|
1. Chung KF, Adcock IM. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur. Respir. J. 31: 1334-1356, 2008. 2. Van Hove CL, Moerloose K, Maes T, Joos GF, Tournoy KG. Cigarette smoke enhaces Th-2 driven airway inflammation and delays inhalational tolerance. Respir Res. 9: 42, 2008. 3. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 22: 672-688, 2003. 4. Green RM, Gally F, Keeney JG, Alper S, Gao B, Han M, Martin RJ, Weinberger AR, Case SR, Minor MN, Chu HW. Impact of cigarette smoke exposure on innate immunity: a Caenorhabditis elegans model. PLoS One. 4: 6860, 2009 5. Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann. N. Y. Acad. Sci. 686:12-27, 1993. 6. Pryor WA. Biological effects of cigarette smoke, wood smoke, and the smoke from plastics: the use of electron spin resonance. Free. Radic. Biol. Med. 13: 659-676, 1992. 7. Sarir HE, Mortaz K, Karimi AD, Kraneveld I, Rahman E, Caldenhoven FP, Nijkamp G, Folkerts. Cigarette smoke regulates the expression of TLR4 and IL-8 production by human macrophages. J Inflamm (Lond). 6: 12, 2009. 8. Facchinetti FF, Amadei P, Geppetti F, Tarantini C, Di Serio A, Dragotto PM, Gigli S, Catinella M, Civelli R, Patacchini. Alpha,beta-unsaturated aldehydes in cigarette smoke release inflammatory mediators from human macrophages. Am J Respir Cell Mol Biol. 37 (5): 617-623, 2007. 9. Goodman JE. Tobacco in history: the cultures of dependence. New York: Routledge. 97, 1993. 10. Ho VD, Djordjevic MV, Ho VI. The changing cigarette. Prev Med. 26: 427-434, 1997. 11. Thun MJ, Lally CA, Flannery JT. Cigarette smoking and changes in the histopathology of lung cancer. J Nat Cancer Inst. 89: 1580-1586, 1997. 12. Assunta M, Chapman S. The lightest market in the world: light and mild cigarettes in Japan. Nicotine Tob Res. 10 (5): 803-810, 2008. 13. Ahijevych K1, Garrett BE. Menthol pharmacology and its potential impact on cigarette smoking behavior. Nicotine Tob Res. Suppl 1: S17-28, 2004. 14. Ahijevych K1, Garrett BE. The role of menthol in cigarettes as a reinforcer of smoking behavior. Nicotine Tob Res. Suppl 2: S110-S116, 2010. 15. Anderson SJ. Menthol cigarettes and smoking cessation behaviour: a review of tobacco industry documents. Tob Control. Suppl 2: ii49-ii56, 2011. 16. Hoffman AC. The health effects of menthol cigarettes as compared to non-menthol cigarettes. Tob Induc Dis. 9: S7, 2011. 17. Brooks D, Palmer J, Storm B, Rosenberg LL. Menthol cigarettes and risk of lung cancer. M J Epidemiol. 158: 609-616, 2003. 18. Lee PN. Systematic review of the epidemiological evidence comparing lung cancer risk in smokers of mentholated and unmentholated cigarettes. BMC Pulm Med. 11: 18, 2011. 19. Warner KE, Davis RM, Holbrook JH, Novotny TE, Ockene JK, Rigotti NA. Reducing the Health Consequences of Smoking: 25 Years of Progress: A Report of the Surgeon General: 1989 Executive Summary. United States. 713, 1989. 20. Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect. 64: 111-126, 1985. 21. White CW, Repine JE. Pulmonary antioxidant defense mechanisms. Exp Lung Res. 8 (2-3): 81-96, 1985. 22. Kamp R, Sun X, Garcia JG. Making genomics functional: deciphering the genetics of acute lung injury. Proc Am Thorac Soc. 5 (3): 348-353, 2008. 23. Danielsen PH, Brauner EV, Barregard L, Sallsten G, Wallin M, Olinski R, Rozalski R, Moller P, Loft S. Oxidatively damaged DNA and its repair after experimental exposure to wood smoke in healthy humans. Mutat Res. 642 (1-2): 37-42, 2008. 24. Leikauf GD, Borchers MT, Prows DR, Simpson LG. Mucin apoprotein expression in COPD. Chest. 121:166S-182S, 2002. 25. Hitesh SD, Colleen Shaver, Lisa MC, Maggie Dietsch, Scott CW, William DH, Thomas RK, Massimo Corradi, Jay ANadel, Michael TB, George DL. Acrolein-Activated Matrix Metalloproteinase 9. Am J Respir Cell Mol Biol. 38: 446-454, 2008. 26. Lin RK, Hsieh YS, Lin P, Hsu HS, Chen CY, Tang YA, Lee CF, Wang, YC. The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest. 120 (2): 521-532, 2010. 27. Martin LD, Rochelle LG, Fischer BM, Krunkosky TM, Adler KB. Airway epithelium as an effector of inflammation: molecular regulation of secondary mediators. Eur Respir J. 10 (9): 2139-2146, 1997. 28. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 8 (3): 183-192, 2008. 29. Sajjan US, Jia Y, Newcomb DC, Bentley JK, Lukacs NW, LiPuma JJ, Hershenson MB. H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J. 20 (12): 2121-2123, 2006. 30. Neurath MF, Finotto S, Glimcher LH. The role of Th1/Th2 polarization in mucosal immunity. Nat Med. 8 (6): 567-573, 2002. 31. Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME. Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc. 5 (7): 772-777, 2008. 32. Spurzem JR, Rennard SI. Pathogenesis of COPD. Semin Respir Crit Care Med. 26 (2): 142-153, 2005. 33. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 22 (4): 672-688, 2003. 34. Barnes PJ. Mediators of chronic obstructive pulmonary disease. Pharmacol Rev. 56: 515-548, 2004. 35. Johnston RA, Schwartzman IN, Shore SA. Macrophage inflammatory protein-2 levels are associated with changes in serum leptin concentrations following ozone-induced airway inflammation. Chest. 123: 369-370, 2003. 36. Zwijnenburg PJ, Polfliet MM, Florquin S, van den Berg TK, Dijkstra CD, van Deventer SJ, Roord JJ, van der Poll T, van Furth AM. CXC-chemokines KC and macrophage inflammatory protein-2 (MIP-2) synergistically induce leukocyte recruitment to the central nervous system in rats. Immunol Lett. 85: 1-4, 2003. 37. Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Laichalk LL, McGillicuddy DC, Standiford TJ. Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia. J Infect Dis. 173: 159-165, 1996. 38. Schmal H, Shanley TP, Jones ML, Friedl HP, Ward PA. Role for macrophage inflammatory protein-2 in lipopolysaccharide-induced lung injury in rats. J Immunol. 156: 1963-1972, 1996. 39. Kocbach A, Namork E, Schwarze PE. Pro-inflammatory potential of wood smoke and traffic-derived particles in a monocytic cell line. Toxicology. 247: 123-132, 2008. 40. Chung KF. Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl. 34: 50-59, 2001. 41. Birrell MA, Wong S, Catley MC, Belvisi MG. Impact of tobacco-smoke on key signaling pathways in the innate immune response in lung macrophages. J Cell Physiol. 214: 27-37, 2008. 42. Knight JA. Diseases related to oxygen-derived free radicals. Ann Clin Lab Sci. 25 (2): 111-121, 1995. 43. Comhair SA, Thomassen MJ, Erzurum SC. Differential induction of extracellular glutathione peroxidase and nitric oxide synthase 2 in airways of healthy individuals exposed to 100% O(2) or cigarette smoke. Am J Respir Cell Mol Biol. 23 (3): 350-354, 2000. 44. Adair-Kirk TL, Atkinson JJ, Senior RM. Smoke particulates stress lung cells. Nat Med. 14 (10): 1024-1025, 2008. 45. Rahman I, Gilmour PS, Jimenez LA, MacNee W. Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol Cell Biochem. 234-235 (1-2): 239-248, 2002. 46. Radomska-Lesniewska DM, Sadowska AM, Van Overveld FJ, Demkow U, Zielinski J, De Backer WA. Influence of N-acetylcysteine on ICAM-1 expression and IL-8 release from endothelial and epithelial cells. J Physiol Pharmacol. 57 (4): 325-334, 2006. 47. Tang GJ, Wang HY, Wang JY, Lee CC, Tseng HW, Wu YL, Shyue S, Lee TS, Kou YR. Novel role of AMP-activated protein kinase signaling in cigarette smoke induction of IL-8 in human lung epithelial cells and lung inflammation in mice. Free Radic. Biol. 50: 1492-1502, 2011. 48. Gees M, Colsoul B, Nilius B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol. 2 (10): a003962, 2010. 49. Gees M, Owsianik G, Nilius B, Voets T. TRP channels. Comp Physiol. 2 (1): 563-608, 2012. 50. Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 12 (3): 218-229, 2011. 51. Wu LJ, Sweet TB, Clapham DE. Current progress in the mammalian TRP ion channel family. Pharmacol Rev. 62 (3): 381-404, 2010. 52. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem. 76: 387-417, 2007. 53. Owsianik G, D’Hoedt D, Voets T, Nilius B. Structure-function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol. 156: 61-90, 2006. 54. Romanovsky AA, Almeida MC, Garami A, Steiner AA, Norman MH, Morrison SF, Nakamura K, Burmeister JJ, Nucci TB. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev. 61: 228-261, 2009. 55. Kwan KY, Corey DP. Burning cold: involvement of TRPA1 in noxious cold sensation. J Gen Physiol. 133: 251-256, 2009. 56. Daniels RL, McKemy DD. Mice left out in the cold: commentary on the phenotype of TRPM8-nulls. Mol Pain. 3: 23, 2007. 57. Story GM. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 112: 819-829, 2003. 58. Jaquemar D, Schenker T, Trueb B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem. 274 (11): 7325-7333, 1999. 59. García-Añoveros J, Nagata K. TRPA1. Handb Exp Pharmacol. 179: 347-362, 2007. 60. Bessac BF, Jordt SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda). 23: 360-370, 2008. 61. Baraldi PG, Preti D, Materazzi S, Geppetti P. Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem. 53: 5085-5107, 2010. 62. Gaudet R. A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst. 4: 372-379, 2008. 63. Nilius B, Prenen J, Owsianik G. Irritating channels: the case of TRPA1. J Physiol. 589: 1543-1549, 2011. 64. Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol. 166: 510-521, 2012. 65. Koivisto A, Hukkanen M, Saarnilehto M, Chapman H, Kuokkanen K, Wei H, Viisanen H, Akerman KE, Lindstedt K, Pertovaara A. Inhibiting TRPA1 ion channel reduces loss of cutaneous nerve fiber function in diabetic animals: sustained activation of the TRPA1 channel contributes to the pathogenesis of peripheral diabetic neuropathy. Pharmacol Res. 65: 149-158, 2012. 66. Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S, Hele DJ, Maher SA, Freund-Michel V, Morice AH. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am J Respir Crit Care Med. 180: 1042-1047, 2009. 67. Doerner JF, Gisselmann G, Hatt H, Wetzel CH. Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem. 282: 13180-13189, 2007. 68. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature. 445: 541-545, 2007. 69. Lapointe TK, Altier C. The role of TRPA1 in visceral inflammation and pain. Channels (Austin). 5: 525-529, 2011. 70. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA. Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci. 10: 277-279, 2007. 71. Bautista DM, Pellegrino M, Tsunozaki M. TRPA1: A gatekeeper for inflammation. Annu Rev Physiol. 75: 181-200, 2013. 72. Marcello T, Jan S, Serena M, Diana MB, Romina N, Barbara C, Noritaka I, Eunice A, Riccardo P, Graeme SC, Raffaele G, Allan IB, Nigel WB, David J, Pierangelo G. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. PNAS. 104 (33): 13519-13524, 2007. 73. Michelle NS, Albert LG, Paulo WP, Allison B, Dennis L, Wencheng L, Agathe O, Frederick AB, Yumei F, Jonathan HJ, Donald GW, Scott E. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation. Sci Signal. 8 (358): ra2, 2015. 74. Hinman A, Chuang H, Bautist, DM, Julius, D. TRP channel activation by reversible covalent modification. Proceedings of the National Academy of Sciences. 103: 19564-19568, 2006. 75. Sadofsky LR. TRPA1 is activated by direct addition of cysteine residues to the N-hydroxysuccinyl esters of acrylic and cinnamic acids. Pharmacol Res. 63: 30-36, 2011. 76. Bautista DM. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci. 102: 12248-12252, 2005. 77. Sawada Y, Hosokawa H, Matsumura K, Kobayashi S. Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci. 27: 1131-1142, 2008. 78. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest. 118: 1899-1910, 2008. 79. Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, Sano Y, Inamura K, Matsushime H, Koizumi T, Yokoyama T, Ito H. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. PNAS. 106: 3408-3413, 2009. 80. Tamás B, László K. An “ice-cold” TR(i)P to skin biology: the role of TRPA1 in uuman epidermal keratinocytes. J Invest Dermatol. 129: 2096-2099, 2009. 81. Ruzanna A, Doug S, Natalia VB. Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol. 129: 2312-2315, 2009. 82. Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S, Andersson KE, Högestätt ED, Zygmunt PM. Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol. 53 (2): 391-399, 2008. 83. Hayashi S, Nakamura E, Endo T, Kubo Y, Takeuchi K. Impairment by activation of TRPA1 of gastric epithelial restitution in a wound model using RGM1 cell monolayer. Inflammopharmacology. 15 (5): 218-222, 2007. 84. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 41: 849-857, 2004. 85. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest. 117: 1979-1987, 2007. 86. Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, Cui X, Tominaga M, Noguchi K. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain. 131: 1241-1251, 2008. 87. Chen Y, Yang C, Wang ZJ. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience. 193: 440-451, 2011. 88. Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61 (9): 3760-3769, 2001. 89. McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 416 (6876): 52-58, 2002. 90. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A. A TRP channel that senses cold stimuli and menthol. Cell. 108 (5): 705-715, 2002. 91. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A. TRPM8 is required for cold sensation in mice. Neuron. 54 (3): 371-378, 2007. 92. Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N. Attenuated cold sensitivity in TRPM8 null mice. Neuron. 54 (3): 379-386, 2007. 93. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature. 448 (7150): 204-208, 2007. 94. Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G. Thermo TRP channels as modular proteins with allosteric gating. Cell Calcium. 42 (4-5): 427-438, 2007. 95. Voets T, Owsianik G, Nilius B. TRPM8. Handb Exp Pharmacol. 179: 329-344, 2007. 96. Voets T, Owsianik G, Janssens A, Talavera K, Nilius B. TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol. 3 (3): 174-182, 2007. 97. Dragoni I, Guida E, McIntyre P. The cold and menthol receptor TRPM8 contains a functionally important double cysteine motif. J Biol Chem. 281: 37353-37360, 2006. 98. Phelps CB, Gaudet R. The role of the N terminus and transmembrane domain of TRPM8 in channel localization and tetramerization. J Biol Chem. 282 (50): 36474-36480, 2007. 99. Stewart AP, Egressy K, Lim A, Edwardson JM. AFM imaging reveals the tetrameric structure of the TRPM8 channel. Biochem Biophys Res Commun. 394: 383-386, 2010. 100. Janssens A, Voets T. Ligand stoichiometry of the cold- and menthol-activated channel TRPM8. J Physiol. 589 (20): 4827-4835, 2011. 101. Bandell M, Dubin AE, Petrus MJ, Orth A, Mathur J, Hwang SW, Patapoutian A. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nat Neurosci. 9: 493-500, 2006. 102. Valente P, Garcia-Sanz N, Gomis A, Fernandez-Carvajal A, Fernandez-Ballester G, Viana F, Belmonte C, Ferrer-Montiel A. Identification of molecular determinants of channel gating in the transient receptor potential box of vanilloid receptor I. FASEB J. 22 (9): 3298-3309, 2008. 103. Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci. 26 (18): 4835-4840, 2006. 104. Rohacs T, Lopes CM, Michailidis I, Logothetis DE. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci. 8 (5): 626-634, 2005. 105. Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci. 25 (12): 633-639, 2004. 106. Phelps CB, Gaudet R. The role of the N terminus and transmembrane domain of TRPM8 in channel localization and tetramerization. J Biol Chem. 282 (50): 36474-36480, 2007. 107. Erler I, Al Ansary DM, Wissenbach U, Wagner TF, Flockerzi V, Niemeyer BA. Trafficking and assembly of the cold-sensitive TRPM8 channel. J Biol Chem. 281 (50): 38396-38404, 2006. 108. Bavencoffe A, Gkika D, Kondratskyi A, Beck B, Borowiec AS, Bidaux G, Busserolles J, Eschalier A, Shuba Y, Skryma R, Prevarskaya N. The transient receptor potential channel TRPM8 is inhibited via the alpha 2A adrenoreceptor signaling pathway. J Biol Chem. 285 (13): 9410-9419, 2010. 109. Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R. Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol. 141 (4): 737-745, 2004. 110. Bodding M, Wissenbach U, Flockerzi V. Characterisation of TRPM8 as a pharmacophore receptor. Cell Calcium. 42 (6): 618-628, 2007. 111. Beck B, Bidaux G, Bavencoffe A, Lemonnier L, Thebault S, Shuba Y, Barrit G, Skryma R, Prevarskaya N. Prospects for prostate cancer imaging and therapy using high-affinity TRPM8 activators. Cell Calcium. 41 (3): 285-294, 2007. 112. Viana F. Chemosensory properties of the trigeminal system. ACS Chem Neurosci. 2: 38-50, 2011. 113. Nocchi L, Daly DM, Chapple C, Grundy D. Induction of oxidative stress causes functional alterations in mouse urothelium via a TRPM8-mediated mechanism: implications for aging. Aging Cell. 13: 540-550, 2014. 114. Ma S1, G G, Ak VE, Jf D, H H. Menthol derivative WS-12 selectively activates transient receptor potential melastatin-8 (TRPM8) ion channels. Pak J Pharm Sci. 21 (4): 370-378, 2008. 115. Sherkheli MA, Gissellmann G, Mitchell R, Vogt-Eisele AK, Hatt H. Selective TRPM8 agonists: a novel group of neuropathic analgesics. FEBS J. 274 (S1): 232, 2007 116. McCoy DD, Knowlton WM, McKemy DD. Scraping through the ice: uncovering the role of TRPM8 in cold transduction. Am J Physiol Regul Integr Comp Physiol. 300 (6): 1278-1287, 2011. 117. Viana F, Ferna´ndez-Pen˜a C. Targeting TRPM8 for pain relief. Open Pain J. 6 (Suppl 1: M15): 154-164, 2013. 118. Reid G. ThermoTRP channels and cold sensing: what are they really up to? Pflugers Arch. 451 (1): 250-263, 2005. 119. Belmonte C, Brock JA, Viana F. Converting cold into pain. Exp Brain Res. 196 (1): 13-30, 2009. 120. Takashima Y, Daniels RL, Knowlton W, Teng J, Liman ER, McKemy DD. Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci. 27 (51): 14147-14157, 2007. 121. Dhaka A, Earley TJ, Watson J, Patapoutian A. Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci. 28 (3): 566-575, 2008. 122. Xing H, Chen M, Ling J, Tan W, Gu JG. TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci. 27 (50): 13680-13690, 2007. 123. Knowlton WM, Daniels RL, Palkar R, McCoy DD, McKemy DD. Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS One. 6 (9): e25894, 2011. 124. Su L, Wang C, Yu YH, Ren YY, Xie KL, Wang GL. Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain. BMC Neurosci. 12: 120, 2011. 125. Orani GP, Anderson JW, Sant’Ambrogio G, Sant’Ambrogio FB. Upper airway cooling and l-menthol reduce ventilation in the guinea pig. J Appl Physiol. 70 (5): 2080-2086, 1991. 126. Willis DN, Liu B, Ha MA, Jordt SE, Morris JB. Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. FASEB J. 25 (12): 4434-4444, 2011. 127. Plevkova J, Kollarik M, Poliacek I, Brozmanova M, Surdenikova L, Tatar M, Mori N, Canning BJ. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol. J Appl Physiol. 115 (2): 268-274, 1985. 128. Yee NS, Zhou W, Lee M. Transient receptor potential channel TRPM8 is over-expressed and required for cellular proliferation in pancreatic adenocarcinoma. Cancer Lett. 297 (1): 49-55, 2010. 129. Journigan VB, Zaveri NT. TRPM8 ion channel ligands for new therapeutic applications and as probes to study menthol pharmacology. Life Sci. 92: 425-437, 2013. 130. Yang XR, Lin MJ, McIntosh LS, Sham JS. Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol. 290 (6): 1267-1276, 2006. 131. Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P, Zholos AV. Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol Heart Circ Physiol. 296 (6): 1868-1877, 2009. 132. Liu XR, Liu Q, Chen GY, Hu Y, Sham JS, Lin MJ. Down-regulation of TRPM8 in pulmonary arteries of pulmonary hypertensive rats. Cell Physiol Biochem. 31 (6): 892-904, 2013. 133. Stein RJ, Santos S, Nagatomi J, Hayashi Y, Minnery BS, Xavier M, Patel AS, Nelson JB, Futrell WJ, Yoshimura N, Chancellor MB, De Miguel F. Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J Urol. 172 (3): 1175–1178, 2004. 134. De Blas GA, Darszon A, Ocampo AY, Serrano CJ, Castellano LE, Hernandez-Gonzalez EO, Chirinos M, Larrea F, Beltran C, Trevino CL. TRPM8, a versatile channel in human sperm. PLoS One. 4 (6): e6095, 2009. 135. Gibbs GM, Orta G, Reddy T, Koppers AJ, Martinez-Lopez P, de la Vega-Beltran JL, Lo JC, 136. Veldhuis N, Jamsai D, McIntyre P, Darszon A, O’Bryan MK. Cysteine-rich secretory protein 4 is an inhibitor of transient receptor potential M8 with a role in establishing sperm function. Proc Natl Acad Sci USA. 108 (17): 7034-7039, 2011. 137. Martinez-Lopez P, Trevino CL, de la Vega-Beltran JL, De Blas G, Monroy E, Beltran C, Orta G, Gibbs GM, O’Bryan MK, Darszon A. TRPM8 in mouse sperm detects temperature changes and may influence the acrosome reaction. J Cell Physiol. 226 (6): 1620-1631, 2011. 138. Zhang L, An X, Wang Q, He M. Activation of cold-sensitive channels TRPM8 and TRPA1 inhibits the proliferative airway smooth muscle cell phenotype. Lung. 194: 595-603, 2016. 139. Ashwini SS, Mohammad S, Garold SY, Christopher AR. Human Lung Epithelial Cells Express a Functional Cold-Sensing TRPM8 Variant. Am J Respir Cell Mol Biol. 39: 466-474, 2008. 140. Li M, Li Q, Yang G, Kolosov VP, Perelman JM, Zhou XD. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J Allergy Clin Immunol. 128 (3): 626-634, 2011. 141. Premkumar LS, Raisinghani M, Pingle SC, Long C, Pimentel F. Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J Neurosci. 25 (49): 11322-11329, 2005. 142. Abe J, Hosokawa H, Sawada Y, Matsumura K, Kobayashi S. Ca2+-dependent PKC activation mediates menthol-induced desensitization of transient receptor potential M8. Neurosci Lett. 397 (1-2): 140-144, 2006. 143. Linte RM, Ciobanu C, Reid G, Babes A. Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp Brain Res. 178 (1): 89-98, 2007. 144. De Petrocellis L, Starowicz K, Moriello AS, Vivese M, Orlando P, Di Marzo V. Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB(1) receptors and endovanilloids. Exp Cell Res. 313 (9): 1911-1920, 2007. 145. Than JY, Li L, Hasan R, Zhang X. Excitation and modulation of TRPA1, TRPV1, and TRPM8 channel-expressing sensory neurons by the pruritogen chloroquine. J Biol Chem. 288 (18): 12818-12827, 2013. 146. Klasen K, Hollatz D, Zielke S, Gisselmann G, Hatt H, Wetzel CH. The TRPM8 ion channel comprises direct Gq protein-activating capacity. Pflugers Arch. 463 (6): 779-797, 2012. 147. Liu BY, Qin F. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci. 25 (7): 1674-1681, 2005. 148. Vanden Abeele F, Zholos A, Bidaux G, Shuba Y, Thebault S, Beck B, Flourakis M, Panchin Y, Skryma R, Prevarskaya N. iPLA2-dependent gating of TRPM8 by lysophospholipids. J Biol Chem. 281: 40174-40182, 2006. 149. Andersson DA, Nash M, Bevan S. Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J Neurosci. 27 (12): 3347-3355, 2007. 150. Gentry C, Stoakley N, Andersson DA, Bevan S. The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity. Mol Pain. 6: 4, 2010. 151. Yamaguchi Y, Nasu F, Harada A, Kunitomo M. Oxidants in the gas phase of cigarette smoke pass through the lung alveolar wall and raise systemic oxidative stress. J Pharmacol Sci. 103 (3): 275-282, 2007. 152. Peluffo G, Calcerrada P, Piacenza L, Pizzano N, Radi R. Superoxide-mediated inactivation of nitric oxide and peroxynitrite formation by tobacco smoke in vascular endothelium: studies in cultured cells and smokers. Am J Physiol Heart Circ Physiol. 296 (6): 1781-1792, 2009. 153. Büch TR, Schäfer EA, Demmel MT, Boekhoff I, Thiermann H, Gudermann T, Steinritz D, Schmidt A. Functional expression of the transient receptor potential channel TRPA1, a sensor for toxic lung inhalants, in pulmonary epithelial cells. Chem Biol Interact. 206 (3): 462-471, 2013. 154. Mukhopadhyay I, Gomes P, Aranake S, Shetty M, Karnik P, Damle M, Kuruganti S, Thorat S, Khairatkar-Joshi N. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J Recept Signal Transduct Res. 31 (5): 350-358, 2011. 155. Wu YL, Lin AH, Chen CH, Huang WC, Wang HY, Liu MH, Lee TS, Kou YR. Glucosamine attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Free Radic Biol Med. 69: 208-218, 2014. 156. Benov L, Sztejnberg L, Fridovich I. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med. 25 (7): 826-831, 1998. 157. Yang YL, Tang GJ, Wu YL, Yien HW, Lee TS, Kou YR. Exacerbation of wood smoke-induced acute lung injury by mechanical ventilation using moderately high tidal volume in mice. Respir Physiol Neurobiol. 160 (1): 99-108, 2008. 158. Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, Uchida K, Mori Y. Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin). 2 (4):287-298, 2008. 159. Lassègue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol. 30 (4): 653-661, 2010. 160. Trebak M, Ginnan R, Singer HA, Jourd'heuil D. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxid Redox Signal. 12 (5): 657-674, 2010. 161. Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 63 (1): 218-242, 2011. 162. Park SJ, Foreman MG, Demeo DL, Bhatt SP, Hansel NN, Wise RA, Soler X, Bowler RP. Menthol cigarette smoking in the COPDGene cohort: relationship with COPD, comorbidities and CT metrics. 163. Lashinger ES, Steiginga MS, Hieble JP, Leon LA, Gardner SD, Nagilla R. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am J Physiol Renal Physiol. 295, 803-810, 2008. 164. Redmond WJ, Gu L, Camo M, McIntyre P, Connor M. Ligand determinants of fatty acid activation of the pronociceptive ion channel TRPA1. PeerJ. 2: e248, 2014.
|