跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃美菊
研究生(外文):Mei-Chu Huang
論文名稱:分析新世代人種優化生物晶片產出之雜交強度和基因型資料的整合分析工具
論文名稱(外文):An Integrated Analysis Tool for Analyzing Hybridization Intensities and Genotypes Using New-Generation Population-Optimized Human Arrays
指導教授:楊欣洲楊欣洲引用關係
指導教授(外文):Hsin-Chou Yang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物醫學資訊研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:75
中文關鍵詞:MicroarraySingle-nucleotide polymorphism (SNP)Fluorescence intensityAllele frequency (AF)Allelic imbalance (AI)Loss of heterozygosity (LOH)Long contiguous stretch of homozygosity (LCSH)Copy number variation (CNV)Copy number alteration (CNA)Circular binary segmentation (CBS)AF/LOH/LCSH/AI/CNV/CNA Enterprise (ALICE)
外文關鍵詞:微陣列單核苷酸多型性螢光強度等位基因頻率等位基因不平衡異結合型丟失連續長片段同結合型遺傳性拷貝數變異癌化性拷貝數異常環狀二元分段法ALICE整合分析工具
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:1
美國昂飛(Affymetrix)公司推出新世代人種優化之Axiom單核苷酸多型性(SNP)生物晶片,為一個具備成本效益、高密度與高通量特性的基因型鑑定平台。然而,沒有公開免費軟體可針對此平台所產生的雜交強度及基因型資料提供整合性基因體分析。本研究開發了一套分析單核苷酸多型性探針雜交強度和基因型資料的統計方法與系統,整合了等位基因頻率(AF)、等位基因不平衡(AI)、異結合型丟失(LOH)、連續長片段同結合型(LCSH)、遺傳性拷貝數變異(CNV)與癌化性拷貝數異常(CNA)等基因體分析方法。本研究共分析了3,236個使用數個不同單核苷酸多型性平台進行基因型鑑定的樣本的資料。實際資料分析的研究結果顯示我們所提出的等位基因頻率校正方法大幅度地增加了等位基因頻率估計的準確度;所提出的快速版環狀二元分段法(Quick-CBS)能夠有效地減少原版環狀二元分段法約30–67 %的計算時間。模擬分析研究結果呈現我們所提出整合AI與LOH/LCSH的CNV/CNA偵測方法能夠良好地控制偽陽性率(FPR),並且提供令人滿意的真陽性率(TPR)。此外,即時定量聚合酶連鎖反應(real-time qPCR)實驗成功地驗證了由我們提出的方法在分析Axiom單核苷酸多型性資料後所偵測到的拷貝數變異結果。我們另外準備了Array 6.0平台資料,利用昂飛公司的GTC軟體來分析這些已獲得生物驗證的拷貝數變異區段,結果發現GTC的分析只能成功偵測到部分區段。我們將所有提出的這些統計方法封裝成一個整合分析軟體ALICE(AF/LOH/LCSH/AI/CNV/CNA Enterprise),不僅提供圖形使用者介面以方便使用者進行分析,所有方法皆能在多核心處理器的設備上以平行運算的模式增加執行效率。ALICE軟體與其建構的參考資料庫提供了分析Axiom與其他單核苷酸多型性平台基因體資料的有用分析資源,這些資源皆可於http://hcyang.stat.sinica.edu.tw/software/ALICE.html下載。
Affymetrix Axiom single nucleotide polymorphism (SNP) arrays provide a cost-effective, high-density, and high-throughput genotyping solution for population-optimized analyses. However, no public software is available for the integrated genomic analysis of hybridization intensities and genotypes for this new-generation population-optimized genotyping platform. A set of statistical methods was developed for an integrated analysis of allele frequency (AF), allelic imbalance (AI), loss of heterozygosity (LOH), long contiguous stretch of homozygosity (LCSH), and copy number variation or alteration (CNV/CNA) on the basis of SNP probe hybridization intensities and genotypes. This study analyzed 3,236 samples that were genotyped using different SNP platforms. Our proposed AF adjustment method considerably increased the accuracy of AF estimation. The proposed quick circular binary segmentation algorithm for segmenting copy number reduced the computation time of the original segmentation method by 30–67 %. The proposed CNV/CNA detection, which integrates AI and LOH/LCSH detection, had a promising true positive rate and well-controlled false positive rate in simulation studies. Moreover, our real-time quantitative polymerase chain reaction experiments successfully validated the CNV/CNA that were identified in the Axiom data analyses using the proposed methods; some of the validated CNV/CNA were not detected in the Affymetrix Array 6.0 data analysis using the Affymetrix Genotyping Console. All analysis functions that they can be efficiently implemented in parallel on multi-core devices are packaged into the ALICE (AF/LOH/LCSH/AI/CNV/CNA Enterprise) software. ALICE and the used genomic reference databases, which can be downloaded from http://hcyang.stat.sinica.edu.tw/software/ALICE.html, are useful resources for analyzing genomic data from the Axiom and other SNP arrays.
Acknowledgments i
Chinese Abstract iv
English Abstract v
Contents vi
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Methods 4
2.1 Extraction of HI 4
2.2 Preprocessing of HI 4
2.3 Individual-level AF estimation with a CPA + LIM adjustment 8
2.4 Single-point index of AI detection 8
2.5 Single-point index of LOH/LCSH detection 9
2.6 Single-point index of CNV/CNA detection 10
2.7 Multipoint indices of AI, LOH/LCSH, and CNV/CNA detection 12
2.8 CN segmentation 13
Chapter 3 Real data analysis study 15
3.1 Sample materials and genotyping 15
3.2 Ethics, Consent and Permissions 16
3.3 Evaluation of proposed coefficient of preferential amplification or hybridization and linear interpolation method adjustment for AF estimation 16
3.4 Whole-genome AF (First panel in the graphical output of ALICE) 19
3.5 Detection of AI (Second panel in the graphical output of ALICE) 19
3.6 Detection of LOH/LCSH (Third panel in the graphical output of ALICE) 21
3.7 Detection of CNV/CNA (Fourth to sixth panels in the graphical output of ALICE) 21
3.8 Consistency in the results of Axiom and Array 6.0 in analyzing a pure tumor tissue sample 24
3.9 AF, AI, LOH/LCSH, and CNV/CNA analysis of admixed samples of tumor cells and corresponding normal cells 26
3.10 Paired-sample analysis 31
3.11 Real-time qPCR validation 36
3.11.1 Experimental procedure 36
3.11.2 Validation results 38
3.12 CN segmentation 41
Chapter 4 Simulation study 43
4.1 Simulation procedures 43
4.2 FPR of single-point CN detection 47
4.3 TPR of single-point CN detection 47
4.4 FPR of multipoint CN detection 47
4.5 TPR of multipoint CN detection 48
4.6 Effect of inter-marker spacing 50
Chapter 5 ALICE software 56
5.1 ALICE software 56
5.2 ALICE genomic reference databases 62
5.3 Availability of supporting data 62
Chapter 6 Conclusion and discussion 63
6.1 Conclusion 63
6.2 Discussion 63
References 68
1. Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet. 2007;39(7 Suppl):S16-21.
2. Schaaf CP, Wiszniewska J, Beaudet AL. Copy number and SNP arrays in clinical diagnostics. Annu Rev Genomics Hum Genet. 2011;12:25-51.
3. Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 2006;16(9):1136-48.
4. Yang HC, Huang MC, Li LH, Lin CH, Yu AL, Diccianni MB, et al. MPDA: microarray pooled DNA analyzer. BMC Bioinformatics. 2008;9:196.
5. Van Loo P, Nordgard SH, Lingjaerde OC, Russnes HG, Rye IH, Sun W, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010;107(39):16910-5.
6. Yang HC, Lin HC, Huang MC, Li LH, Pan WH, Wu JY, et al. A new analysis tool for individual-level allele frequency for genomic studies. BMC Genomics. 2010;11:415.
7. Chen GK, Chang X, Curtis C, Wang K. Precise inference of copy number alterations in tumor samples from SNP arrays. Bioinformatics. 2013;29(23):2964-70.
8. Macconaill LE, Aldred MA, Lu X, Laframboise T. Toward accurate high-throughput SNP genotyping in the presence of inherited copy number variation. BMC Genomics. 2007;8:211.
9. McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet. 2008;40(10):1166-74.
10. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758-64.
11. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110-4.
12. Sherborne AL, Hosking FJ, Prasad RB, Kumar R, Koehler R, Vijayakrishnan J, et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet. 2010;42(6):492-4.
13. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA, et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature. 2011;469(7330):362-7.
14. Shah S, Schrader KA, Waanders E, Timms AE, Vijai J, Miething C, et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet. 2013;45(10):1226-31.
15. Zhao X, Li C, Paez JG, Chin K, Janne PA, Chen TH, et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 2004;64(9):3060-71.
16. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444-54.
17. Shaikh TH, Gai X, Perin JC, Glessner JT, Xie H, Murphy K, et al. High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Res. 2009;19(9):1682-90.
18. Shlien A, Malkin D. Copy number variations and cancer. Genome Med. 2009;1(6):62.
19. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464(7289):704-12.
20. Girirajan S, Campbell CD, Eichler EE. Human copy number variation and complex genetic disease. Annu Rev Genet. 2011;45:203-26.
21. Marenne G, Chanock SJ, Malats N, Genin E. Advantage of using allele-specific copy numbers when testing for association in regions with common copy number variants. PLoS One. 2013;8(9):e75350.
22. Lou H, Li S, Jin W, Fu R, Lu D, Pan X, et al. Copy number variations and genetic admixtures in three Xinjiang ethnic minority groups. Eur J Hum Genet. 2015;23(4):536-42.
23. Yang HC, Liang YJ, Huang MC, Li LH, Lin CH, Wu JY, et al. A genome-wide study of preferential amplification/hybridization in microarray-based pooled DNA experiments. Nucleic Acids Res. 2006;34(15):e106.
24. Wong KK, Tsang YT, Shen J, Cheng RS, Chang YM, Man TK, et al. Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA. Nucleic Acids Res. 2004;32(9):e69.
25. Sugai T, Habano W, Uesugi N, Jiao YF, Nakamura SI, Yoshida T, et al. Frequent allelic imbalance at the ATM locus in DNA multiploid colorectal carcinomas. Oncogene. 2001;20(42):6095-101.
26. Arvanitis DA, Angelakis E, Koumantakis EE, Spandidos DA. Allelic imbalance in hMLH1 or BRCA2 loci associated with response of cervical and endometrial cancer to radiotherapy. Int J Mol Med. 2002;10(1):55-63.
27. Primdahl H, Wikman FP, von der Maase H, Zhou XG, Wolf H, Orntoft TF. Allelic imbalances in human bladder cancer: genome-wide detection with high-density single-nucleotide polymorphism arrays. J Natl Cancer Inst. 2002;94(3):216-23.
28. Li C, Beroukhim R, Weir BA, Winckler W, Garraway LA, Sellers WR, et al. Major copy proportion analysis of tumor samples using SNP arrays. BMC Bioinformatics. 2008;9:204.
29. Staaf J, Vallon-Christersson J, Lindgren D, Juliusson G, Rosenquist R, Hoglund M, et al. Normalization of Illumina Infinium whole-genome SNP data improves copy number estimates and allelic intensity ratios. BMC Bioinformatics. 2008;9:409.
30. Vogelstein B, Fearon ER, Kern SE, Hamilton SR, Preisinger AC, Nakamura Y, et al. Allelotype of colorectal carcinomas. Science. 1989;244(4901):207-11.
31. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, et al. p53: a frequent target for genetic abnormalities in lung cancer. Science. 1989;246(4929):491-4.
32. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994;368(6473):753-6.
33. Miller BJ, Wang D, Krahe R, Wright FA. Pooled analysis of loss of heterozygosity in breast cancer: a genome scan provides comparative evidence for multiple tumor suppressors and identifies novel candidate regions. Am J Hum Genet. 2003;73(4):748-67.
34. Yuan E, Li CM, Yamashiro DJ, Kandel J, Thaker H, Murty VV, et al. Genomic profiling maps loss of heterozygosity and defines the timing and stage dependence of epigenetic and genetic events in Wilms' tumors. Mol Cancer Res. 2005;3(9):493-502.
35. Gibson J, Morton NE, Collins A. Extended tracts of homozygosity in outbred human populations. Hum Mol Genet. 2006;15(5):789-95.
36. Li LH, Ho SF, Chen CH, Wei CY, Wong WC, Li LY, et al. Long contiguous stretches of homozygosity in the human genome. Hum Mutat. 2006;27(11):1115-21.
37. Ku CS, Naidoo N, Teo SM, Pawitan Y. Regions of homozygosity and their impact on complex diseases and traits. Hum Genet. 2011;129(1):1-15.
38. Yang HC, Chang LC, Huggins RM, Chen CH, Mullighan CG. LOHAS: loss-of-heterozygosity analysis suite. Genet Epidemiol. 2011;35(4):247-60.
39. Bridges CB. The Bar "Gene" a Duplication. Science. 1936;83(2148):210-1.
40. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683):525-8.
41. Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, et al. Fine-scale structural variation of the human genome. Nat Genet. 2005;37(7):727-32.
42. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061-73.
43. International HapMap C, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52-8.
44. Wellcome Trust Case Control C, Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464(7289):713-20.
45. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56-65.
46. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949-51.
47. Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genet. 2009;84(4):524-33.
48. Qiu F, Xu Y, Li K, Li Z, Liu Y, DuanMu H, et al. CNVD: text mining-based copy number variation in disease database. Hum Mutat. 2012;33(11):E2375-81.
49. Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH, Ding L, et al. The Pediatric Cancer Genome Project. Nat Genet. 2012;44(6):619-22.
50. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113-20.
51. Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet. 2007;8(8):639-46.
52. Bruder CE, Piotrowski A, Gijsbers AA, Andersson R, Erickson S, Diaz de Stahl T, et al. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet. 2008;82(3):763-71.
53. Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet. 2013;14(2):125-38.
54. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. Mapping copy number variation by population-scale genome sequencing. Nature. 2011;470(7332):59-65.
55. Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature. 2008;451(7181):998-1003.
56. Lapunzina P, Monk D. The consequences of uniparental disomy and copy number neutral loss-of-heterozygosity during human development and cancer. Biol Cell. 2011;103(7):303-17.
57. Dumas L, Kim YH, Karimpour-Fard A, Cox M, Hopkins J, Pollack JR, et al. Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res. 2007;17(9):1266-77.
58. O'Bleness M, Searles VB, Varki A, Gagneux P, Sikela JM. Evolution of genetic and genomic features unique to the human lineage. Nat Rev Genet. 2012;13(12):853-66.
59. Narva E, Autio R, Rahkonen N, Kong L, Harrison N, Kitsberg D, et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol. 2010;28(4):371-7.
60. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7(2):85-97.
61. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet. 2011;12(5):363-76.
62. Gardina PJ, Lo KC, Lee W, Cowell JK, Turpaz Y. Ploidy status and copy number aberrations in primary glioblastomas defined by integrated analysis of allelic ratios, signal ratios and loss of heterozygosity using 500K SNP Mapping Arrays. BMC Genomics. 2008;9:489.
63. Mowry BJ, Gratten J. The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Mol Psychiatry. 2013;18(1):38-52.
64. Zhu X, He F, Zeng H, Ling S, Chen A, Wang Y, et al. Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet. 2014;46(3):287-93.
65. International HapMap C. The International HapMap Project. Nature. 2003;426(6968):789-96.
66. International HapMap C, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851-61.
67. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-11.
68. Hoffmann TJ, Kvale MN, Hesselson SE, Zhan Y, Aquino C, Cao Y, et al. Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. Genomics. 2011;98(2):79-89.
69. Hoffmann TJ, Zhan Y, Kvale MN, Hesselson SE, Gollub J, Iribarren C, et al. Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. Genomics. 2011;98(6):422-30.
70. Kawai Y, Mimori T, Kojima K, Nariai N, Danjoh I, Saito R, et al. Japonica array: improved genotype imputation by designing a population-specific SNP array with 1070 Japanese individuals. J Hum Genet. 2015;60(10):581-7.
71. Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. 2013;14:59.
72. Houston RD, Taggart JB, Cezard T, Bekaert M, Lowe NR, Downing A, et al. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics. 2014;15:90.
73. Liu S, Sun L, Li Y, Sun F, Jiang Y, Zhang Y, et al. Development of the catfish 250K SNP array for genome-wide association studies. BMC Res Notes. 2014;7:135.
74. Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, et al. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics. 2014;15:823.
75. Xu J, Zhao Z, Zhang X, Zheng X, Li J, Jiang Y, et al. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). BMC Genomics. 2014;15:307.
76. Palti Y, Gao G, Liu S, Kent MP, Lien S, Miller MR, et al. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Mol Ecol Resour. 2015;15(3):662-72.
77. Lu X, Wang L, Chen S, He L, Yang X, Shi Y, et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet. 2012;44(8):890-4.
78. Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020-5.
79. Li Y, Zhang K, Chen H, Sun F, Xu J, Wu Z, et al. A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjogren's syndrome at 7q11.23. Nat Genet. 2013;45(11):1361-5.
80. Shi Y, Li L, Hu Z, Li S, Wang S, Liu J, et al. A genome-wide association study identifies two new cervical cancer susceptibility loci at 4q12 and 17q12. Nat Genet. 2013;45(8):918-22.
81. Zheng Y, Ding X, Chen Y, He M. The Guangzhou Twin Project: an update. Twin Res Hum Genet. 2013;16(1):73-8.
82. Steinlein OK, Aichinger E, Trucks H, Sander T. Mutations in FKBP10 can cause a severe form of isolated Osteogenesis imperfecta. BMC Med Genet. 2011;12:152.
83. Vanni N, Fruscione F, Ferlazzo E, Striano P, Robbiano A, Traverso M, et al. Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy. Ann Neurol. 2014;76(2):206-12.
84. Elhaik E, Greenspan E, Staats S, Krahn T, Tyler-Smith C, Xue Y, et al. The GenoChip: a new tool for genetic anthropology. Genome Biol Evol. 2013;5(5):1021-31.
85. Lipson M, Loh PR, Levin A, Reich D, Patterson N, Berger B. Efficient moment-based inference of admixture parameters and sources of gene flow. Mol Biol Evol. 2013;30(8):1788-802.
86. Jeong C, Alkorta-Aranburu G, Basnyat B, Neupane M, Witonsky DB, Pritchard JK, et al. Admixture facilitates genetic adaptations to high altitude in Tibet. Nat Commun. 2014;5:3281.
87. Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, Kirsanow K, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature. 2014;513(7518):409-13.
88. Sikora M, Carpenter ML, Moreno-Estrada A, Henn BM, Underhill PA, Sanchez-Quinto F, et al. Population genomic analysis of ancient and modern genomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe. PLoS Genet. 2014;10(5):e1004353.
89. Gamazon ER, Skol AD, Perera MA. The limits of genome-wide methods for pharmacogenomic testing. Pharmacogenet Genomics. 2012;22(4):261-72.
90. Hollegaard MV, Grove J, Grauholm J, Kreiner-Moller E, Bonnelykke K, Norgaard M, et al. Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source. BMC Genet. 2011;12:58.
91. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185-93.
92. Yang HC, Pan CC, Lu RC, Fann CS. New adjustment factors and sample size calculation in a DNA-pooling experiment with preferential amplification. Genetics. 2005;169(1):399-410.
93. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17(11):1665-74.
94. Cleveland WS, Devlin SJ. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association. 1988;83(403):596-610.
95. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5(4):557-72.
96. Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics. 2007;23(6):657-63.
97. Pan WH, Fann CS, Wu JY, Hung YT, Ho MS, Tai TH, et al. Han Chinese cell and genome bank in Taiwan: purpose, design and ethical considerations. Hum Hered. 2006;61(1):27-30.
98. Yang HC, Lin HC, Kang M, Chen CH, Lin CW, Li LH, et al. SAQC: SNP array quality control. BMC Bioinformatics. 2011;12:100.
99. MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 2014;42(Database issue):D986-92.
100. Nakamura M, Nishida N, Kawashima M, Aiba Y, Tanaka A, Yasunami M, et al. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet. 2012;91(4):721-8.
101. Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet. 2013;45(9):1044-9.
102. Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014;46(1):51-5.
103. Lai WR, Johnson MD, Kucherlapati R, Park PJ. Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics. 2005;21(19):3763-70.
104. Dellinger AE, Saw SM, Goh LK, Seielstad M, Young TL, Li YJ. Comparative analyses of seven algorithms for copy number variant identification from single nucleotide polymorphism arrays. Nucleic Acids Res. 2010;38(9):e105.
105. Li W, Olivier M. Current analysis platforms and methods for detecting copy number variation. Physiol Genomics. 2013;45(1):1-16.
106. Roy S, Motsinger Reif A. Evaluation of calling algorithms for array-CGH. Front Genet. 2013;4:217.
107. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991-5.
108. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet. 2007;39(10):1181-6.
109. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.
110. Nagai A, Hirata M, Kamatani Y, Muto K, Matsuda K, Kiyohara Y, et al. Overview of the BioBank Japan Project: Study design and profile. J Epidemiol. 2017;27(3S):S2-S8.
111. Hirata M, Nagai A, Kamatani Y, Ninomiya T, Tamakoshi A, Yamagata Z, et al. Overview of BioBank Japan follow-up data in 32 diseases. J Epidemiol. 2017;27(3S):S22-S8.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top