|
1 Kaper, J. B. Pathogenic Escherichia coli. International journal of medical microbiology : IJMM 295, 355-356, doi:10.1016/j.ijmm.2005.06.008 (2005). 2 Braeye, T. et al. Lessons learned from a textbook outbreak: EHEC-O157:H7 infections associated with the consumption of raw meat products, June 2012, Limburg, Belgium. Archives of public health 72, 44, doi:10.1186/2049-3258-72-44 (2014). 3 Buchholz, U. et al. German outbreak of Escherichia coli O104:H4 associated with sprouts. The New England journal of medicine 365, 1763-1770, doi:10.1056/NEJMoa1106482 (2011). 4 Reid, S. D., Herbelin, C. J., Bumbaugh, A. C., Selander, R. K. & Whittam, T. S. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406, 64-67, doi:10.1038/35017546 (2000). 5 Cornelis, G. R. The type III secretion injectisome. Nature reviews. Microbiology 4, 811-825, doi:10.1038/nrmicro1526 (2006). 6 Sekiya, K. et al. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proceedings of the National Academy of Sciences of the United States of America 98, 11638-11643, doi:10.1073/pnas.191378598 (2001). 7 Garmendia, J., Frankel, G. & Crepin, V. F. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infection and immunity 73, 2573-2585, doi:10.1128/IAI.73.5.2573-2585.2005 (2005). 8 Ritchie, J. M. & Waldor, M. K. The locus of enterocyte effacement-encoded effector proteins all promote enterohemorrhagic Escherichia coli pathogenicity in infant rabbits. Infection and immunity 73, 1466-1474, doi:10.1128/IAI.73.3.1466-1474.2005 (2005). 9 Elliott, S. J. et al. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infection and immunity 68, 6115-6126 (2000). 10 Li, M. et al. Comparative proteomic analysis of extracellular proteins of enterohemorrhagic and enteropathogenic Escherichia coli strains and their ihf and ler mutants. Applied and environmental microbiology 70, 5274-5282, doi:10.1128/AEM.70.9.5274-5282.2004 (2004). 11 Torres, A. G. et al. Ler and H-NS, regulators controlling expression of the long polar fimbriae of Escherichia coli O157:H7. Journal of bacteriology 189, 5916-5928, doi:10.1128/JB.00245-07 (2007). 12 Huang, L. H. & Syu, W. J. GrlA of enterohemorrhagic Escherichia coli O157:H7 activates LEE1 by binding to the promoter region. Journal of microbiology, immunology, and infection 41, 9-16 (2008). 13 Iyoda, S. et al. The GrlR-GrlA regulatory system coordinately controls the expression of flagellar and LEE-encoded type III protein secretion systems in enterohemorrhagic Escherichia coli. Journal of bacteriology 188, 5682-5692, doi:10.1128/JB.00352-06 (2006). 14 Tsai, N. P. et al. Multiple functions of l0036 in the regulation of the pathogenicity island of enterohaemorrhagic Escherichia coli O157:H7. The Biochemical journal 393, 591-599, doi:10.1042/BJ20051201 (2006). 15 Gauthier, A., Puente, J. L. & Finlay, B. B. Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infection and immunity 71, 3310-3319 (2003). 16 Andrade, A., Pardo, J. P., Espinosa, N., Perez-Hernandez, G. & Gonzalez-Pedrajo, B. Enzymatic characterization of the enteropathogenic Escherichia coli type III secretion ATPase EscN. Archives of biochemistry and biophysics 468, 121-127, doi:10.1016/j.abb.2007.09.020 (2007). 17 Lin, C. N. et al. Protein interactions and regulation of EscA in enterohemorrhagic E. coli. PloS one 9, e85354, doi:10.1371/journal.pone.0085354 (2014). 18 Monjaras Feria, J. et al. Role of EscP (Orf16) in injectisome biogenesis and regulation of type III protein secretion in enteropathogenic Escherichia coli. Journal of bacteriology 194, 6029-6045, doi:10.1128/JB.01215-12 (2012). 19 Lara-Tejero, M., Kato, J., Wagner, S., Liu, X. & Galan, J. E. A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331, 1188-1191, doi:10.1126/science.1201476 (2011). 20 Wong, A. R., Raymond, B., Collins, J. W., Crepin, V. F. & Frankel, G. The enteropathogenic E. coli effector EspH promotes actin pedestal formation and elongation via WASP-interacting protein (WIP). Cellular microbiology 14, 1051-1070, doi:10.1111/j.1462-5822.2012.01778.x (2012). 21 Lovdok, L. et al. Role of translational coupling in robustness of bacterial chemotaxis pathway. PLoS biology 7, e1000171, doi:10.1371/journal.pbio.1000171 (2009). 22 Schumperli, D., McKenney, K., Sobieski, D. A. & Rosenberg, M. Translational coupling at an intercistronic boundary of the Escherichia coli galactose operon. Cell 30, 865-871 (1982). 23 McCarthy, J. E. Post-transcriptional control in the polycistronic operon environment: studies of the atp operon of Escherichia coli. Molecular microbiology 4, 1233-1240 (1990). 24 Mossey, P. & Das, A. Expression of Agrobacterium tumefaciens octopine Ti-plasmid virB8 gene is regulated by translational coupling. Plasmid 69, 72-80, doi:10.1016/j.plasmid.2012.09.002 (2013). 25 Oppenheim, D. S. & Yanofsky, C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics 95, 785-795 (1980). 26 Romo-Castillo, M. et al. EscO, a functional and structural analog of the flagellar FliJ protein, is a positive regulator of EscN ATPase activity of the enteropathogenic Escherichia coli injectisome. Journal of bacteriology 196, 2227-2241, doi:10.1128/JB.01551-14 (2014). 27 Sperandio, V. et al. Activation of enteropathogenic Escherichia coli (EPEC) lee2 and lee3 operons by Ler. Molecular microbiology 38, 781-793 (2000). 28 Umanski, T., Rosenshine, I. & Friedberg, D. Thermoregulated expression of virulence genes in enteropathogenic Escherichia coli. Microbiology 148, 2735-2744 (2002). 29 Abe, H., Tatsuno, I., Tobe, T., Okutani, A. & Sasakawa, C. Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7. Infection and immunity 70, 3500-3509 (2002). 30 Lin, C. N. et al. A role of ygfZ in the Escherichia coli response to plumbagin challenge. Journal of biomedical science 17, 84, doi:10.1186/1423-0127-17-84 (2010). 31 Ku, C. P., Lio, J. C., Wang, S. H., Lin, C. N. & Syu, W. J. Identification of a third EspA-binding protein that forms part of the type III secretion system of enterohemorrhagic Escherichia coli. The Journal of biological chemistry 284, 1686-1693, doi:10.1074/jbc.M807478200 (2009). 32 Deana, A. & Belasco, J. G. Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes & development 19, 2526-2533, doi:10.1101/gad.1348805 (2005). 33 Bustamante, V. H., Santana, F. J., Calva, E. & Puente, J. L. Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Molecular microbiology 39, 664-678 (2001). 34 Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501-504, doi:10.1126/science.1184953 (2010). 35 Proshkin, S., Rahmouni, A. R., Mironov, A. & Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328, 504-508, doi:10.1126/science.1184939 (2010). 36 Lodato, P. B. & Kaper, J. B. Post-transcriptional processing of the lee4 operon in enterohaemorrhagic Escherichia coli. Molecular microbiology 71, 273-290, doi:10.1111/j.1365-2958.2008.06530.x (2009). 37 Chiaruttini, C., Milet, M., de Smit, M. & Springer, M. Translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and ribosomal proteins L20 and L35. Biochimie 78, 555-567 (1996). 38 Rex, G., Surin, B., Besse, G., Schneppe, B. & McCarthy, J. E. The mechanism of translational coupling in Escherichia coli. Higher order structure in the atpHA mRNA acts as a conformational switch regulating the access of de novo initiating ribosomes. The Journal of biological chemistry 269, 18118-18127 (1994). 39 Shirasu, K., Morel, P. & Kado, C. I. Characterization of the virB operon of an Agrobacterium tumefaciens Ti plasmid: nucleotide sequence and protein analysis. Molecular microbiology 4, 1153-1163 (1990). 40 Zupan, J., Muth, T. R., Draper, O. & Zambryski, P. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. The Plant journal : for cell and molecular biology 23, 11-28 (2000). 41 Fernandez, D., Spudich, G. M., Zhou, X. R. & Christie, P. J. The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. Journal of bacteriology 178, 3168-3176 (1996). 42 Osterman, I. A., Evfratov, S. A., Sergiev, P. V. & Dontsova, O. A. Comparison of mRNA features affecting translation initiation and reinitiation. Nucleic acids research 41, 474-486, doi:10.1093/nar/gks989 (2013). 43 Younis, R. et al. SepL resembles an aberrant effector in binding to a class 1 type III secretion chaperone and carrying an N-terminal secretion signal. Journal of bacteriology 192, 6093-6098, doi:10.1128/JB.00760-10 (2010). 44 Deng, W. et al. Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infection and immunity 73, 2135-2146, doi:10.1128/IAI.73.4.2135-2146.2005 (2005). 45 Tian, T. & Salis, H. M. A predictive biophysical model of translational coupling to coordinate and control protein expression in bacterial operons. Nucleic acids research 43, 7137-7151, doi:10.1093/nar/gkv635 (2015). 46 Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli. Clinical microbiology reviews 11, 142-201 (1998). 47 Deng, W. et al. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proceedings of the National Academy of Sciences of the United States of America 101, 3597-3602, doi:10.1073/pnas.0400326101 (2004).
|