跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/09 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫維聲
研究生(外文):Wei-Sheng Sun
論文名稱:出血性大腸桿菌lee3多順反子基因群表現調控之研究
論文名稱(外文):Expression Regulation of Polycistronic lee3 Genes of Enterohaemorrhagic Escherichia coli
指導教授:許萬枝許萬枝引用關係
指導教授(外文):Wan-Jr Syu
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:66
中文關鍵詞:出血性大腸桿菌第三型分泌系統mpc基因蛋白轉譯連動
外文關鍵詞:EHECType III secretion systemmpctranslational coupling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
出血性大腸桿菌O157:H7為一種致病性大腸桿菌,其所攜帶的LEE致病基因島嶼是形成第三型分泌系統的重要致病基因,主要由五個操縱子所構成。位於其中lee3操縱子的第一個基因位置的mpc,在先前的研究指出當其表現過量時具有負向影響第三型分泌系統的能力;此外,其本身的轉譯過程對其他基因有重要的調控功能,惟其中的機制尚待瞭解。在本研究中,我們分析了lee3操縱子以及其轉譯後的產物,我們發現mpc的轉譯對其緊鄰的下游基因escV有決定性的影響,而escV又能接著影響下游的escN基因,escN再接續影響了更下游基因的表現。我們也更進一步分析了mpc的開放閱讀框架,並發現其中第1至100的核苷酸對於mpc影響下游基因表現的現象扮演最關鍵的角色。另外,藉由即時定量聚合酶連鎖反應的分析,我們發現mpc的RNA量遠低於其他同樣位於lee3操縱子的基因。綜合來看,我們認為當LEE致病基因島嶼的表現被啟動時,mpc的表現將在RNA層次受到嚴格的調控,使其轉譯的量足以讓下游基因表現,同時又無法過量表現,以達到第三型分泌系統的正常運作。
Enterohaemorrhagic Escherichia coli O157:H7 (EHEC) carries a pathogenic island LEE that is consisted mainly of five polycistronic operons. In the lee3 operon, mpc is the first gene and has been reported to down regulate the type-3 secretion system of EHEC when its gene product is over-expressed. Furthermore, mpc has been suggested to have a regulation function via translation but the mechanism remains unclear. To clarify this hypothesis, we dissected the polycistron and examined the translated products. We conclude that translation of mpc detrimentally governs the translation of the second gene, escV, which in turn affects the translation of the third gene, escN. Then sequentially, escN affects the expression of the downstream genes. Furthermore, we located a critical cis element within the mpc open-reading frame that plays a negative role in the translation-dependent regulation of lee3. Using qRT-PCR, we found that the amount of mpc RNA transcript present in EHEC was relatively limited when compared to any other genes within lee3. Taken together, when the transcription of LEE is activated, expression of mpc is tightly controlled by a restriction of the RNA transcript of mpc, translation of which is then critical for the efficient production of the operon’s downstream gene products.
Content i
Abstract 1
中文摘要 2
Introduction 3
Materials and methods 8
BACTERIAL STRAINS AND CULTURE CONDITIONS 8
PRIMERS AND EXPRESSION PLASMIDS 8
CONSTRUCTING THE PM-V-N VARIANTS 9
PROTEINS EXPRESSION AND WESTERN BLOTTING ANALYSIS 10
RNA ISOLATION AND REAL-TIME QUANTITATIVE RT-PCR (QRT-PCR) 12
Results 13
TRANSLATION BLOCKAGE OF MPC IS DETRIMENTAL TO EXPRESSION OF DOWNSTREAM ESCV AND ESCN 13
ESCA, THE THIRD GENE ON LEE3 OPERON, IS AFFECTED BY THE TRANSLATION INITIATION OF MPC 14
TRANSLATION INITIATION OF MPC IS CRUCIAL FOR EFFICIENT PRODUCTION OF THE REST OF LEE3 GENES 15
VICINITY EFFECTS IN LEE3 OPERON VARIES IN DEGREE 17
ESCN IS MORE PIVOTAL TO SUCCEEDING GENE EXPRESSION THAN ESCA AND ESCP 20
A CIS ELEMENT WITHIN MPC REGULATES DOWNSTREAM GENE EXPRESSION. 22
TRANSCRIPTION OF THE MRNA CODING FOR MPC IS AT THE LOWEST OF ALL LEE3-ORFS DURING T3SS ACTIVATION. 27
Discussion 29
Table 36
TABLE 1. PRIMERS USED AND THEIR SEQUENCES. 36
References 39
Figure 44
FIG. 1. TRANSLATION INITIATION OF MPC IS REQUIRED FOR EFFICIENT EXPRESSION OF ESCV AND ESCN. 44
FIG. 2. EXPRESSION OF ESCA IS AFFECTED BY THE TRANSLATION INITIATION OF MPC. 46
FIG. 3. TRANSLATION INITIATION OF MPC GOVERN THE EXPRESSION OF DOWNSTREAM ESCP, SEPQ, AND ESPH. 47
FIG. 4. VICINITY EFFECTS WITH DIFFERENTIAL EXTENT WERE OBSERVED BETWEEN LEE3 GENE CISTRONS. 50
FIG. 5. TRANSLATION BLOCKAGE OF ESCN IN THE MIDDLE OF A TRANSCRIPT REDUCED THE EXPRESSION OF ESCN AND THE GENES DOWNSTREAM. 51
FIG. 6. TRANSLATION OBSTRUCTION OF ESCA AND ESCP IN THE MIDDLE OF A POLYCISTRONIC TRANSCRIPT IS LESS INFLUENTIAL TO DOWNSTREAM GENES THAN ESCN. 53
FIG. 7. CIS ELEMENT WITHIN NUCLEOTIDES 1-100 OF MPC IS CRITICAL FOR AFFECTING THE EXPRESSION OF DOWNSTREAM ESCN. 54
FIG. 8. MRNA OF ESCN REDUCED WHEN TRANSLATION OF UPSTREAM MPC WAS OBSTRUCTED. 56
FIG. 9. CIS ELEMENT IN THE 5’-END OF ESCV CONTRIBUTES TO THE VICINITY EFFECT ON ESCA. 57
FIG. 10. NO OBVIOUS CIS ELEMENT IN ESCN WAS FOUND IMPORTANT TO EXERT VICINITY EFFECT ON DOWNSTREAM ESCA. 59
FIG. 11. MRNA RESPONSIBLE FOR MPC WAS THE MOST LIMITED ONE AMONG LEE3 GENES. 61
FIG. 12. DIAGRAM OF THE LEE3 OPERON AND THE FEATURES FOUND THEREIN. 62
FIG. 13. MODEL OF MPC TRANSLATION INITIATION EXERTING EFFECTS ON EXPRESSION OF DOWNSTREAM LEE3 GENES. 64
Appendix 64
APPENDIX 1. VIRULENCE FACTORS OF EHEC AND LOCATIONS OF THEIR GENETIC ELEMENTS. 65
APPENDIX 2. SCHEMATIC DISPLAY OF EHEC T3SS COMPLEX. 65
APPENDIX 3. SCHEMATIC REPRESENTATION OF GENE ARRANGEMENT ON LEE ISLAND. 66
1 Kaper, J. B. Pathogenic Escherichia coli. International journal of medical microbiology : IJMM 295, 355-356, doi:10.1016/j.ijmm.2005.06.008 (2005).
2 Braeye, T. et al. Lessons learned from a textbook outbreak: EHEC-O157:H7 infections associated with the consumption of raw meat products, June 2012, Limburg, Belgium. Archives of public health 72, 44, doi:10.1186/2049-3258-72-44 (2014).
3 Buchholz, U. et al. German outbreak of Escherichia coli O104:H4 associated with sprouts. The New England journal of medicine 365, 1763-1770, doi:10.1056/NEJMoa1106482 (2011).
4 Reid, S. D., Herbelin, C. J., Bumbaugh, A. C., Selander, R. K. & Whittam, T. S. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406, 64-67, doi:10.1038/35017546 (2000).
5 Cornelis, G. R. The type III secretion injectisome. Nature reviews. Microbiology 4, 811-825, doi:10.1038/nrmicro1526 (2006).
6 Sekiya, K. et al. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proceedings of the National Academy of Sciences of the United States of America 98, 11638-11643, doi:10.1073/pnas.191378598 (2001).
7 Garmendia, J., Frankel, G. & Crepin, V. F. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infection and immunity 73, 2573-2585, doi:10.1128/IAI.73.5.2573-2585.2005 (2005).
8 Ritchie, J. M. & Waldor, M. K. The locus of enterocyte effacement-encoded effector proteins all promote enterohemorrhagic Escherichia coli pathogenicity in infant rabbits. Infection and immunity 73, 1466-1474, doi:10.1128/IAI.73.3.1466-1474.2005 (2005).
9 Elliott, S. J. et al. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infection and immunity 68, 6115-6126 (2000).
10 Li, M. et al. Comparative proteomic analysis of extracellular proteins of enterohemorrhagic and enteropathogenic Escherichia coli strains and their ihf and ler mutants. Applied and environmental microbiology 70, 5274-5282, doi:10.1128/AEM.70.9.5274-5282.2004 (2004).
11 Torres, A. G. et al. Ler and H-NS, regulators controlling expression of the long polar fimbriae of Escherichia coli O157:H7. Journal of bacteriology 189, 5916-5928, doi:10.1128/JB.00245-07 (2007).
12 Huang, L. H. & Syu, W. J. GrlA of enterohemorrhagic Escherichia coli O157:H7 activates LEE1 by binding to the promoter region. Journal of microbiology, immunology, and infection 41, 9-16 (2008).
13 Iyoda, S. et al. The GrlR-GrlA regulatory system coordinately controls the expression of flagellar and LEE-encoded type III protein secretion systems in enterohemorrhagic Escherichia coli. Journal of bacteriology 188, 5682-5692, doi:10.1128/JB.00352-06 (2006).
14 Tsai, N. P. et al. Multiple functions of l0036 in the regulation of the pathogenicity island of enterohaemorrhagic Escherichia coli O157:H7. The Biochemical journal 393, 591-599, doi:10.1042/BJ20051201 (2006).
15 Gauthier, A., Puente, J. L. & Finlay, B. B. Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infection and immunity 71, 3310-3319 (2003).
16 Andrade, A., Pardo, J. P., Espinosa, N., Perez-Hernandez, G. & Gonzalez-Pedrajo, B. Enzymatic characterization of the enteropathogenic Escherichia coli type III secretion ATPase EscN. Archives of biochemistry and biophysics 468, 121-127, doi:10.1016/j.abb.2007.09.020 (2007).
17 Lin, C. N. et al. Protein interactions and regulation of EscA in enterohemorrhagic E. coli. PloS one 9, e85354, doi:10.1371/journal.pone.0085354 (2014).
18 Monjaras Feria, J. et al. Role of EscP (Orf16) in injectisome biogenesis and regulation of type III protein secretion in enteropathogenic Escherichia coli. Journal of bacteriology 194, 6029-6045, doi:10.1128/JB.01215-12 (2012).
19 Lara-Tejero, M., Kato, J., Wagner, S., Liu, X. & Galan, J. E. A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331, 1188-1191, doi:10.1126/science.1201476 (2011).
20 Wong, A. R., Raymond, B., Collins, J. W., Crepin, V. F. & Frankel, G. The enteropathogenic E. coli effector EspH promotes actin pedestal formation and elongation via WASP-interacting protein (WIP). Cellular microbiology 14, 1051-1070, doi:10.1111/j.1462-5822.2012.01778.x (2012).
21 Lovdok, L. et al. Role of translational coupling in robustness of bacterial chemotaxis pathway. PLoS biology 7, e1000171, doi:10.1371/journal.pbio.1000171 (2009).
22 Schumperli, D., McKenney, K., Sobieski, D. A. & Rosenberg, M. Translational coupling at an intercistronic boundary of the Escherichia coli galactose operon. Cell 30, 865-871 (1982).
23 McCarthy, J. E. Post-transcriptional control in the polycistronic operon environment: studies of the atp operon of Escherichia coli. Molecular microbiology 4, 1233-1240 (1990).
24 Mossey, P. & Das, A. Expression of Agrobacterium tumefaciens octopine Ti-plasmid virB8 gene is regulated by translational coupling. Plasmid 69, 72-80, doi:10.1016/j.plasmid.2012.09.002 (2013).
25 Oppenheim, D. S. & Yanofsky, C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics 95, 785-795 (1980).
26 Romo-Castillo, M. et al. EscO, a functional and structural analog of the flagellar FliJ protein, is a positive regulator of EscN ATPase activity of the enteropathogenic Escherichia coli injectisome. Journal of bacteriology 196, 2227-2241, doi:10.1128/JB.01551-14 (2014).
27 Sperandio, V. et al. Activation of enteropathogenic Escherichia coli (EPEC) lee2 and lee3 operons by Ler. Molecular microbiology 38, 781-793 (2000).
28 Umanski, T., Rosenshine, I. & Friedberg, D. Thermoregulated expression of virulence genes in enteropathogenic Escherichia coli. Microbiology 148, 2735-2744 (2002).
29 Abe, H., Tatsuno, I., Tobe, T., Okutani, A. & Sasakawa, C. Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7. Infection and immunity 70, 3500-3509 (2002).
30 Lin, C. N. et al. A role of ygfZ in the Escherichia coli response to plumbagin challenge. Journal of biomedical science 17, 84, doi:10.1186/1423-0127-17-84 (2010).
31 Ku, C. P., Lio, J. C., Wang, S. H., Lin, C. N. & Syu, W. J. Identification of a third EspA-binding protein that forms part of the type III secretion system of enterohemorrhagic Escherichia coli. The Journal of biological chemistry 284, 1686-1693, doi:10.1074/jbc.M807478200 (2009).
32 Deana, A. & Belasco, J. G. Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes & development 19, 2526-2533, doi:10.1101/gad.1348805 (2005).
33 Bustamante, V. H., Santana, F. J., Calva, E. & Puente, J. L. Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Molecular microbiology 39, 664-678 (2001).
34 Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501-504, doi:10.1126/science.1184953 (2010).
35 Proshkin, S., Rahmouni, A. R., Mironov, A. & Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328, 504-508, doi:10.1126/science.1184939 (2010).
36 Lodato, P. B. & Kaper, J. B. Post-transcriptional processing of the lee4 operon in enterohaemorrhagic Escherichia coli. Molecular microbiology 71, 273-290, doi:10.1111/j.1365-2958.2008.06530.x (2009).
37 Chiaruttini, C., Milet, M., de Smit, M. & Springer, M. Translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and ribosomal proteins L20 and L35. Biochimie 78, 555-567 (1996).
38 Rex, G., Surin, B., Besse, G., Schneppe, B. & McCarthy, J. E. The mechanism of translational coupling in Escherichia coli. Higher order structure in the atpHA mRNA acts as a conformational switch regulating the access of de novo initiating ribosomes. The Journal of biological chemistry 269, 18118-18127 (1994).
39 Shirasu, K., Morel, P. & Kado, C. I. Characterization of the virB operon of an Agrobacterium tumefaciens Ti plasmid: nucleotide sequence and protein analysis. Molecular microbiology 4, 1153-1163 (1990).
40 Zupan, J., Muth, T. R., Draper, O. & Zambryski, P. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. The Plant journal : for cell and molecular biology 23, 11-28 (2000).
41 Fernandez, D., Spudich, G. M., Zhou, X. R. & Christie, P. J. The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. Journal of bacteriology 178, 3168-3176 (1996).
42 Osterman, I. A., Evfratov, S. A., Sergiev, P. V. & Dontsova, O. A. Comparison of mRNA features affecting translation initiation and reinitiation. Nucleic acids research 41, 474-486, doi:10.1093/nar/gks989 (2013).
43 Younis, R. et al. SepL resembles an aberrant effector in binding to a class 1 type III secretion chaperone and carrying an N-terminal secretion signal. Journal of bacteriology 192, 6093-6098, doi:10.1128/JB.00760-10 (2010).
44 Deng, W. et al. Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infection and immunity 73, 2135-2146, doi:10.1128/IAI.73.4.2135-2146.2005 (2005).
45 Tian, T. & Salis, H. M. A predictive biophysical model of translational coupling to coordinate and control protein expression in bacterial operons. Nucleic acids research 43, 7137-7151, doi:10.1093/nar/gkv635 (2015).
46 Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli. Clinical microbiology reviews 11, 142-201 (1998).
47 Deng, W. et al. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proceedings of the National Academy of Sciences of the United States of America 101, 3597-3602, doi:10.1073/pnas.0400326101 (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊