跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/20 16:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李冠毅
研究生(外文):Kuan-I Lee
論文名稱:瞬態電壓感受器錨蛋白亞型1陽離子通道在腦部病生理之角色
論文名稱(外文):The Pathophysiological Role of Transient Receptor Potential Ankyrin 1 Channel in Brain
指導教授:李宗玄
指導教授(外文):Tzong-Shyuan Lee
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:160
中文關鍵詞:瞬態電壓感受器錨蛋白亞型1陽離子通道小鼠行為分析神經細胞分化阿茲海默症鈣離子訊息傳遞發炎反應
外文關鍵詞:transient receptor potential ankyrin 1 channelmice behavior analysisneuron differentiationAlzheimer’s diseasecalcium signalinginflammation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
瞬態電壓感受器錨蛋白亞型1陽離子通道為一種非選擇性的鈣離子通道蛋白,其參與在痛覺傳導、感覺神經細胞分化、神經膠細胞發育,以及為一名控制發炎反應的看守者。然而,瞬態電壓感受器錨蛋白亞型1陽離子通道在腦部的正常生理功能以及在阿茲海默氏症的病程發展中其潛在的角色並不清楚。在本研究中,我們發現瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白功能缺失鼠出現抗焦慮行為、增加典型恐懼記憶制約反應以及增加社交偏好性;此外,瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白功能缺失鼠在空間物品認知反應以及空間記憶與學習能力上表現出更好的學習認知能力。接著我們更進一步在體內以及體外的實驗中發現在抑制或是剃除瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白的情況下,會增加神經細胞的神經軸索生長。此外,瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白功能缺失鼠改變了腦部寡突細胞的發育、降低軸突的神經束形成並降低髓鞘形成的程度,因而使得與髓鞘功能相關聯的動作行為受損。緊接著,為了釐清瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白在阿茲海默氏症病程發展中所扮演的角色,我們首先檢測瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白在阿茲海默氏症的模式動物腦部中的蛋白表達。我們發現瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白的蛋白表現的確在澱粉樣前驅蛋白/早老蛋白基因轉殖鼠的腦部與野生型小鼠相比有增加的趨勢;並且其增加的現象主要是集中在海馬迴中的星狀膠細胞中。在缺失瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白功能的澱粉樣前驅蛋白/早老蛋白基因轉殖鼠減緩了阿茲海默氏症相關的行為失能、澱粉樣蛋白的沉積以及促發炎細胞激素的製造,但卻增加了在腦部受損區域的星狀膠細胞增生。我們發現星狀膠細胞以及瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白轉殖的人類胚胎腎臟293細胞在受到纖維聚合化的澱粉樣蛋白刺激時會活化瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白並引起鈣離子的流入細胞內;而該現象則可以藉由破壞瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白的功能、藥物抑制瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白的活性或是去除細胞外的鈣離子等方式來終止。此外,抑制瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白活性則可降低在星狀膠細胞以及澱粉樣前驅蛋白/早老蛋白基因轉殖鼠腦部中受到纖維聚合化的澱粉樣蛋白的刺激所增加的蛋白去磷酸酶2B的活性。藥物抑制蛋白去磷酸酶2B的活性則能夠降低星狀膠細胞以及澱粉樣前驅蛋白/早老蛋白基因轉殖鼠腦部中受到纖維聚合化的澱粉樣蛋白刺激下所造成的發炎細胞激素製造、核因子活化B細胞輕鏈增強子與核因子活化T細胞等轉錄因子的活化以及星狀膠細胞增生。此外,抑制瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白的活性則會惡化在星狀膠細胞以及澱粉樣前驅蛋白/早老蛋白基因轉殖鼠腦部中受到澱粉樣蛋白刺激所造成的星狀膠細胞增生,但卻能夠抑制澱粉樣蛋白促進的蛋白去磷酸酶2B活化、發炎細胞激素製造、以及核因子活化B細胞輕鏈增強子與核因子活化T細胞等轉錄因子的活化。總結來說,我們的研究結果顯示瞬態電壓感受器錨蛋白亞型1陽離子通道蛋白不僅在一般情況下,對於腦部的生理功能包括神經細胞的發育以及白質的成熟過程中扮演了重要的角色,也參與在阿茲海默氏症的病程發展,更證實是透過調節星狀膠細胞造成的發炎反應,該結果提供了對於阿茲海默氏症新的治療方向以及標的。
Transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel which contributed in pain transduction, sensory neuron differentiation, development of glia cells and as a gatekeeper of inflammation. However, the potential roles of TRPA1 channel in physiological functions of brain and in the pathogenesis of Alzheimer’s disease (AD) are not fully resolved. Our data demonstrated that genetic deletion of TRPA1 channel in mice (TRPA1-/-) mediated anxiolytic behavior, increased classic fear conditioning and social preference. Moreover, TRPA1-/- mice increased ability of spatial object cognition, learning and memory. We further identified that inhibition or genetic deletion of TRPA1 activity increased the neurites outgrowth in vivo and in vitro experiments. In addition, deficient of TRPA1 channel in mice modified the development of oligodendrocytes in brain and decreased axonal bundles formation and level of myelination, thus impaired the myelin-dependent motor functions. Next, to further investigated the pathological role of TRPA1 channel in AD, we firstly examined the protein expression of TRPA1 channel in brain animal of AD. The TRPA1 expression was higher in brains, mainly astrocytes of the hippocampus, from amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (APP/PS1 Tg) mice than wild-type mice. Ablation of TRPA1 channel function in APP/PS1 Tg mice alleviated AD-related behavioral dysfunction, amyloid  (A plaque deposition and pro-inflammatory cytokine production but increased astrogliosis in brain lesions. TRPA1 channel was activated, thus trigger Ca2+ influx in both astrocytes and TRPA1-transfected human embryonic kidney 293 cells treated with fibrilized A; these were abrogated by disruption of TRPA1 channel function, pharmacological inhibition of TRPA1 channel activity or removal of extracellular Ca2+. In addition, inhibition of TRPA1 channel activity diminished fibrilized A-increased activity of protein phosphatase 2B (PP2B, also called calcineurin) in astrocytes and in APP/PS1 Tg mice. Pharmacological inhibition of PP2B activity diminished the fibrilized Aβ–induced production of inflammatory cytokines, activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor of activated T-cells (NFAT) and astrogliosis in astrocytes. In addition, inhibition of TRPA1 channel activity exacerbated Aβ–induced astrogliosis but inhibited Aβ–mediated PP2B activation, the production of inflammatory cytokines and activities of transcriptional factors NF-κB and NFAT in astrocytes and in APP/PS1 Tg mice. These observations support the crucial role of TRPA1 channel in regulating the functions of brain which was consistent with neuron development and maturation of white matter. In AD, our findings suggest that TRPA1 channel may be a crucial regulator in astrocyte-derived inflammation and pathogenesis of AD and may be a therapeutic target for treatment of AD.
Table of Contents
Table of Contents i
致謝 xiii
Abbreviations xv
摘要 xix
Abstract xxii
Chapter 1 Introduction 1
1.1 Transient receptor potential ankyrin 1 channel 2
1.1.1 Structure and ligands of TRPA1 channel 2
1.1.2 Biological functions of TRPA1 channel 4
(1) In sensory neuron 4
(2) In brain 5
(3) In non-neuronal cell and tissue 5
1.1.3 Regulation of TRPA1 channel 6
(1) Covalent modification 6
(2) G protein-coupled receptors 7
(3) Ca2+ content 8
(4) Desensitization 9
(5) Others 10
1.2 Physiology functions of brain 10
1.2.1 Composition of brain 11
1.2.2 Neuron differentiation and behaviors outcome 11
1.2.3 Ca2+ signals in neurons differentiation 12
1.2.4 Myelination and motor function 13
1.2.5 Ca2+ signal in oligodendrocytes maturation 14
1.3 Alzheimer’s disease 15
1.3.1 Pathogenesis of AD 15
(1) Extracellular senile plaques 16
(2) Intracellular neurofibrillary tangles 17
1.3.2 Cholesterol metabolism and AD pathogenesis 17
(1) Cholesterol metabolism in brain 18
(2) Cholesterol metabolism and A production 19
(3) Cholesterol metabolism and A clearance 20
1.3.3 Ca2+ current and AD 20
1.3.4 Neuroinflammation in AD 22
1.3.5 Astrocyte in neuroinflammation of AD 22
(1) Astrogliosis 23
(2) Protein phosphatase 2B 24
(3) NF-B, NFAT and cytokines 25
1.3.6 TRP channel in AD 26
1.4 Objective 28
Chapter 2 Materials and methods 29
2.1 Reagents 30
2.2 Cell culture 31
2.3 Animals 32
2.4 Genotyping of APP/PS1 Tg/TRPA1-/- mice 33
2.5 Western blot analysis 34
2.6 Plasmid constructs 35
2.7 Transient transfection 35
2.8 siRNA transfection 36
2.9 Histology and staining 36
2.10 Immunohistochemistry staining 36
2.11 Detection of Ca2+ influx 37
2.12 Measurement of inflammatory cytokines 37
2.13 Measurement of DNA-binding activity on NF-B and NFAT 37
2.14 Measurement of PP2B activity 37
2.15 Fibrilization of A1–42 37
2.16 Open field activity test 38
2.17 Elevated plus maze 38
2.18 Classical fear conditioning 39
2.19 Social preference test 39
2.20 Hippocampus-dependent object cognition 40
2.21 Morris water maze 41
2.22 Rotarod test 42
2.23 Nest building test 42
2.24 Y-maze test 42
2.25 Statistical analysis 43
Chapter 3 Results 44
3.1 Genetic ablation of TRPA1 channel decreases anxiety-like behaviors in mice 45
3.2 Loss function of TRPA1 channel promotes both hippocampus-dependent fear-related learning and amygdala-dependent fear-related memory 45
3.3 Functional loss of TRPA1 channel in mice leads to enhanced social recognition behavior 46
3.4 TRPA1-/- mice exhibit better hippocampus-dependent learning and memory and cognition 46
3.5 Functional ablation of TRPA1 channel increases neurite integrity both in vivo and in vitro 47
3.6 Functional loss of TRPA1 channel impairs the motor function and disrupts axonal bundle organization and oligodendrocyte composition 48
3.7 The expression of TRPA1 channel is upregulated in astrocytes of AD lesions 49
3.8 Genetic loss of function of TRPA1 channel on an APP/PS1 Tg background improves nest building and spatial learning and memory 49
3.9 Deletion of TRPA1 channel function on APP/PS1 Tg background decreases Adeposition in brain lesions and mitigates inflammation but aggravates astrogliosis 51
3.10 A-elicited increase in intracellular Ca2+ in astrocytes is TRPA1-dependent 52
3.11 TRPA1 channel plays a crucial role in A-mediated inflammatory responses and astrogliosis of astrocytes 53
3.12 TRPA1-Ca2+ signaling plays a crucial role in A-mediated PP2B activation of astrocytes 54
Chapter 4 Discussion and conclusion 56
Chapter 5 Figures 70
Figure 1. The protein expression of TRPA1 channel in brain is increased during postnatal development. 71
Figure 2. Loss function of TRPA1 channel doesn’t interfere with ability of locomotion in male mice. 72
Figure 3. Loss function of TRPA1 channel doesn’t interfere with ability of locomotion in female mice. 73
Figure 4. Loss function of TRPA1 channel presents anxiolytic-like behavior in male mice. 74
Figure 5. Loss function of TRPA1 channel presents anxiolytic-like behavior in female mice. 75
Figure 6. Genetic deletion of TRPA1 channel function enhances the ability of hippocampus-dependent fear-related learning and amygdala-dependent fear-related memory in male mice. 76
Figure 7. Genetic deletion of TRPA1 channel function enhances the ability of hippocampus-dependent fear-related learning and amygdala-dependent fear-related memory in female mice. 77
Figure 8. Male TRPA1-/- mice exhibit enhanced social preference between stranger and familiar mice as interactive partners 78
Figure 9. Female TRPA1-/- mice exhibit enhanced social preference between stranger and familiar mice as interactive partners 79
Figure 10. Male TRPA1-/- mice show better performance in the hippocampus-dependent novel location recognition. 80
Figure 11. Female TRPA1-/- mice show better performance in the hippocampus-dependent novel location recognition. 81
Figure 12. Male TRPA1-/- mice require more time on learning but exhibit significant hippocampus-dependent spatial memory retention. 82
Figure 13. Female TRPA1-/- mice require more time on learning but exhibit significant hippocampus-dependent spatial memory retention. 83
Figure 14. Functional deletion of TRPA1 channel in mice doesn’t interfere with brain morphology. 84
Figure 15. TRPA1-/- mice show altered neurite structure of neuron in cortex and hippocampus. 85
Figure 16. TRPA1-/- mice show increased MAP-2 protein expression in brain. 86
Figure 17. The protein expression of TRPA1 is increased during RA-induced differentiation of Neuro-2a cells. 87
Figure18. Pharmacological inhibition of TRPA1 activity increased the neurites outgrowth in RA-induced differentiation of Neuro-2a cells. 88
Figure 19. Knock down with TRPA1 channel by siRNA increased the neurites outgrowth in RA-induced differentiation of Neuro-2a cells. 89
Figure 20. Pharmacological activation of TRPA1 activity decreased the neurites outgrowth in RA-induced differentiation of Neuro-2a cells. 90
Figure 21. Over expression of TRPA1 channel decreased the neurites outgrowth in RA-induced differentiation of Neuro-2a cells. 91
Figure 22. Male TRPA1-/- mice show impaired the motor function in rotarod test. 92
Figure 23. Female TRPA1-/- mice show impaired the motor function in rotarod test. 93
Figure 24. TRPA1-/- mice show altered axonal bundles in striatum. 94
Figure 25. TRPA1-/- mice show possess fragmented axonal bundles and decreased MBP expression. 95
Figure 26. TRPA1-/- mice exhibit deregulated oligodendrocyte maturation process in brain. 96
Figure 27. A proposed role of TRPA1 channel in neuron and oligodendrocyte development and behavior outcomes. 97
Figure 28. The protein expression TRPA1 channel is increased in APP/PS1 Tg mice than WT mice. 98
Figure 29. The TRPA1 channel is observed in endothelium of blood vessel and astrocytes in brain of WT mice. 99
Figure 30. The TRPA1 channel is observed in endothelium of blood vessel, neurons and astrocytes in brain of APP/PS1 Tg mice. 100
Figure 31. Generation of APP/PS1 Tg/TRPA1-/- mice. 101
Figure 32. APP/PS1 Tg/TRPA1-/- mice don’t show difference of locomotion activity. 102
Figure 33. Loss function of TRPA1 channel improves nest building in APP/PS1 Tg mice. 103
Figure 34. APP/PS1 Tg/TRPA1-/- mice exhibit improved ability of spatial learning and memory in Y-maze. 104
Figure 35. Loss function of TRPA1 channel improves spatial learning and memory in MWM in APP/PS1 Tg mice. 105
Figure 36. Ablation of TRPA1 channel function decreases A deposition in brain lesions of APP/PS1 Tg mice. 106
Figure 37. Loss of TRPA1 channel function decreases A expression but increases CTF level in brain of APP/PS1 Tg mice. 107
Figure 38. Ablation of TRPA1 channel function decreases ABCA1 and LRP-1 but not apoE expression in brain of APP/PS1 Tg mice. 108
Figure 39. Genetic disruption of TRPA1 channel function decreases inflammation in APP/PS1 Tg mice. 109
Figure 40. Loss of TRPA1 channel function decreases astrocyte-derived cytokines production in APP/PS1 Tg mice. 110
Figure 41. Genetic disruption of TRPA1 channel function increases astrogliosis in APP/PS1 Tg mice. 111
Figure 42. Different degree of Aβ fibrilization induces diverse inflammatory cytokine production in primary astrocytes. 112
Figure 43. Administration of A doesn’t altered protein level of TRPA1 channel in astrocytes. 113
Figure 44. A elicits Ca2+ influx in astrocytes. 114
Figure 45. Functional loss of TRPA1 channel abrogates A-induced Ca2+ influx in astrocytes. 115
Figure 46. Pharmacological inhibition of TRPA1 activity and chelation of Ca2+ diminish A-induced Ca2+ influx in astrocytes. 116
Figure 47. Overexpression of TRPA1 channel in HEK293 cells. 117
Figure 48. A elicits TRPA1-dependent Ca2+ influx in HEK293 cells. 118
Figure 49. Treatment with A and TRPA1 agonist mediate TRPA1-dependent Ca2+ influx in HEK293 cells. 119
Figure 50. Pharmacological inhibition of TRPA1 activity and chelation of Ca2+ diminish A-induced Ca2+ influx in HEK293 cells. 120
Figure 51. TRPA1 is crucial in regulating A-induced inflammatory response in astrocytes. 121
Figure 52. TRPA1 is crucial in regulating A-induced astrogliosis in astrocytes. 122
Figure 53. PP2B expression is observed on astrocytes. 123
Figure 54. Loss of TRPA1 function doesn’t alter the PP2B expression in brain. 124
Figure 55. Loss of TRPA1 function under APP/PS1 Tg background decrease PP2B activity in brain. 125
Figure 56. Genetic loss of TRPA1 diminishes A-induced PP2B activation in astrocytes. 126
Figure 57. Pharmacological inhibition of TRPA1 activity and chelation of Ca2+ diminish A-induced PP2B activation in astrocytes. 127
Figure 58. PP2B is crucial in regulating A-induced inflammatory response in astrocytes. 128
Figure 59. PP2B plays an important role in regulating A-induced astrogliosis in astrocytes. 129
Figure 60. TRPA1−Ca2+−PP2B signaling pathway in Aβ−triggered activation of NF-κB and NFAT and inflammation in astrocytes. 130
References 131
References
1. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated b cold temperatures. Cell. 2003; 112: 819-829.
2. Caspani O, Heppenstall PA. TRPA1 and cold transduction: an unresolved issue? J Gen Physiol. 2009; 133: 245-249.
3. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem. 2007; 76: 387-417.
4. Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol. 2012; 166: 510-521.
5. Koivisto A, Hukkanen M, Saarnilehto M, Chapman H, Kuokkanen K, Wei H, Viisanen H, Akerman KE, Lindstedt K, Pertovaara A. Inhibiting TRPA1 ion channel reduces loss of cutaneous nerve fiber function in diabetic animals: sustained activation of the TRPA1 channel contributes to the pathogenesis of peripheral diabetic neuropathy. Pharmacol Res. 2012; 65: 149-158.
6. García-Añoveros J, Nagata K. TRPA1. Handb Exp Pharmacol. 2007; 179: 347-362.
7. Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S, Hele DJ, Maher SA, Freund-Michel V, Morice AH. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am J Respir Crit Care Med. 2009; 180: 1042-1047.
8. Fajardo O, Meseguer V, Belmonte C, Viana F. TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J Neurosci. 2008; 28: 7863-7875.
9. Lapointe TK, Altier C. The role of TRPA1 in visceral inflammation and pain. Channels (Austin). 2011; 5: 525-529.
10. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA. Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci. 2007; 10: 277-279.
11. Bautista DM, Pellegrino M, Tsunozaki M. TRPA1: A gatekeeper for inflammation. Annu Rev Physiol. 2013; 75: 181-200.
12. Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G. ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium. 2007; 42: 427-438.
13. Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K. TRPA1 induced in sensory neuron contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest. 2005; 115: 2393-2401.
14. del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, Petrus MJ, Zhao M, D’Amours M, Deering N, Brenner GJ, Costigan M, Hayward NJ, Chong JA, Fanger CM, Woolf CJ, Patapoutian A, Moran MM. TRPA1 contributes to cold hypersensitivity. J Neurosci. 2010; 30: 15165–15174.
15. Chen J, Joshi SK, Di Domenico S, Perner RJ, Mikusa JP, Gauvin DM, Segreti JA, Han P, Zhang XF, Niforatos W, Bianchi BR, Baker SJ, Zhong C, Simler GH, McDonald HA, Schmidt RG, McGaraughty SP, Chu KL, Faltynek CR, Kort ME, Reilly RM, Kym PR. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain. 2011; 152: 1165–1172.
16. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006; 124: 1269-1282.
17. Caterina MJ. Chemical biology: sticky spices. Nature. 2007; 445: 491-492.
18. Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci. 2008; 28: 2485-2494.
19. El Andaloussi-Lilja J, Lundqvist J, Forsby A. TRPV1 expression and activity during retinoic acid-induced neuronal differentiation. Neurochem Int. 2009; 55: 768-774.
20. Louhivuori LM, Bart G, Larsson KP, Louhivuori V, Näsman J, Nordström T, Koivisto AP, Akerman KE. Differentiation dependent expression of TRPA1 and TRPM8 channels in IMR-32 human neuroblastoma cells. J Cell Physiol. 2009; 221: 67-74.
21. Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res. 2009; 336: 349-384.
22. Wu D, Huang W, Richardson PM, Priestley JV, Liu M. TRPC4 in rat dorsal root ganglion neurons is increased after nerve injury and is necessary for neurite outgrowth. J Biol Chem. 2008; 283: 416-426.
23. Hjerling-Leffler J, Alqatari M, Ernfors P, Koltzenburg M. Emergence of functional sensory subtypes as defined by transient receptor potential channel expression. J Neurosci. 2007; 27: 2435-2443.
24. Doihara H, Nozawa K, Kawabata-Shoda E, Kojima R, Yokoyama T, Ito H. Molecular cloning and characterization of dog TRPA1 and AITC stimulate the gastrointestinal motility through TRPA1 in conscious dogs. Eur J Pharmacol. 2009; 617: 124-129.
25. Jo KD, Lee KS, Lee WT, Hur MS, Kim HJ. Expression of transient receptor potential channels in the ependymal cells of the developing rat brain. Anat Cell Biol. 2013; 46: 68-78.
26. Shigetomi E, Jackson-Weaver O, Huckstepp RT, O'Dell TJ, Khakh BS. TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive D-serine release. J Neurosci. 2013; 33: 10143-10153.
27. Clarke LE, Attwell D. An astrocyte TRP switch for inhibition. Nat Neurosci. 2011; 15: 3-4.
28. Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS. TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci. 2011; 15: 70-80.
29. de Moura JC, Noroes MM, Rachetti Vde P, Soares BL, Preti D, Nassini R, Materazzi S, Marone IM, Minocci D, Geppetti P, Gavioli EC, André E. The blockade of transient receptor potential ankirin 1 (TRPA1) signalling mediates antidepressant- and anxiolytic-like actions in mice. Br J Pharmacol. 2014; 171: 4289-4299.
30. Hamilton NB, Kolodziejczyk K, Kougioumtzidou E, Attwell D. Proton-gated Ca(2+)-permeable TRP channels damage myelin in conditions mimicking ischaemia. Nature. 2016; 529: 523-527.
31. Nassini R, Pedretti P, Moretto N, Fusi C, Carnini C, Facchinetti F, Viscomi AR, Pisano AR, Stokesberry S, Brunmark C, Svitacheva N, McGarvey L, Patacchini R, Damholt AB, Geppetti P, Materazzi S. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS One. 2012; 7(8): e42454.
32. Lin AH, Liu MH, Ko HK, Perng DW, Lee TS, Kou YR. Lung Epithelial TRPA1 Transduces the Extracellular ROS into Transcriptional Regulation of Lung Inflammation Induced by Cigarette Smoke: The Role of Influxed Ca²⁺. Mediators Inflamm. 2015; 2015:148367.
33. Bodkin JV, Brain SD. Transient receptor potential ankyrin 1: emerging pharmacology and indications for cardiovascular biology. Acta Physiol (Oxf). 2011; 203: 87-98.
34. Earley S. TRPA1 channels in the vasculature. Br J Pharmacol. 2012; 167: 13-22.
35. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004; 41: 849-857.
36. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest. 2007; 117: 1979-1987.
37. Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, Cui X, Tominaga M, Noguchi K. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain. 2008; 131: 1241-1251.
38. Chen Y, Yang C, Wang ZJ. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience. 2011; 193: 440-451.
39. Bessac BF, Jordt SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda). 2008; 23: 360-370.
40. Akopian AN, Ruparel NB, Jeske NA, Hargreaves KM. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol. 2007; 583: 175-193.
41. Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem. 2008; 283: 32691-32703.
42. Andrade EL, Meotti FC, Calixto JB. TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther. 2012; 133: 189-204.
43. Nagata K, Duggan A, Kumar G, García-Añoveros J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci. 2005; 25: 4052-4061.
44. Banke TG, Wickenden AD. Intracellular zinc irritates TRPA1. Nat Chem Biol. 2009; 5: 141-142.
45. Zhou Y, Suzuki Y, Uchida K, Tominaga M. Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity. Nat Commun. 2013; 4: 2399.
46. Kandel ER, Schwartz JH, Jessell T M. Principles of neural science. 2000.
47. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010; 20: 327-348.
48. Blakemore SJ. Imaging brain development: the adolescent brain. Neuroimage. 2012; 61: 397-406.
49. Coque L, Mukherjee S, Cao JL, Spencer S, Marvin M, Falcon E, Sidor MM, Birnbaum SG, Graham A, Neve RL, Gordon E, Ozburn AR, Goldberg MS, Han MH, Cooper DC, McClung CA. Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockΔ19 mouse model of mania. Neuropsychopharmacology. 2011; 36: 1478-1488.
50. Lee PC, Dodart JC, Aron L, Finley LW, Bronson RT, Haigis MC, Yankner BA, Harper JW. Altered social behavior and neuronal development in mice lacking the Uba6-Use1 ubiquitin transfer system. Mol Cell. 2013; 50: 172-184.
51. Beutler LR, Eldred KC, Quintana A, Keene CD, Rose SE, Postupna N, Montine TJ, Palmiter RD. Severely impaired learning and altered neuronal morphology in mice lacking NMDA receptors in medium spiny neurons. PLoS One. 2011; 6: e28168.
52. Gu X, Spitzer NC. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature. 1995; 375: 784-787.
53. Gu X, Spitzer NC. Breaking the code: regulation of neuronal differentiation by spontaneous calcium transients. Dev Neurosci. 1997; 19: 33-41.
54. Gu X, Olson EC, Spitzer NC. Spontaneous neuronal calcium spikes and waves during early differentiation. J Neurosci. 1994; 14: 6325-6335.
55. Hur EM, Zhou FQ. GSK3 signalling in neural development. Nat Rev Neurosci. 2010; 11: 539-551.
56. Chen BY, Wang X, Wang ZY, Wang YZ, Chen LW, Luo ZJ. Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β-catenin signaling pathway. J Neurosci Res. 2013; 91: 30-41.
57. Rosso SB, Inestrosa NC. WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci. 2013; 7: 103.
58. Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee KS, Oh W, Lee JK, Jeun SS. Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res. 2008; 86: 2168-2178.
59. Rosenberg SS, Spitzer NC. Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol. 2011; 3: a004259.
60. Spitzer NC, Lautermilch NJ, Smith RD, Gomez TM. Coding of neuronal differentiation by calcium transients. Bioessays. 2000; 22: 811-817.
61. Ruat M, Traiffort E. Roles of the calcium sensing receptor in the central nervous system. Best Pract Res Clin Endocrinol Metab. 2013; 27: 429-442.
62. Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, Rapoport JL, Evans AC. Structural maturation of neural pathways in children and adolescents: in vivo study. Science. 1999; 283: 1908-1911.
63. Giedd JN. Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci. 2004; 1021: 77-85.
64. Kuhn PL, Petroulakis E, Zazanis GA, McKinnon RD. Motor function analysis of myelin mutant mice using a rotarod. Int J Dev Neurosci. 1995; 13: 715-722.
65. Sampaio-Baptista C, Khrapitchev AA, Foxley S, Schlagheck T, Scholz J, Jbabdi S, DeLuca GC, Miller KL, Taylor A, Thomas N, Kleim J, Sibson NR, Bannerman D, Johansen-Berg H. Motor skill learning induces changes in white matter microstructure and myelination. J Neurosci. 2013; 33: 19499-19503.
66. Schmithorst VJ, Wilke M, Dardzinski BJ, Holland SK. Cognitive functions correlate with white matter architecture in a normal pediatric population: a diffusion tensor MRI study. Hum Brain Mapp. 2005; 26: 139-147.
67. Yurgelun-Todd DA, Killgore WD, Young AD. Sex differences in cerebral tissue volume and cognitive performance during adolescence. Psychol Rep. 2002; 91: 743-757.
68. Casey BJ, Giedd JN, Thomas KM. Structural and functional brain development and its relation to cognitive development. Biol Psychol. 2000; 54: 241-257.
69. Chattopadhyay N, Espinosa-Jeffrey A, Tfelt-Hansen J, Yano S, Bandyopadhyay S, Brown EM, de Vellis J. Calcium receptor expression and function in oligodendrocyte commitment and lineage progression: potential impact on reduced myelin basic protein in CaR-null mice. J Neurosci Res. 2008; 86: 2159-2167.
70. Pfeiffer SE, Warrington AE, Bansal R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 1993; 3: 191-197.
71. Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev. 2001; 81: 871-927.
72. Takeda M, Nelson DJ, Soliven B. Calcium signaling in cultured rat oligodendrocytes. Glia. 1995; 14: 225-236.
73. Moorman SJ, Hume RI. Contact with myelin evokes a release of calcium from internal stores in neonatal rat oligodendrocytes in vitro. Glia. 1994; 10: 202-210.
74. Paez PM, Spreuer V, Handley V, Feng JM, Campagnoni C, Campagnoni AT. Increased expression of golli myelin basic proteins enhances calcium influx into oligodendroglial cells. J Neurosci. 2007; 27: 12690-12699.
75. Waggener CT, Dupree JL, Elgersma Y, Fuss B. CaMKIIβ regulates oligodendrocyte maturation and CNS myelination. J Neurosci. 2013; 33: 10453-10458.
76. Emery B. Regulation of oligodendrocyte differentiation and myelination. Science. 2010; 330: 779-782.
77. Griffith LC, Lu CS, Sun XX. CaMKII, an enzyme on the move: regulation of temporospatial localization. Mol Interv. 2003; 3: 386-403.
78. Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R, Ffrench-Constant C, Franklin RJ, Altmann F, Lubec G, Kotter MR. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain. 2009; 132: 465-481.
79. Mato S, Victoria Sánchez-Gómez M, Matute C. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia. 2010; 58: 1739-1747.
80. Chattopadhyay N, Ye CP, Yamaguchi T, Kifor O, Vassilev PM, Nishimura R, Brown EM. Extracellular calcium-sensing receptor in rat oligodendrocytes: expression and potential role in regulation of cellular proliferation and an outward K+ channel. Glia. 1998; 24: 449-458.
81. Berchtold NC, Cotman CW. Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to the 1960s. Neurobiol Aging. 1998; 19: 173-189.
82. Jack CR Jr. Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology. 2012; 263: 344-361.
83. Waldemar G, Dubois B, Emre M, Georges J, McKeith IG, Rossor M, Scheltens P, Tariska P, Winblad B. Recommendations for the diagnosis and management of Alzheimer's disease and other disorders associated with dementia: EFNS guideline. Eur J Neurol. 2007; 14: e1-26.
84. Tabert MH, Liu X, Doty RL, Serby M, Zamora D, Pelton GH, Marder K, Albers MW, Stern Y, Devanand DP. A 10-item smell identification scale related to risk for Alzheimer's disease. Ann Neurol. 2005; 58: 155-160.
85. Di Paolo G, Kim TW. Linking lipids to Alzheimer's disease: cholesterol and beyond. Nat Rev Neurosci. 2011; 12: 284-296.
86. Lazarov O, Demars MP. All in the Family: How the APPs Regulate Neurogenesis. Front Neurosci. 2012; 6: 81.
87. Batarseh YS, Duong QV, Mousa YM, Al Rihani SB, Elfakhri K, Kaddoumi A. Amyloid-β and Astrocytes Interplay in Amyloid-β Related Disorders. Int J Mol Sci. 2016; 17: 338.
88. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007; 8: 101-112.
89. Tanzi RE, Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell. 2005; 120: 545-555.
90. Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov. 2007; 6: 464-479.
91. Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci. 2007; 8: 663-672.
92. Small SA, Duff K. Linking Abeta and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. Neuron. 2008; 60: 534-542.
93. Xiong H, Callaghan D, Jones A, Walker DG, Lue LF, Beach TG, Sue LI, Woulfe J, Xu H, Stanimirovic DB, Zhang W. Cholesterol retention in Alzheimer's brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol Dis. 2008; 29: 422-437.
94. Miller LJ, Chacko R. The role of cholesterol and statins in Alzheimer's disease. Ann Pharmacother. 2004; 38: 91-98.
95. Wolozin B. A fluid connection: cholesterol and Abeta. Proc Natl Acad Sci U S A. 2001; 98: 5371-5373.
96. Puglielli L, Tanzi RE, Kovacs DM. Alzheimer's disease: the cholesterol connection. Nat Neurosci. 2005; 6: 345-351.
97. Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol. 2001; 12: 105-112.
98. Karasinska JM, Hayden MR. Cholesterol metabolism in Huntington disease. Nat Rev Neurol. 2011; 7: 561-572.
99. Hughes TM, Rosano C, Evans RW, Kuller LH. Brain cholesterol metabolism, oxysterols, and dementia. J Alzheimers Dis. 2013; 33: 891-911.
100. Bu G. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009; 10: 333-344.
101. Wolozin B. Cholesterol and the biology of Alzheimer's disease. Neuron. 2004; 41: 7-10.
102. Tan ZS, Seshadri S, Beiser A, Wilson PW, Kiel DP, Tocco M, D'Agostino RB, Wolf PA. Plasma total cholesterol level as a risk factor for Alzheimer disease: the Framingham Study. Arch Intern Med. 2003; 163: 1053-1057.
103. Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, Sambamurti K, Duff K, Pappolla MA. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis. 2000; 7: 321-331.
104. Refolo LM, Pappolla MA, LaFrancois J, Malester B, Schmidt SD, Thomas-Bryant T, Tint GS, Wang R, Mercken M, Petanceska SS, Duff KE. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis. 2001; 8: 890-899.
105. Marquer C, Devauges V, Cossec JC, Liot G, Lécart S, Saudou F, Duyckaerts C, Lévêque-Fort S, Potier MC. Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. FASEB J. 2001; 25: 1295-1305.
106. Rushworth JV, Hooper NM. Lipid rafts: linking Alzheimer's amyloid-β production, aggregation, and toxicity at neuronal membranes. Int J Alzheimers Dis. 2010; 2011: 603052.
107. Fantini J, Yahi N, Garmy N. Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front Physiol. 2013; 4: 120.
108. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer's disease. Neuron. 2009; 63: 287-303.
109. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993; 261: 921-923.
110. Bertram L, Tanzi RE. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci. 2008; 9: 768-778.
111. Huang Y. Roles of apolipoprotein E4 (ApoE4) in the pathogenesis of Alzheimer's disease: lessons from ApoE mouse models. Biochem Soc Trans. 2011; 39: 924-932.
112. Woods NK, Padmanabhan J. Neuronal calcium signaling and Alzheimer's disease. Adv Exp Med Biol. 2012; 740: 1193-1217.
113. Mattson MP, Chan SL. Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium. 2003; 34: 385-397.
114. Green KN, LaFerla FM. Linking calcium to Abeta and Alzheimer's disease. Neuron. 2008; 59: 190-194.
115. Querfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med. 2010; 362: 329-344.
116. Querfurth HW, Selkoe DJ. Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry. 1994; 33: 4550-4561.
117. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A. 1994; 91: 3270-3274.
118. Goodman Y, Mattson MP. Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol. 1994; 128: 1-12.
119. Lynch T, Cherny RA, Bush AI. Oxidative processes in Alzheimer's disease: the role of abeta-metal interactions. Exp Gerontol. 2000; 35: 445-451.
120. Mark RJ, Hensley K, Butterfield DA, Mattson MP. Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci. 1995; 15: 6239-6249.
121. Mark RJ, Pang Z, Geddes JW, Uchida K, Mattson MP. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci. 1997; 17: 1046-1054.
122. Blanc EM, Keller JN, Fernandez S, Mattson MP. 4-hydroxynonenal, a lipid peroxidation product, impairs glutamate transport in cortical astrocytes. Glia. 1998; 22: 149-160.
123. Smith IF, Green KN, LaFerla FM. Calcium dysregulation in Alzheimer's disease: recent advances gained from genetically modified animals. Cell Calcium. 2005; 38: 427-437.
124. Murray FE, Landsberg JP, Williams RJ, Esiri MM, Watt F. Elemental analysis of neurofibrillary tangles in Alzheimer's disease using proton-induced X-ray analysis. Ciba Found Symp. 1992; 169: 201-210.
125. Nixon RA, Saito KI, Grynspan F, Griffin WR, Katayama S, Honda T, Mohan PS, Shea TB, Beermann M. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann N Y Acad Sci. 1994; 747: 77-91.
126. Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA. Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer's disease. Brain Res. 1997; 763: 145-158.
127. McKee AC, Kosik KS, Kennedy MB, Kowall NW. Hippocampal neurons predisposed to neurofibrillary tangle formation are enriched in type II calcium/calmodulin-dependent protein kinase. J Neuropathol Exp Neurol. 1990; 49: 49-63.
128. Xiao J, Perry G, Troncoso J, Monteiro MJ. alpha-calcium-calmodulin-dependent kinase II is associated with paired helical filaments of Alzheimer's disease. J Neuropathol Exp Neurol. 1996; 55: 954-963.
129. Mattson MP, Chan SL. Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium. 2003; 34: 385-397.
130. Johnson GV, Cox TM, Lockhart JP, Zinnerman MD, Miller ML, Powers RE. Transglutaminase activity is increased in Alzheimer's disease brain. Brain Res. 1997; 751: 323-329.
131. Miller ML, Johnson GV. Transglutaminase cross-linking of the tau protein. J Neurochem. 1995; 65: 1760-1770.
132. Bezzi P, Domercq M, Vesce S, Volterra A. Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications. Prog Brain Res. 2011; 132: 255-265.
133. Jeftinija SD, Jeftinija KV, Stefanovic G, Liu F. Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J Neurochem. 1996; 66: 676-684.
134. Dá Mesquita S, Ferreira AC, Sousa JC, Correia-Neves M, Sousa N, Marques F. Insights on the pathophysiology of Alzheimer's disease: The crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neurosci Biobehav Rev. 2016; 68: 547-562.
135. Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014; 8: 112.
136. Hong H, Kim BS, Im HI. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders. Int Neurourol J. 2016; 20: S2-7.
137. Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ. Astrocytes in Alzheimer's disease. Neurotherapeutics. 2010; 7: 399-412.
138. Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014; 94: 1077-1098.
139. Jin SM, Cho HJ, Kim YW, Hwang JY, Mook-Jung I. Aβ-induced Ca(2+) influx regulates astrocytic BACE1 expression via calcineurin/NFAT4 signals. Biochem Biophys Res Commun. 2012; 425: 649-655.
140. Fraga D, Sehring IM, Kissmehl R, Reiss M, Gaines R, Hinrichsen R, Plattner H. Protein phosphatase 2B (PP2B, calcineurin) in Paramecium: partial characterization reveals that two members of the unusually large catalytic subunit family have distinct roles in calcium-dependent processes. Eukaryot Cell. 2010; 9: 1049-1063.
141. Norris CM, Kadish I, Blalock EM, Chen KC, Thibault V, Porter NM, Landfield PW, Kraner SD. Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer's models. J Neurosci. 2005; 25: 4649-4658.
142. Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM, Patel ES, Baig I, Murphy MP, LeVine H 3rd, Kraner SD, Norris CM. Cognitive decline in Alzheimer's disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci. 2009; 29: 12957-12969.
143. Fernandez AM, Fernandez S, Carrero P, Garcia-Garcia M, Torres-Aleman I. Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci. 2007; 27: 8745-8756.
144. Furman JL, Norris CM. Calcineurin and glial signaling: neuroinflammation and beyond. J Neuroinflammation. 2014; 11: 158.
145. Lim D, Iyer A, Ronco V, Grolla AA, Canonico PL, Aronica E, Genazzani AA. Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB. Glia. 2013; 61: 1134-1145.
146. Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer's disease, role of cytokines. ScientificWorldJournal. 2012; 2012: 756357.
147. Cogswell JP, Godlevski MM, Wisely GB, Clay WC, Leesnitzer LM, Ways JP, Gray JG. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol. 1994; 153: 712-723.
148. Fric J, Zelante T, Wong AY, Mertes A, Yu HB, Ricciardi-Castagnoli P. NFAT control of innate immunity. Blood. 2012; 120: 1380-1389.
149. Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol. 1990; 10: 2327-2334.
150. Rincón M, Flavell RA. Transcription mediated by NFAT is highly inducible in effector CD4+ T helper 2 (Th2) cells but not in Th1 cells. Mol Cell Biol. 1997; 17:1522-1534.
151. Mrak RE, Griffin WS. Interleukin-1, neuroinflammation, and Alzheimer's disease. Neurobiol Aging. 2001; 22: 903-908.
152. Chakrabarty P, Tianbai L, Herring A, Ceballos-Diaz C, Das P, Golde TE. Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition. Mol Neurodegener. 2012; 7: 36.
153. Yamamoto S, Wajima T, Hara Y, Nishida M, Mori Y. Transient receptor potential channels in Alzheimer's disease. Biochim Biophys Acta. 2007; 1772: 958-967.
154. Leach JB, Brown XQ, Jacot JG, Dimilla PA, Wong JY. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J Neural Eng. 2007; 4: 26-34.
155. Wang X, Wang Z, Yao Y, Li J, Zhang X, Li C, Cheng Y, Ding G, Liu L, Ding Z. Essential role of ERK activation in neurite outgrowth induced by α-lipoic acid. Biochim Biophys Acta 2011; 1813: 827-838.
156. Zhou S, Wu H, Zeng C, Xiong X, Tang S, Tang Z, Sun X. Apolipoprotein E protects astrocytes from hypoxia and glutamate-induced apoptosis. FEBS Lett. 2013; 587: 254-258.
157. Coraci IS, Husemann J, Berman JW, Hulette C, Dufour JH, Campanella GK, Luster AD, Silverstein SC, El-Khoury JB. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol. 2002; 160: 101-112.
158. Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE. A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci. 2003; 3: 2665-2674.
159. Benito C, Tolón RM, Castillo AI, Ruiz-Valdepeñas L, Martínez-Orgado JA, Fernández-Sánchez FJ, Vázquez C, Cravatt BF, Romero J. -Amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPAR-α, PPAR-γ and TRPV1, but not CB₁ or CB₂ receptors. Br J Pharmacol. 2012; 166: 1474-1489.
160. Caceres A, Mautino J, Kosik KS. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron. 1992; 9: 607-618.
161. Wu PY, Lin YC, Chang CL, Lu HT, Chin CH, Hsu TT, Chu D, Sun SH. Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cell Signal. 2009; 21: 881-891.
162. Desai BN, Clapham DE. TRP channels and mice deficient in TRP channels. Pflugers Arch. 2005; 451:11-18.
163. Riccio A, Li Y, Tsvetkov E, Gapon S, Yao GL, Smith KS, Engin E, Rudolph U, Bolshakov VY, Clapham DE. Decreased anxiety-like behavior and Gαq/11-dependent responses in the amygdala of mice lacking TRPC4 channels. J Neurosci. 2014; 34: 3653-3667.
164. Marsch R, Foeller E, Rammes G, Bunck M, Kössl M, Holsboer F, Zieglgänsberger W, Landgraf R, Lutz B, Wotjak CT. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J Neurosci. 2007; 27: 832-839.
165. Ahmmed GU, Malik AB. Functional role of TRPC channels in the regulation of endothelial permeability. Pflugers Arch. 2005; 451: 131-142.
166. Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M. Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci. 2005; 118: 917-928.
167. Su KH, Lin SJ, Wei J, Lee KI, Zhao JF, Shyue SK, Lee TS. The essential role of transient receptor potential vanilloid 1 in simvastatin-induced activation of endothelial nitric oxide synthase and angiogenesis. Acta Physiol (Oxf). 2014; 212: 191-204.
168. Hölscher C. Possible causes of Alzheimer's disease: amyloid fragments, free radicals, and calcium homeostasis. Neurobiol Dis. 1998; 5: 129-141.
169. Montell C. The TRP superfamily of cation channels. Sci STKE. 2005; 2005: re3.
170. Vriens J, Owsianik G, Voets T, Droogmans G, Nilius B. Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Arch. 2004; 449: 213-226.
171. LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci. 2002; 3: 862-872.
172. Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013; 9: 106-118.
173. Barbero-Camps E, Fernández A, Baulies A, Martinez L, Fernández-Checa JC, Colell A. Endoplasmic reticulum stress mediates amyloid β neurotoxicity via mitochondrial cholesterol trafficking. Am J Pathol. 2014; 184: 2066-2081.
174. Kanekiyo T, Bu G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer's disease. Front Aging Neurosci. 2014; 6: 93.
175. Bouvier DS, Murai KK. Synergistic actions of microglia and astrocytes in the progression of Alzheimer's disease. J Alzheimers Dis. 2015; 45: 1001-1014.
176. Fakhoury M. Role of immunity and inflammation in the pathophysiology of neurodegenerative diseases. Neurodegener Dis. 2015; 15: 63-69.
177. Rodríguez JJ, Olabarria M, Chvatal A, Verkhratsky A. Astroglia in dementia and Alzheimer's disease. Cell Death Differ. 2009; 16: 378-385.
178. Abramov AY, Canevari L, Duchen MR. Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta. 2004; 1742: 81-87.
179. Maragakis NJ, Rothstein JD. Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol. 2006; 2: 679-689.
180. Ronco V, Grolla AA, Glasnov TN, Canonico PL, Verkhratsky A, Genazzani AA, Lim D. Differential deregulation of astrocytic calcium signalling by amyloid-β, TNFα, IL-1β and LPS. Cell Calcium. 2014; 55: 219-229.
181. Haughey NJ, Mattson MP. Alzheimer's amyloid beta-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. Neuromolecular Med. 2003; 3: 173-180.
182. Verkhratsky A. Glial calcium signaling in physiology and pathophysiology. Acta Pharmacol Sin. 2006; 27: 773-780.
183. Kraft AW, Hu X, Yoon H, Yan P, Xiao Q, Wang Y, Gil SC, Brown J, Wilhelmsson U, Restivo JL, Cirrito JR, Holtzman DM, Kim J, Pekny M, Lee JM. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J. 2013; 27:187-198.
184. Borges K, McDermott D, Irier H, Smith Y, Dingledine R. Degeneration and proliferation of astrocytes in the mouse dentate gyrus after pilocarpine-induced status epilepticus. Exp Neurol. 2006; 201: 416-427.
185. Bambrick LL, Yarowsky PJ, Krueger BK. Altered astrocyte calcium homeostasis and proliferation in theTs65Dn mouse, a model of Down syndrome. J Neurosci Res. 2003; 73: 89-94.
186. Schaefer EA, Stohr S, Meister M, Aigner A, Gudermann T, Buech TR. Stimulation of the chemosensory TRPA1 cation channel by volatile toxic substances promotes cell survival of small cell lung cancer cells. Biochem Pharmacol. 2013; 85: 426-438.
187. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science. 1990; 247: 470-473.
188. Morita M, Higuchi C, Moto T, Kozuka N, Susuki J, Itofusa R, Yamashita J, Kudo Y. Dual regulation of calcium oscillation in astrocytes by growth factors and pro-inflammatory cytokines via the mitogen-activated protein kinase cascade. J Neurosci. 2003; 23: 10944-10952.
189. Troublesome variability in mouse studies. Nat Neurosci. 2009; 12: 1075.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top