|
1. Guth, A.M., et al., Liposomal clodronate treatment for tumour macrophage depletion in dogs with soft-tissue sarcoma. Vet Comp Oncol, 2013. 11(4): p. 296-305. 2. Vennin C, C.V., Warren SC, Lucas MC, Herrmann D, Magenau A, Melenec P,, et al., Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci Transl Med, 2017. 9. 3. Eroles, P., et al., Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev, 2012. 38(6): p. 698-707. 4. Chen, D.S., Hepatocellular carcinoma in Taiwan. Hepatol Res, 2007. 37 Suppl 2: p. S101-5. 5. Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013. 19(11): p. 1423-37. 6. Speiser, D.E., P.C. Ho, and G. Verdeil, Regulatory circuits of T cell function in cancer. Nat Rev Immunol, 2016. 16(10): p. 599-611. 7. Almatroodi, S.A., et al., Characterization of M1/M2 Tumour-Associated Macrophages (TAMs) and Th1/Th2 Cytokine Profiles in Patients with NSCLC. Cancer Microenviron, 2016. 9(1): p. 1-11. 8. Shen-Orr, S.S. and R. Gaujoux, Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr Opin Immunol, 2013. 25(5): p. 571-8. 9. Forner, A., J.M. Llovet, and J. Bruix, Hepatocellular carcinoma. The Lancet, 2012. 379(9822): p. 1245-1255. 10. Wang, H.-W., et al., Forfeited hepatogenesis program and increased embryonic stem cell traits in young hepatocellular carcinoma (HCC) comparing to elderly HCC. BMC Genomics, 2013. 14: p. 736. 11. Lee., D.D. and H.S. Seung., Learning the parts of objects by non-negative matrix factorization. Nature, 1999. 401: p. 788-79. 12. Brunet, J.P., et al., Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A, 2004. 101(12): p. 4164-9. 13. Lim, W.K., et al., Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics, 2007. 23(13): p. i282-8. 14. Yeung, O.W., et al., Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol, 2015. 62(3): p. 607-16. 15. Yuan, A., et al., Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression. Sci Rep, 2015. 5: p. 14273. 16. Biswas, S.K. and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol, 2010. 11(10): p. 889-96. 17. Saxena, R. and J. Kaur, Th1/Th2 cytokines and their genotypes as predictors of hepatitis B virus related hepatocellular carcinoma. World J Hepatol, 2015. 7(11): p. 1572-80. 18. Fridman, W.H., et al., The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer, 2012. 12(4): p. 298-306. 19. Crome, S.Q., et al., Natural killer cells regulate diverse T cell responses. Trends Immunol, 2013. 34(7): p. 342-9. 20. Chen, G., et al., Characterization of a novel CRAC inhibitor that potently blocks human T cell activation and effector functions. Mol Immunol, 2013. 54(3-4): p. 355-67. 21. Matsuda, S. and S. Koyasu, Mechanisms of action of cyclosporine. Immunopharmacology, 2000. 47: p. 119-125. 22. Gubin, M.M., et al., Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 2014. 515(7528): p. 577-81. 23. Zitvogel, L. and G. Kroemer, Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology, 2012. 1(8): p. 1223-1225. 24. Garg, T.K., et al., Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica, 2012. 97(9): p. 1348-56. 25. Galdiero, M.R., et al., Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol, 2013. 228(7): p. 1404-12. 26. Ghiringhelli, F., et al., CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med, 2005. 202(8): p. 1075-85. 27. Rosenblum, M.D., S.S. Way, and A.K. Abbas, Regulatory T cell memory. Nat Rev Immunol, 2016. 16(2): p. 90-101.
|