|
References 1. Lamb, J., et al., The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science, 2006. 313(5795): p. 1929-1935. 2. Bolstad, B.M., et al., A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 2003. 19(2): p. 185-193. 3. Barrett, T., et al., NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Research, 2007. 35(suppl 1): p. D760-D765. 4. Wang, Z., N.R. Clark, and A. Ma’ayan, Drug-induced adverse events prediction with the LINCS L1000 data. Bioinformatics, 2016. 32(15): p. 2338-2345. 5. Liu, C., et al., Compound signature detection on LINCS L1000 big data. Molecular BioSystems, 2015. 11(3): p. 714-722. 6. Ji, Z., et al., Integrating genomics and proteomics data to predict drug effects using binary linear programming. PloS one, 2014. 9(7): p. e102798. 7. Young, W.C., K.Y. Yeung, and A.E. Raftery, A Posterior Probability Approach for Gene Regulatory Network Inference in Genetic Perturbation Data. arXiv preprint arXiv:1603.04835, 2016. 8. van Dam, S., et al., Gene co-expression analysis for functional classification and gene–disease predictions. Briefings in Bioinformatics, 2017: p. bbw139. 9. Pearson, K., LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901. 2(11): p. 559-572. 10. Zhang, B. and S. Horvath, A general framework for weighted gene co-expression network analysis. Statistical applications in genetics and molecular biology, 2005. 4(1): p. 1128. 11. Liao, Q., et al., Large-scale prediction of long non-coding RNA functions in a coding–non-coding gene co-expression network. Nucleic acids research, 2011. 39(9): p. 3864-3878. 12. Presson, A.P., et al., Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC systems biology, 2008. 2(1): p. 95. 13. Consortium, G.O., The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research, 2004. 32(suppl 1): p. D258-D261. 14. Chua, H.N., W.-K. Sung, and L. Wong, Exploiting indirect neighbours and topological weight to predict protein function from protein–protein interactions. Bioinformatics, 2006. 22(13): p. 1623-1630. 15. Yang, J., et al., The I-TASSER Suite: protein structure and function prediction. Nature methods, 2015. 12(1): p. 7-8. 16. Deng, M., et al., Prediction of protein function using protein–protein interaction data. Journal of Computational Biology, 2003. 10(6): p. 947-960. 17. Kuramochi, M. and G. Karypis. Gene classification using expression profiles: A feasibility study. in Bioinformatics and Bioengineering Conference, 2001. Proceedings of the IEEE 2nd International Symposium on. 2001. IEEE. 18. Luscombe, N.M., et al., Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 2004. 431(7006): p. 308-312. 19. Joshi, T., et al., Genome-scale gene function prediction using multiple sources of high-throughput data in yeast Saccharomyces cerevisiae. Omics: a journal of integrative biology, 2004. 8(4): p. 322-333. 20. Stark, C., et al., BioGRID: a general repository for interaction datasets. Nucleic Acids Research, 2006. 34(suppl 1): p. D535-D539. 21. Kendall, M.G., The advanced theory of statistics. The advanced theory of statistics., 1946(2nd Ed).
|