|
1. Amagasa, T., M. Yamashiro, and N. Uzawa, Oral premalignant lesions: from a clinical perspective. Int J Clin Oncol, 2011. 16(1): p. 5-14. 2. Napier, S.S. and P.M. Speight, Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med, 2008. 37(1): p. 1-10. 3. Downer, M.C., et al., A systematic review of test performance in screening for oral cancer and precancer. Oral Oncol, 2004. 40(3): p. 264-73. 4. Warnakulasuriya, K.A., et al., Utilization of primary health care workers for early detection of oral cancer and precancer cases in Sri Lanka. Bull World Health Organ, 1984. 62(2): p. 243-50. 5. Nagi, R., et al., Efficacy of light based detection systems for early detection of oral cancer and oral potentially malignant disorders: Systematic review. Med Oral Patol Oral Cir Bucal, 2016. 21(4): p. e447-55. 6. Vu, A.N., M. Matias, and C.S. Farah, Diagnostic accuracy of Narrow Band Imaging for the detection of oral potentially malignant disorders. Oral Dis, 2015. 21(4): p. 519-29. 7. David Huang, E.A.S., Charles P. Lin, Joel S. Schuman, William G. Stinson, Warren Chang, Michael R. Hee, Thomas Flotte, Kenton Gregory, Carmen A. Puliafito, and James G. Fujimoto, Optical Coherence Tomography. Science, 1991. 254(5035): p. 1178-1181. 8. Hamdoon, Z., et al., Optical coherence tomography in the assessment of suspicious oral lesions: an immediate ex vivo study. Photodiagnosis Photodyn Ther, 2013. 10(1): p. 17-27. 9. Tsai, M.T., et al., Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt, 2009. 14(4): p. 044028. 10. Lee, C.K., et al., Diagnosis of oral submucous fibrosis with optical coherence tomography. J Biomed Opt, 2009. 14(5): p. 054008. 11. Chen, Z., et al., Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett, 1997. 22(1): p. 64-6. 12. Joseph A. Izatt, M.D.K., and Siavash Yazdanfar, In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Optical Society of America, 1997. 22(18): p. 1439-1441. 13. Zhao, Y., et al., Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett, 2000. 25(2): p. 114-6. 14. EXALOS, K-Space Calibration for Swept Sources Application Note 2013. 15. M. Ratheesh Kumar, L.K.S.a.M.V.M., Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems. Physics in Medicine & Biology, 2016. 61. 16. Jiefeng Xi, L.H., Jiasong Li, and Xingde Li, Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography. Opt Express, 2010. 18(9): p. 9511-9517. 17. Yaqoob, Z., et al., Methods and application areas of endoscopic optical coherence tomography. J Biomed Opt, 2006. 11(6): p. 063001. 18. Tearney, G.J., et al., Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography: erratum. Opt Lett, 1996. 21(12): p. 912. 19. Gora, M.J., et al., Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. Biomed Opt Express, 2017. 8(5): p. 2405-2444. 20. Su, J., et al., In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography. Opt Express, 2007. 15(16): p. 10390-6. 21. R. A. McLaughlin, B.C.Q., A. Curatolo, R.W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders and D. D. Sampson, Imaging of Breast Cancer with Optical Coherence Tomography Needle Probes: Feasibility and Initial Results. IEEE J. Sel. Topics in Quantum Electronics, 2011. 18(3): p. 1191-1194. 22. Tumlinson, A.R., et al., Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon. Opt Express, 2006. 14(5): p. 1878-87. 23. Boppart, S.A., et al., Forward-imaging instruments for optical coherence tomography. Opt Lett, 1997. 22(21): p. 1618-20. 24. Huo, L., et al., Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging. Opt Express, 2010. 18(14): p. 14375-84. 25. Xie, J.S.a.H., MEMS-Based Endoscopic Optical Coherence Tomography. International J. Optics, 2011: p. 1-22. 26. Chu, Y.P.Z.L.T.X.C.R., Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage. J. Biomed. Opt, 2003. 8(4): p. 648-654. 27. Xie, T., et al., Fiber-optic-bundle-based optical coherence tomography. Opt Lett, 2005. 30(14): p. 1803-5. 28. Lee, A.M., et al., Wide-field in vivo oral OCT imaging. Biomed Opt Express, 2015. 6(7): p. 2664-74. 29. Lee, H.C., et al., Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter. Biomed Opt Express, 2016. 7(8): p. 2927-42. 30. Victor X.D. Yang, M.L.G., Bing Qi, Julius Pekar, Stuart Lo, Emily Seng-Yue, Alvin Mok, Brian C. Wilson, and I. Alex Vitkin High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance. Optical Society of America, 2003. 11(7): p. 794-809. 31. Bahar Davoudi, A.L., Beau A. Standish, Ghassan Allo, Kostadinka Bizheva and Alex Vitkin, Noninvasive in vivo structural and vascular imaging of human oral tissues with spectral domain optical coherence tomography. Biomed Opt Express, 2012. 3(5): p. 826-839. 32. Yang, J., et al., Handheld optical coherence tomography angiography. Biomed Opt Express, 2017. 8(4): p. 2287-2300. 33. Wojtkowski, M., et al., Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express, 2004. 12(11): p. 2404-22. 34. Z. Chen, T.E.M., S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Optics Letters, 1997. 22(14): p. 1119-1121. 35. Liu, G., et al., A comparison of Doppler optical coherence tomography methods. Biomed Opt Express, 2012. 3(10): p. 2669-80. 36. Liu, G., et al., High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography. Opt Express, 2012. 20(7): p. 7694-705. 37. Liu, G., et al., Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems. Opt Express, 2011. 19(12): p. 11429-40. 38. Liu, G., et al., Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging. Opt Express, 2011. 19(4): p. 3657-66. 39. Mahmud, M.S., et al., Review of speckle and phase variance optical coherence tomography to visualize microvascular networks. J Biomed Opt, 2013. 18(5): p. 50901. 40. Choi, W.J. and R.K. Wang, In vivo imaging of functional microvasculature within tissue beds of oral and nasal cavities by swept-source optical coherence tomography with a forward/side-viewing probe. Biomed Opt Express, 2014. 5(8): p. 2620-34. 41. Wang, Z., et al., Depth-encoded all-fiber swept source polarization sensitive OCT. Biomed Opt Express, 2014. 5(9): p. 2931-49.
|