-526.
5. Liu, C.-R., et al., Spt4 Is Selectively Required for Transcription of Extended Trinucleotide Repeats. Cell, 2012. 148(4): p. 690-701.
6. Orr, H.T., et al., Effects on Murine Behavior and Lifespan of Selectively Decreasing Expression of Mutant Huntingtin Allele by Supt4h Knockdown. PLOS Genetics, 2015. 11(3): p. e1005043.
7. Sareen, D., et al., Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion. Science Translational Medicine, 2013. 5(208): p. 208ra149-208ra149.
8. Kramer, N.J., et al., Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. Science, 2016. 353(6300): p. 708-12.
9. Takahashi, K. and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006. 126(4): p. 663-676.
10. An, Mahru C., et al., Genetic Correction of Huntington's Disease Phenotypes in Induced Pluripotent Stem Cells. Cell Stem Cell, 2012. 11(2): p. 253-263.
11. Xu, X., et al., Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cell Reports, 2017. 8(3): p. 619-633.
12. Cheng, P.-H., et al., miR-196a Ameliorates Phenotypes of Huntington Disease in Cell, Transgenic Mouse, and Induced Pluripotent Stem Cell Models. The American Journal of Human Genetics, 2013. 93(2): p. 306-312.
13. Chiu, F.-L., et al., Elucidating the role of the A2Aadenosine receptor in neurodegeneration using neurons derived from Huntington's disease iPSCs. Human Molecular Genetics, 2015. 24(21): p. 6066-6079.
14. Zuccato, C., et al., Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery. Pharmacol Res, 2005. 52(2): p. 133-9.
15. Mattis, V.B., et al., HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Human Molecular Genetics, 2015. 24(11): p. 3257-3271.
16. The Hd iPsc Consortium, Induced Pluripotent Stem Cells from Patients with Huntington's Disease Show CAG-Repeat-Expansion-Associated Phenotypes. Cell Stem Cell, 2012. 11(2): p. 264-278.
17. Nekrasov, E.D., et al., Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Molecular Neurodegeneration, 2016. 11(1).
18. Lim, R.G., et al., Developmental alterations in Huntington's disease neural cells and pharmacological rescue in cells and mice. Nature Neuroscience, 2017. 20(5): p. 648-660.
19. Ring, Karen L., et al., Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in Human Huntington’s Disease Neural Stem Cells. Stem Cell Reports, 2015. 5(6): p. 1023-1038.
20. Czauderna, F., et al., Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res, 2003. 31(21): p. e127.
21. Szlachcic, W.J., et al., Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. Dis Model Mech, 2015. 8(9): p. 1047-57.
22. Suter, D., et al., A tetracycline-inducible lentivector system based on EF1-α promoter and native tetracycline repressor allows in vivo gene induction in implanted ES cells. Journal of Stem Cells, 2007. 2(2): p. 63-72.
23. Lin, L., et al., In Vitro Differentiation of Human Neural Progenitor Cells Into Striatal GABAergic Neurons. Stem Cells Transl Med, 2015. 4(7): p. 775-88.
24. Ma, L., et al., Human Embryonic Stem Cell-Derived GABA Neurons Correct Locomotion Deficits in Quinolinic Acid-Lesioned Mice. Cell Stem Cell, 2012. 10(4): p. 455-464.
25. Madhavan, L., et al., Sonic Hedgehog Controls the Phenotypic Fate and Therapeutic Efficacy of Grafted Neural Precursor Cells in a Model of Nigrostriatal Neurodegeneration. PLoS One, 2015. 10(9): p. e0137136.
26. Delli Carri, A., et al., Human Pluripotent Stem Cell Differentiation into Authentic Striatal Projection Neurons. Stem Cell Reviews and Reports, 2013. 9(4): p. 461-474.
27. Liu, Y., et al., beta-Catenin, a Transcription Factor Activated by Canonical Wnt Signaling, Is Expressed in Sensory Neurons of Calves Latently Infected with Bovine Herpesvirus 1. J Virol, 2016. 90(6): p. 3148-59.
28. Bengoa-Vergniory, N., et al., A switch from canonical to noncanonical Wnt signaling mediates early differentiation of human neural stem cells. Stem Cells, 2014. 32(12): p. 3196-208.
29. Gee, P., H. Xu, and A. Hotta, Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy. 2017. 2017: p. 8765154.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top