跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 19:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林岸萱
研究生(外文):An-Hsuan Lin
論文名稱:探討瞬態電壓感受器陽離子通道錨蛋白類第一型與M類第八型於香菸所引發肺發炎反應中所扮演的角色
論文名稱(外文):Role of Transient Receptor Potential Ankyrin 1 and Transient Receptor Potential Melastatin 8 in the Lung Inflammation Induced by Cigarette Smoke
指導教授:高毓儒
指導教授(外文):Yu Ru Kou
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:164
中文關鍵詞:香菸瞬態電壓感受器陽離子通道錨蛋白類第一型瞬態電壓感受器陽離子通道M類第八型肺發炎鈣離子活性氧族群
外文關鍵詞:Cigarette smokeTRPA1TRPM8Lung inflammationCalciumROS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
香菸已知是導致慢性阻塞性肺部疾病 (Chronic obstructive pulmonary disease, COPD) 的主要因素之一,其形成過程會透過增加細胞內活性氧族群 (Reactive oxygen species, ROS)、氧化壓力及持續性慢性肺發炎。相關文獻指出香菸與肺部發炎及活化活性氧族群的調控機制有關,然而香菸如何透過活性氧族群活化下游一連串的訊息傳遞,引發持續性慢性發炎,進而導致阻塞性肺部疾病的病理機制仍尚未完全明瞭。瞬態電壓感受器陽離子通道錨蛋白類第1型 (Transient receptor potential ankyrin 1, TRPA1) 與瞬態電壓感受器陽離子通道M類第8型 (Transient receptor potential melastatin 8, TRPM8) 皆屬於一種對溫度具有敏感性且非特異性穿透細胞膜的陽離子通道。當TRPA1與TRPM8活化時其通透的離子主要為鈣離子,目前研究此兩通道大多表現於感覺神經元。於肺部感覺神經元上,愈來愈多的證據顯示TRPA1可以被許多種氧化物包括香菸所活化,而TPRM8則會受到冷溫度、薄荷與氧化物所調控活化。然而,肺部非神經細胞上TRPA1與TRPM8的表現及功能,與香菸是否會透過活化此兩通道進而引發肺發炎反應及其後續相關的調控機轉仍待進一步釐清。
本論文第一部分的研究,主要探討TRPA1於香菸引發肺部發炎所扮演的角色及其相關的調控機轉。我們分別利用香菸暴露小鼠,以及香菸萃取物刺激人類支氣管上皮細胞 (Human bronchial epithelial cells, HBECs) 來進行實驗。在動物實驗結果顯示,肺部組織有TRPA1蛋白的表現;香菸暴露Wildtype小鼠四週後,可明顯提升TRPA1蛋白表現量;此外,也會增加支氣管肺泡灌流液中或者是肺部的巨噬細胞炎症蛋白-2 (Macrophage inflammatory protein-2, MIP-2),以及肺部氧化壓力與白血球數量增加等發炎現象。然而此發炎現象,在TRPA1-/- 小鼠組別則明顯被抑制。接著進一步在細胞實驗發現,隨著香菸萃取物漸增的濃度及時間刺激下,TRPA1的蛋白表現量也有明顯上升;此外也證實香菸萃取物本身內含的活性氧族群能活化TRPA1引起鈣離子流入細胞內。接著預處理TRPA1抑制劑或以小干擾核醣核酸引發TRPA1的基因靜默可有效減少香煙萃取物引起的IL-8。重要的是,預先給予細胞處理各種相關抑制劑可以減少鈣離子流入細胞內、活性氧族群、NADPH oxidase活性、有絲分裂活化蛋白質激酶 (Mitogen-activated protein kinases, MAPKs) 中的胞外信號調節激酶 (Extracellular-signal-regulated kinases, ERK) 與c-Jun N端蛋白質激酶 (c-Jun N-terminal kinases, JNK) 磷酸化,以及轉錄因子nuclear factor-kappa B (NF-kappaB) 核內表現量。以上結果可證實,香菸會透過其本身的活性氧族群活化TRPA1,引發鈣離子流入細胞內,活化NADPH oxidase並造成細胞內活性氧族群增加而促使下游訊息傳遞,進而導致肺發炎反應。
本論文第二部分的研究,主要探討TRPM8 於正規香菸或薄荷香菸誘發肺部發炎中所扮演的角色,並進一步研究此兩種香菸所造成發炎反應之差異程度與其相關的調控機轉。我們分別利用正規香菸或薄荷香菸暴露小鼠,以及兩者的香菸萃取物分別刺激人類支氣管上皮細胞 (HBECs) 來進行實驗。在動物實驗結果顯示,肺部組織有TRPM8蛋白的表現;正規香菸與薄荷香菸分別暴露Wildtype小鼠一週後,可明顯發現薄荷香菸組別的老鼠相較於正規香菸組別提升較多的TRPM8蛋白表現量;而以上此現象也於支氣管肺泡灌流液中或者是肺部的巨噬細胞炎症蛋白-2 (MIP-2),以及白血球數量有相似的結果。然而上述的發炎現象,在兩種不同香菸的小鼠組別給予TRPM8抑制劑後則皆明顯被抑制。接著在細胞實驗發現,薄荷香菸萃取物相較於正規香菸萃取物,會誘發較高的IL-8蛋白表現量。而無論是正規香菸或薄荷香菸,其本身內含的活性氧族群皆能活化TRPM8,此外也證實相較於正規香菸,薄荷香菸能造成雙重刺激活化TRPM8而引起較大量的鈣離子流入細胞內。接著分別利用預處理TRPM8抑制劑或以小干擾核醣核酸引發TRPM8的基因靜默可有效減少兩者香菸萃取物引起的IL-8;另外利用剃除人類支氣管上皮細胞中TRPM8基因表現,或將TRPM8基因轉送入人類胚胎腎細胞293 (Human Embryonic Kidney Cells 293 cells, HEK 293 cells) 再給予TRPM8抑制劑也皆可有效抑制兩者香菸萃取物所引起的鈣離子與IL-8增加的現象。預先給予細胞處理各種相關抑制劑可以分別減少兩者香菸所引發鈣離子流入細胞內、活性氧族群、有絲分裂活化蛋白質激酶中的胞外信號調節激酶與c-Jun N端蛋白質激酶磷酸化,以及轉錄因子nuclear factor-kappa B (NF-kappaB) 核內表現量。最後,分別用薄荷、正規香菸或薄荷結合正規香菸給予細胞刺激,相較於薄荷或正規香菸組別,薄荷結合正規香菸組別會引發較高的鈣離子流入細胞內以及IL-8表現量增加。以上這些結果可證實無論是正規香菸或薄荷香菸中的活性氧族群皆會活化TRPM8,造成鈣離子流入調控細胞內活性氧族群增加,進而引發下游一連串的訊息傳遞,最後導致發炎反應;重要的是,相較於正規香菸,在薄荷香菸中由於額外添加的薄荷成分會與香菸本身內含的活性氧族群達到雙重刺激效果,因而促使TRPM8活化加劇,導致更嚴重的發炎反應生成。
綜合兩者研究主題結果,無論是在動物或細胞上,皆可得知正規香菸內含的活性氧族群會透過活化TRPA1與TRPM8,引發鈣離子流入後再進一步調控細胞內活性氧族群增加,接著透過下游訊息傳遞導致肺發炎反應生成。此外,在薄荷香菸的研究可發現香菸內含的薄荷成分會與香菸本身內含的活性氧族群達到雙重刺激效果,因而促使TRPM8活化加劇,引發更大量的鈣離子流入,並導致下游發炎相關的訊息傳遞以及發炎反應增強。經由我們的研究不僅可發現,薄荷香菸確實會比正規香菸引發更嚴重的肺發炎反應,另外也可得知TRPA1與TRPM8於持續性慢性肺發炎進而形成COPD疾病的病理機轉中扮演相當重要的角色。
Cigarette smoke (CS) is known to the major factor that contribute to the development and progression of chronic obstructive pulmonary disease (COPD), which results from the direct damage cells by CS via reactive oxygen species (ROS)-related pathways causes oxidative stress and persistent lung inflammation. However, the pathogenetic mechanisms and the role of increased ROS in the CS-induced regulation of lung inflammation are still largely unknown. Transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential melastatin 8 (TRPM8), are nonselective cation channels sensitive to temperature and chemical stimuli, belong to TRP superfamily. TRPA1 and TRPM8 are mainly permeable to Ca2+, and they are predominately expressed in nociceptive sensory neurons. Increasing evidence suggests that in lung sensory neurons, TRPA1 are activated by many oxidants including CS and TRPM8 are activated by cold temperature, menthol and oxidants. However, the expression and function of TRPA1 and TRPM8 in non-neuronal cells in the lungs are fully unknown.
Our first study investigated the novel role of TRPA1 in CS-induced lung inflammation and its underlying mechanisms. To achieve this goal, wildtype and TRPA1 knockout mice or culture human bronchial epithelial cells (HBECs) were exposed to CS or cigarette smoke extract (CSE). In vivo, we showed that TRPA1 expressed in lung. Besides, mice were exposed to chronic CS for 4 weeks promoted expression of MIP-2 (an IL-8 homolog) in bronchoalveolar lavage fluid and lungs, caused oxidative stress, as well as lung inflammation, all of which were reduced in TRPA1 knockout mice. In vitro, our results found that CSE dose- and time-dependently increased the production of TRPA1. Moreover, CSE-induced extracellular ROS activated TRPA1 to increase the intracellular level of Ca2+ leading to NADPH oxidase activation and intracellular ROS production, respectively. Pretreatment with TRPA1 inhibitors or knockdown of TRPA1 by small interfering RNA prevented CSE-induced IL-8 expression. Importantly, pretreatment with various pharmacological inhibitors suppressed the increased Ca2+ intracellular levels, attenuated the intracellular ROS production, inhibited the activity of NADPH oxidase, reduced phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK), as well as prevented the activation of nuclear factor-kappa B (NF-kappaB) in HBECs exposed to CSE. These results suggest that CS-induced extracellular ROS caused TRPA1 activation leading to increase intracellular Ca2+ levels. The Ca2+ levels increase sequentially resulted in NADPH oxidase activation, intracellular ROS production and downstream signaling activation leading to lung inflammation.
Our second study investigated the role of TRPM8 in Non-menthol-cigarette smoke- (Non-M-CS) or menthol-cigarette smoke (M-CS)-induced lung inflammation and the mechanisms for the different effects between these two types of CS. To achieve the purpose, wildtype mice were exposed to Non-M-CS or M-CS, and HBECs were exposed to Non-M-CSE or M-CSE. In vivo, Mice were exposed to Non-M-CS or M-CS for a week. Our results showed that TRPM8 expressed in lung, and M-CS group caused higher TRPM8 expression than Non-M-CS in lung. Besides, compared with the group of Non-M-CS exposure, M-CS group promoted higher expression of MIP-2 (an IL-8 homolog) in bronchoalveolar lavage fluid and lungs, as well as severe lung inflammation, all of which were reduced after administration of TRPM8 antagonist. In vitro, compared to Non-M-CSE, M-CSE induced higher IL-8 expression. Non-M-CSE- or M-CSE-induced the similar extracellular ROS levels, however, M-CSE activated TRPM8 to increase the higher intracellular level of Ca2+. Pretreatment with TRPM8 inhibitors, knockdown of TRPM8 by small interfering RNA prevented IL-8 induction to both CSE type. In addition, knockout of TRPM8 in HBECs or pretreatment with TRPM8 inhibitor to HEK293 cells transfected with hTRPM8 also found that M-CSE promoted greater Ca2+ levels and IL-8 induction than Non-M-CSE. Moreover, exposed to both CSE types, the increased intracellular Ca2+ levels, intracellular ROS production, phosphorylation of ERK and JNK and the activation of NF-kappaB were all attenuated by pretreatment with various pharmacological inhibitors. Last, a combination of Non-M-CSE and menthol induced more elevations of intracellular Ca2+ and IL-8 induction than Non-M-CSE alone. These results suggest that both CS type induced the similar extracellular ROS and then sequentially caused TRPM8 activation, increase intracellular Ca2+ levels, intracellular ROS production and downstream signaling activation leading to lung inflammation. Importantly, compared with Non-M-CSE, M-CSE caused greater inflammatory responses. This phenomenon may be caused a double hit which resulted from the ROS produced by CS and menthol in M-CS.
In conclusion, Non-M-CS-induced extracellular ROS activates TRPA1 and TRPM8, which cause intracellular Ca2+ levels increase. The elevations of intracellular Ca2+ levels induce intracellular ROS production and then activate MAPK/NF-kappaB signaling leading to lung inflammation. In addition, menthol in M-CS and ROS produced by CS may cause a double hit that activates TRPM8 to induce greater intracellular Ca2+ levels, MAPK/NF-kappaB signaling and inflammatory responses. Our findings may provide novel information that M-CS causes more severe lung inflammation than Non-M-CS. Moreover, TRPA1 and TRPM8 play a vital role in the development and progression of COPD disease.
目錄
目錄 --------------------------------------- i
圖目錄 --------------------------------------vi
縮寫對照表 ---------------------------------ix
中文摘要 -----------------------------------xi
英文摘要 -----------------------------------xiv
壹、文獻回顧及研究目的 ------------------------1
一、香菸的起源 -------------------------------2
1.香菸製程 --------------------------------2
2.香菸的總類 -------------------------------3
3.香菸的毒性 -------------------------------3
二、呼吸道上皮細胞 -------------------------5
三、香菸造成肺部損傷及呼吸道的發炎反應 --------6
四、瞬態電壓感受器陽離子通道 (Transient Receptor
Potential channels, TRP channels) ---------7
五、瞬態電壓感受器陽離子通道錨蛋白類第一型 (Transient
Receptor Potential Ankyrin 1, TRPA1) -------8
(1)TRPA1結構與配基 --------------------------8
(2)TRPA1分佈與功能 --------------------------9
(3)調控TRPA1通道 -------------------------9
六、瞬態電壓感受器陽離子通道M類第八型 (Transient
Receptor Potential Melastatin 8, TRPM8) ---------11
(1)TRPM8結構與配基 --------------------11
(2)TRPM8分佈與功能 -----------------------12
(3)調控TRPM8通道 --------------------------13
七、研究目的 ---------------------------14
貳、材料與方法 --------------------------17
一、儀器設備 -------------------------18
二、實驗材料與試劑 ---------------------19
香菸萃取物之製備 (Preparation of cigarette smoke extract)-19
細胞培養 (Cell culture) --------------------19
逆轉錄聚合酶鏈式反應 (Reverse transcriptase PCR, RT-PCR) ---19
西方墨漬法 (Western blot) -----------------20
NADPH oxidase 活性測定 (NADPH oxidase activity assay) --21
細胞內外ROS螢光測量 -------------------------21
組織免疫分析法 (Immunohistochemistry) ------------21
聚合酶酵素分析法 (ELISA assay) -------------21
細胞內鈣離子螢光的測量 (Fluo-8 calcium assay kit) -----21
三、實驗用溶液配方 --------------------21
四、實驗方法 ----------------------25
1.動物實驗 -----------------------25
2.動物的麻醉及手術 ----------------------25
3.支氣管肺泡灌洗液中,發炎細胞之總細胞計數,及分類細胞
計數 ------------------------------26
4.肺泡-微血管通透度的測定 -------------------27
5.組織免疫分析法 (Immunohistochemistry) -----------27
6.En face組織染色 ----------------------28
7.蘇木紫與伊紅染色 (Hematoxylin & Eosin staining; H&E
staining) -------------------------29
8.香煙萃取物的製備 (Preparation of cigarette smoke extract)-30
9.細胞培養 (Cell culture) --------------30
10.西方墨漬法 (Western blotting) -------------31
11.酵素結合免疫吸附法 (Enzyme-linked immunosobent
assay, ELISA) -----------------------36
12.細胞內鈣離子螢光的測定 (Screen QuestTM Fluo-8 medium
removal calcium assay kit) ------------------37
13.細胞內外ROS的測定 (Determination of intracellular ROS) --38
14.支氣管肺泡灌流液中ROS的測定 (Determination of ROS in
BALF) --------------------------39
15.細胞內NADPH oxidase活性測定 (NADPH oxidase activity
assay) -----------------------------40
16.小干擾核醣核酸引發基因靜默 (Small interfering RNA,
siRNA-mediated gene silencing) -----------------41
17.CRISPR/Cas9 系統調控剔除基因 (CRISPR/Cas9-mediated
gene knockout) ----------------------42
18.數據統計分析 ----------------------43
參、實驗結果 -------------------------44
一、第一部分研究:TRPA1於香菸引發肺部發炎所扮演的角色及
其相關的調控機轉 ------------------------45
1.TRPA1在小鼠肺組織的表現情形 -----------------45
2.香菸 (CS)對小鼠肺組織裡TRPA1表現量之影響 ----------45
3.TRPA1對香菸 (CS)造成小鼠氧化壓力產生之影響 ---------45
4.TRPA1對於香菸 (CS)導致小鼠肺組織產生的損傷之影響 ----46
5.TRPA1對於暴露香菸 (CS)下對小鼠呼吸道產生發炎之影響 ---46
6.TRPA1對於香菸 (CS)導致小鼠呼吸道發炎激素增加之影響 ---47
7.香菸萃取物 (CSE)對於支氣管上皮細胞內TRPA1表現的濃度及
時間點之影響 ---------------------------------47
8.TRPA1抑制劑 (HC)對於香菸萃取物 (CSE)調控細胞內白血球介
素-8 (IL-8)之影響 ----------------------------------48
9.將TRPA1基因靜默對於香菸萃取物 (CSE)誘導支氣管上皮細胞
IL-8表現之影響 ------------------------------------48
10.香菸萃取物 (CSE)刺激細胞對於活化TRPA1時間點之影響 ----49
11.TRPA1與ROS對於香菸萃取物 (CSE)調控鈣離子流入細胞內之
影響 --------------------------------------49
12.TRPA1對香菸萃取物 (CSE)於不同時間點調控細胞內外氧化性
族群之影響-----------------------------50
13.TRPA1對於香菸萃取物 (CSE)調控細胞內NADPH oxidase活性
之影響 ------------------------------50
14.TRPA1與ROS對於香菸萃取物 (CSE)調控細胞內ERK和JNK磷酸
化之影響 ----------------------------51
15.TRPA1與ROS對於香菸萃取物 (CSE)調控細胞內轉錄因子
NF-kappaB p65進入細胞核內之影響 --------------------51
二、第二部分研究:TRPM8於正規香菸或薄荷香菸誘發肺部發炎
中所扮演的角色及相關調控機轉 -------------------------52
1.TRPM8在小鼠肺組織中的表現情形 ---------------------52
2.正規香菸 (Non-M-CS)或薄荷香菸 (M-CS)對小鼠肺組織裡
TRPM8表現量之影響 ---------------------------------52
3.TRPM8對於暴露正規香菸 (Non-M-CS)或薄荷香菸 (M-CS)導致
小鼠肺組織產生的損傷之影響 --------------------------53
4.TRPM8對於暴露正規香菸 (Non-M-CS)或薄荷香菸 (M-CS)對小
鼠呼吸道產生發炎之影響 ------------------------------53
5.TRPM8對於暴露正規香菸 (Non-M-CS)或薄荷香菸 (M-CS)導致
小鼠呼吸道發炎激素增加之影響 ------------------------54
6.不同濃度的正規香菸萃取物 (Non-M-CSE)或薄荷香菸萃取物
(M-CSE)對於支氣管上皮細胞內IL-8表現之影響 -----------55
7.探討TRPM8是否參與在對於正規香菸萃取物 (Non-M-CSE)或薄
荷香菸萃取物 (M-CSE)調控支氣管上皮細胞內IL-8表現之影響 ---55
8.TRPM8與ROS對於正規香菸萃取物 (Non-M-CSE)或薄荷香菸萃
取物 (M-CSE)調控支氣管上皮細胞內IL-8表現之影響 ---------56
9.TRPM8對正規香菸萃取物 (Non-M-CSE)或薄荷香菸萃取物
(M-CSE)調控支氣管上皮細胞內外氧化性族群之影響 ------------57
10.TRPM8與ROS對於正規香菸萃取物 (Non-M-CSE)或薄荷香菸
萃取物 (M-CSE)調控細胞內ERK、JNK磷酸化及轉錄因子
NF-kappaB p65進入細胞核內之影響 ----------------------57
11.探討正規香菸萃取物 (Non-M-CSE)結合薄荷醇 (Menthol)對
於細胞活化TRPM8與誘導發炎蛋白IL-8之影響 ----------------58
12.於人類胚胎腎臟細胞 (HEK293)送入人類TRPM8 (hTRPM8)質體
來探討正規香菸萃取物 (Non-M-CSE)或薄荷香菸萃取物 (M-CSE)
對於活化TRPM8與發炎蛋白IL-8分泌之影響 ------------------59
13.正規香菸萃取物 (Non-M-CSE)或薄荷香菸萃取物 (M-CSE)對於
調控支氣管上皮細胞氧化壓力相關因子之影響 ---------------59
肆、討論 -------------------------------------------61
伍、附圖 -------------------------------------------69
陸、參考文獻 -------------------------------113
柒、附件----------------------------------134

圖目錄
圖一、TRPA1在小鼠肺組織中的表現量 -----------------71
圖二、香菸 (CS)對小鼠肺組織裡TRPA1表現量之影響 ---------72
圖三、TRPA1對香菸 (CS)造成小鼠氧化壓力產生之影響 ---------73
圖四、TRPA1對於香菸 (CS)導致小鼠肺組織產生的損傷之影響 ----74
圖五、TRPA1對於暴露香菸 (CS)下對小鼠呼吸道產生發炎之影響 ---75
圖六、TRPA1對於香菸 (CS)導致小鼠呼吸道或肺組織發炎激素增加
之影響 ----------------------------------------------76
圖七、香菸萃取物 (CSE)對於支氣管上皮細胞內TRPA1表現的濃度及
時間點之影響 ------------------------------------------77
圖八、TRPA1抑制劑 (HC)對於香菸萃取物 (CSE)調控支氣管上皮細胞
內IL-8之影響 -----------------------------------------78
圖九、將TRPA1基因靜默對於香菸萃取物 (CSE)誘導支氣管上皮細胞
IL-8表現之影響 ----------------------------------------79
圖十、香菸萃取物 (CSE)刺激支氣管上皮細胞對於活化TRPA1時間點
之影響 -----------------------------------------------80
圖十一、TRPA1與ROS對於香菸萃取物 (CSE)調控支氣管上皮細胞內
鈣離子之影響 -------------------------------------------81
圖十二、TRPA1對香菸萃取物 (CSE)於不同時間點調控支氣管上皮細
胞內外氧化性族群之影響 ----------------------------------82
圖十三、TRPA1對於香菸萃取物 (CSE)調控支氣管上皮細胞內
NADPH oxidase活性之影響 -------------------------------83
圖十四、TRPA1與ROS對於香菸萃取物 (CSE)調控支氣管上皮細胞
內ERK和JNK磷酸化之影響 --------------------------------84
圖十五、TRPA1與ROS對於香菸萃取物 (CSE)調控支氣管上皮細胞內
轉錄因子NF-kappaB p65進入細胞核內之影響 ----------------85
圖十六、香菸 (CS)與TRPA1關係路徑圖 ---------------------86
圖十七、TRPM8在小鼠肺組織中的表現情形 -------------------88
圖十八、正規香菸 (Non-M-CS)或薄荷香菸 (M-CS)對小鼠肺組織裡
TRPM8表現量之影響 ------------------------------------89
圖十九、TRPM8對於暴露正規香菸 (Non-M-CS)或薄荷香菸
(M-CS)導致小鼠肺組織產生的損傷之影響 -------------------90
圖二十、TRPM8對於暴露正規香菸 (Non-M-CS)或薄荷香菸 (M-CS)
對小鼠呼吸道產生發炎之影響 -----------------------------91
圖二十一、TRPM8對於暴露正規香菸 (Non-M-CS)或薄荷香菸 (M-CS)
導致小鼠呼吸道發炎激素增加之影響 ------------------------92
圖二十二、不同濃度的正規香菸萃取物 (Non-M-CSE)或薄荷香菸萃
取物 (M-CSE)對於支氣管上皮細胞內IL-8表現之影響 ----------93
圖二十三、TRPM8抑制劑 (AMTB)對於正規香菸萃取物 (Non-M-CSE)
或薄荷香菸萃取物 (M-CSE)調控支氣管上皮細胞內IL-8之影響 ---94
圖二十四、將TRPM8基因靜默對於正規香菸萃取物 (Non-M-CSE)或
薄荷香菸萃取物 (M-CSE)誘導支氣管上皮細胞IL-8表現之影響 ----95
圖二十五、將TRPM8基因剔除對於正規香菸萃取物 (Non-M-CSE)或
薄荷香菸萃取物 (M-CSE)誘導支氣管上皮細胞IL-8表現之影響 ----96
圖二十六、正規香菸萃取物 (Non-M-CSE)或薄荷香菸萃取物 (M-CSE)
刺激支氣管上皮細胞對於活化TRPM8時間點之影響 --------------97
圖二十七、將TRPM8基因剔除對於正規香菸萃取物 (Non-M-CSE)或
薄荷香菸萃取物 (M-CSE)調控支氣管上皮細胞內鈣離子之影響 ----98
圖二十八、TRPM8與ROS對於正規香菸萃取物 (Non-M-CSE)或薄荷
香菸萃取物 (M-CSE)調控支氣管上皮細胞內鈣離子之影響 --------99
圖二十九、TRPM8與ROS對於正規香菸萃取物 (Non-M-CSE)或薄荷
香菸萃取物 (M-CSE)調控支氣管上皮細胞內IL-8之影響 --------100
圖三十、TRPM8對正規香菸萃取物 (Non-M-CSE)或薄荷香菸萃取物
(M-CSE)於不同時間點調控支氣管上皮細胞內外氧化性族群之影響 ------101
圖三十一、TRPM8與ROS對於正規香菸萃取物 (Non-M-CSE)或薄荷
香菸萃取物 (M-CSE)調控細胞內ERK和JNK磷酸化之影響 --------102
圖三十二、TRPM8與ROS對於正規香菸萃取物 (Non-M-CSE)或薄荷
香菸萃取物 (M-CSE)調控細胞內轉錄因子 NF-kappaB p65進入細胞核內之影響 ------------------103
圖三十三、不同濃度的薄荷醇 (Menthol)對於支氣管上皮細胞活化
TRPM8時間點之影響 ---------------------------104
圖三十四、將正規香菸萃取物 (Non-M-CSE)與薄荷醇 (Menthol)合
併處理對於活化支氣管上皮TRPM8時間點之影響 ----------------105
圖三十五、TRPM8對於合併處理正規香菸萃取物 (Non-M-CSE)與薄
荷醇 (Menthol)調控細胞內IL-8之影響 --------------------106
圖三十六、將人類TRPM8 (hTRPM8)質體轉送入人類胚胎腎臟細胞
(HEK 293)表達 -----------------------------107
圖三十七、探討在表現人類TRPM8 (hTRPM8)的人類胚胎腎臟細胞
(HEK 293)中正規香菸萃取物 (Non-M-CSE)與薄荷香菸萃取物
(M-CSE)對於活化TRPM8時間點之影響 ------------------108
圖三十八、在表現人類TRPM8 (hTRPM8)的人類胚胎腎臟細胞
(HEK 293)中探討TRPM8對於正規香菸萃取物 (Non-M-CSE)或
薄荷香菸萃取物 (M-CSE)調控細胞內鈣離子之影響 -------------109
圖三十九、在表現人類TRPM8 (hTRPM8)的人類胚胎腎臟細胞
(HEK 293)中探討TRPM8對於正規香菸萃取物 (Non-M-CSE)或
薄荷香菸萃取物 (M-CSE)調控IL-8分泌之影響 ----------110
圖四十、與氧化壓力相關調控因子對於正規香菸萃取物 (Non-M-CSE)
或薄荷香菸萃取物 (M-CSE)刺激支氣管上皮細胞內IL-8表現之影響 --111
圖四十一、TRPM8與正規香菸(Non-M-CS)或薄荷香菸(M-CS)關係
路徑圖 -------------------------------------------112
1. Chung KF, Adcock IM. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur. Respir. J. 31: 1334-1356, 2008.
2. Van Hove CL, Moerloose K, Maes T, Joos GF, Tournoy KG. Cigarette smoke enhaces Th-2 driven airway inflammation and delays inhalational tolerance. Respir Res. 9: 42, 2008.
3. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 22: 672-688, 2003.
4. Green RM, Gally F, Keeney JG, Alper S, Gao B, Han M, Martin RJ, Weinberger AR, Case SR, Minor MN, Chu HW. Impact of cigarette smoke exposure on innate immunity: a Caenorhabditis elegans model. PLoS One. 4: 6860, 2009
5. Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann. N. Y. Acad. Sci. 686:12-27, 1993.
6. Pryor WA. Biological effects of cigarette smoke, wood smoke, and the smoke from plastics: the use of electron spin resonance. Free. Radic. Biol. Med. 13: 659-676, 1992.
7. Sarir HE, Mortaz K, Karimi AD, Kraneveld I, Rahman E, Caldenhoven FP, Nijkamp G, Folkerts. Cigarette smoke regulates the expression of TLR4 and IL-8 production by human macrophages. J Inflamm (Lond). 6: 12, 2009.
8. Facchinetti FF, Amadei P, Geppetti F, Tarantini C, Di Serio A, Dragotto PM, Gigli S, Catinella M, Civelli R, Patacchini. Alpha,beta-unsaturated aldehydes in cigarette smoke release inflammatory mediators from human macrophages. Am J Respir Cell Mol Biol. 37 (5): 617-623, 2007.
9. Goodman JE. Tobacco in history: the cultures of dependence. New York: Routledge. 97, 1993.
10. Ho VD, Djordjevic MV, Ho VI. The changing cigarette. Prev Med. 26: 427-434, 1997.
11. Thun MJ, Lally CA, Flannery JT. Cigarette smoking and changes in the histopathology of lung cancer. J Nat Cancer Inst. 89: 1580-1586, 1997.
12. Assunta M, Chapman S. The lightest market in the world: light and mild cigarettes in Japan. Nicotine Tob Res. 10 (5): 803-810, 2008.
13. Ahijevych K1, Garrett BE. Menthol pharmacology and its potential impact on cigarette smoking behavior. Nicotine Tob Res. Suppl 1: S17-28, 2004.
14. Ahijevych K1, Garrett BE. The role of menthol in cigarettes as a reinforcer of smoking behavior. Nicotine Tob Res. Suppl 2: S110-S116, 2010.
15. Anderson SJ. Menthol cigarettes and smoking cessation behaviour: a review of tobacco industry documents. Tob Control. Suppl 2: ii49-ii56, 2011.
16. Hoffman AC. The health effects of menthol cigarettes as compared to non-menthol cigarettes. Tob Induc Dis. 9: S7, 2011.
17. Brooks D, Palmer J, Storm B, Rosenberg LL. Menthol cigarettes and risk of lung cancer. M J Epidemiol. 158: 609-616, 2003.
18. Lee PN. Systematic review of the epidemiological evidence comparing lung cancer risk in smokers of mentholated and unmentholated cigarettes. BMC Pulm Med. 11: 18, 2011.
19. Warner KE, Davis RM, Holbrook JH, Novotny TE, Ockene JK, Rigotti NA. Reducing the Health Consequences of Smoking: 25 Years of Progress: A Report of the Surgeon General: 1989 Executive Summary. United States. 713, 1989.
20. Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect. 64: 111-126, 1985.
21. White CW, Repine JE. Pulmonary antioxidant defense mechanisms. Exp Lung Res. 8 (2-3): 81-96, 1985.
22. Kamp R, Sun X, Garcia JG. Making genomics functional: deciphering the genetics of acute lung injury. Proc Am Thorac Soc. 5 (3): 348-353, 2008.
23. Danielsen PH, Brauner EV, Barregard L, Sallsten G, Wallin M, Olinski R, Rozalski R, Moller P, Loft S. Oxidatively damaged DNA and its repair after experimental exposure to wood smoke in healthy humans. Mutat Res. 642 (1-2): 37-42, 2008.
24. Leikauf GD, Borchers MT, Prows DR, Simpson LG. Mucin apoprotein expression in COPD. Chest. 121:166S-182S, 2002.
25. Hitesh SD, Colleen Shaver, Lisa MC, Maggie Dietsch, Scott CW, William DH, Thomas RK, Massimo Corradi, Jay ANadel, Michael TB, George DL. Acrolein-Activated Matrix Metalloproteinase 9. Am J Respir Cell Mol Biol. 38: 446-454, 2008.
26. Lin RK, Hsieh YS, Lin P, Hsu HS, Chen CY, Tang YA, Lee CF, Wang, YC. The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest. 120 (2): 521-532, 2010.
27. Martin LD, Rochelle LG, Fischer BM, Krunkosky TM, Adler KB. Airway epithelium as an effector of inflammation: molecular regulation of secondary mediators. Eur Respir J. 10 (9): 2139-2146, 1997.
28. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 8 (3): 183-192, 2008.
29. Sajjan US, Jia Y, Newcomb DC, Bentley JK, Lukacs NW, LiPuma JJ, Hershenson MB. H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J. 20 (12): 2121-2123, 2006.
30. Neurath MF, Finotto S, Glimcher LH. The role of Th1/Th2 polarization in mucosal immunity. Nat Med. 8 (6): 567-573, 2002.
31. Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME. Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc. 5 (7): 772-777, 2008.
32. Spurzem JR, Rennard SI. Pathogenesis of COPD. Semin Respir Crit Care Med. 26 (2): 142-153, 2005.
33. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 22 (4): 672-688, 2003.
34. Barnes PJ. Mediators of chronic obstructive pulmonary disease. Pharmacol Rev. 56: 515-548, 2004.
35. Johnston RA, Schwartzman IN, Shore SA. Macrophage inflammatory protein-2 levels are associated with changes in serum leptin concentrations following ozone-induced airway inflammation. Chest. 123: 369-370, 2003.
36. Zwijnenburg PJ, Polfliet MM, Florquin S, van den Berg TK, Dijkstra CD, van Deventer SJ, Roord JJ, van der Poll T, van Furth AM. CXC-chemokines KC and macrophage inflammatory protein-2 (MIP-2) synergistically induce leukocyte recruitment to the central nervous system in rats. Immunol Lett. 85: 1-4, 2003.
37. Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Laichalk LL, McGillicuddy DC, Standiford TJ. Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia. J Infect Dis. 173: 159-165, 1996.
38. Schmal H, Shanley TP, Jones ML, Friedl HP, Ward PA. Role for macrophage inflammatory protein-2 in lipopolysaccharide-induced lung injury in rats. J Immunol. 156: 1963-1972, 1996.
39. Kocbach A, Namork E, Schwarze PE. Pro-inflammatory potential of wood smoke and traffic-derived particles in a monocytic cell line. Toxicology. 247: 123-132, 2008.
40. Chung KF. Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl. 34: 50-59, 2001.
41. Birrell MA, Wong S, Catley MC, Belvisi MG. Impact of tobacco-smoke on key signaling pathways in the innate immune response in lung macrophages. J Cell Physiol. 214: 27-37, 2008.
42. Knight JA. Diseases related to oxygen-derived free radicals. Ann Clin Lab Sci. 25 (2): 111-121, 1995.
43. Comhair SA, Thomassen MJ, Erzurum SC. Differential induction of extracellular glutathione peroxidase and nitric oxide synthase 2 in airways of healthy individuals exposed to 100% O(2) or cigarette smoke. Am J Respir Cell Mol Biol. 23 (3): 350-354, 2000.
44. Adair-Kirk TL, Atkinson JJ, Senior RM. Smoke particulates stress lung cells. Nat Med. 14 (10): 1024-1025, 2008.
45. Rahman I, Gilmour PS, Jimenez LA, MacNee W. Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol Cell Biochem. 234-235 (1-2): 239-248, 2002.
46. Radomska-Lesniewska DM, Sadowska AM, Van Overveld FJ, Demkow U, Zielinski J, De Backer WA. Influence of N-acetylcysteine on ICAM-1 expression and IL-8 release from endothelial and epithelial cells. J Physiol Pharmacol. 57 (4): 325-334, 2006.
47. Tang GJ, Wang HY, Wang JY, Lee CC, Tseng HW, Wu YL, Shyue S, Lee TS, Kou YR. Novel role of AMP-activated protein kinase signaling in cigarette smoke induction of IL-8 in human lung epithelial cells and lung inflammation in mice. Free Radic. Biol. 50: 1492-1502, 2011.
48. Gees M, Colsoul B, Nilius B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol. 2 (10): a003962, 2010.
49. Gees M, Owsianik G, Nilius B, Voets T. TRP channels. Comp Physiol. 2 (1): 563-608, 2012.
50. Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 12 (3): 218-229, 2011.
51. Wu LJ, Sweet TB, Clapham DE. Current progress in the mammalian TRP ion channel family. Pharmacol Rev. 62 (3): 381-404, 2010.
52. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem. 76: 387-417, 2007.
53. Owsianik G, D’Hoedt D, Voets T, Nilius B. Structure-function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol. 156: 61-90, 2006.
54. Romanovsky AA, Almeida MC, Garami A, Steiner AA, Norman MH, Morrison SF, Nakamura K, Burmeister JJ, Nucci TB. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev. 61: 228-261, 2009.
55. Kwan KY, Corey DP. Burning cold: involvement of TRPA1 in noxious cold sensation. J Gen Physiol. 133: 251-256, 2009.
56. Daniels RL, McKemy DD. Mice left out in the cold: commentary on the phenotype of TRPM8-nulls. Mol Pain. 3: 23, 2007.
57. Story GM. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 112: 819-829, 2003.
58. Jaquemar D, Schenker T, Trueb B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem. 274 (11): 7325-7333, 1999.
59. García-Añoveros J, Nagata K. TRPA1. Handb Exp Pharmacol. 179: 347-362, 2007.
60. Bessac BF, Jordt SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda). 23: 360-370, 2008.
61. Baraldi PG, Preti D, Materazzi S, Geppetti P. Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem. 53: 5085-5107, 2010.
62. Gaudet R. A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst. 4: 372-379, 2008.
63. Nilius B, Prenen J, Owsianik G. Irritating channels: the case of TRPA1. J Physiol. 589: 1543-1549, 2011.
64. Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol. 166: 510-521, 2012.
65. Koivisto A, Hukkanen M, Saarnilehto M, Chapman H, Kuokkanen K, Wei H, Viisanen H, Akerman KE, Lindstedt K, Pertovaara A. Inhibiting TRPA1 ion channel reduces loss of cutaneous nerve fiber function in diabetic animals: sustained activation of the TRPA1 channel contributes to the pathogenesis of peripheral diabetic neuropathy. Pharmacol Res. 65: 149-158, 2012.
66. Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S, Hele DJ, Maher SA, Freund-Michel V, Morice AH. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am J Respir Crit Care Med. 180: 1042-1047, 2009.
67. Doerner JF, Gisselmann G, Hatt H, Wetzel CH. Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem. 282: 13180-13189, 2007.
68. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature. 445: 541-545, 2007.
69. Lapointe TK, Altier C. The role of TRPA1 in visceral inflammation and pain. Channels (Austin). 5: 525-529, 2011.
70. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA. Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci. 10: 277-279, 2007.
71. Bautista DM, Pellegrino M, Tsunozaki M. TRPA1: A gatekeeper for inflammation. Annu Rev Physiol. 75: 181-200, 2013.
72. Marcello T, Jan S, Serena M, Diana MB, Romina N, Barbara C, Noritaka I, Eunice A, Riccardo P, Graeme SC, Raffaele G, Allan IB, Nigel WB, David J, Pierangelo G. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. PNAS. 104 (33): 13519-13524, 2007.
73. Michelle NS, Albert LG, Paulo WP, Allison B, Dennis L, Wencheng L, Agathe O, Frederick AB, Yumei F, Jonathan HJ, Donald GW, Scott E. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation. Sci Signal. 8 (358): ra2, 2015.
74. Hinman A, Chuang H, Bautist, DM, Julius, D. TRP channel activation by reversible covalent modification. Proceedings of the National Academy of Sciences. 103: 19564-19568, 2006.
75. Sadofsky LR. TRPA1 is activated by direct addition of cysteine residues to the N-hydroxysuccinyl esters of acrylic and cinnamic acids. Pharmacol Res. 63: 30-36, 2011.
76. Bautista DM. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci. 102: 12248-12252, 2005.
77. Sawada Y, Hosokawa H, Matsumura K, Kobayashi S. Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci. 27: 1131-1142, 2008.
78. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest. 118: 1899-1910, 2008.
79. Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, Sano Y, Inamura K, Matsushime H, Koizumi T, Yokoyama T, Ito H. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. PNAS. 106: 3408-3413, 2009.
80. Tamás B, László K. An “ice-cold” TR(i)P to skin biology: the role of TRPA1 in uuman epidermal keratinocytes. J Invest Dermatol. 129: 2096-2099, 2009.
81. Ruzanna A, Doug S, Natalia VB. Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol. 129: 2312-2315, 2009.
82. Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S, Andersson KE, Högestätt ED, Zygmunt PM. Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol. 53 (2): 391-399, 2008.
83. Hayashi S, Nakamura E, Endo T, Kubo Y, Takeuchi K. Impairment by activation of TRPA1 of gastric epithelial restitution in a wound model using RGM1 cell monolayer. Inflammopharmacology. 15 (5): 218-222, 2007.
84. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 41: 849-857, 2004.
85. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest. 117: 1979-1987, 2007.
86. Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, Cui X, Tominaga M, Noguchi K. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain. 131: 1241-1251, 2008.
87. Chen Y, Yang C, Wang ZJ. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience. 193: 440-451, 2011.
88. Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61 (9): 3760-3769, 2001.
89. McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 416 (6876): 52-58, 2002.
90. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A. A TRP channel that senses cold stimuli and menthol. Cell. 108 (5): 705-715, 2002.
91. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A. TRPM8 is required for cold sensation in mice. Neuron. 54 (3): 371-378, 2007.
92. Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N. Attenuated cold sensitivity in TRPM8 null mice. Neuron. 54 (3): 379-386, 2007.
93. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature. 448 (7150): 204-208, 2007.
94. Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G. Thermo TRP channels as modular proteins with allosteric gating. Cell Calcium. 42 (4-5): 427-438, 2007.
95. Voets T, Owsianik G, Nilius B. TRPM8. Handb Exp Pharmacol. 179: 329-344, 2007.
96. Voets T, Owsianik G, Janssens A, Talavera K, Nilius B. TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol. 3 (3): 174-182, 2007.
97. Dragoni I, Guida E, McIntyre P. The cold and menthol receptor TRPM8 contains a functionally important double cysteine motif. J Biol Chem. 281: 37353-37360, 2006.
98. Phelps CB, Gaudet R. The role of the N terminus and transmembrane domain of TRPM8 in channel localization and tetramerization. J Biol Chem. 282 (50): 36474-36480, 2007.
99. Stewart AP, Egressy K, Lim A, Edwardson JM. AFM imaging reveals the tetrameric structure of the TRPM8 channel. Biochem Biophys Res Commun. 394: 383-386, 2010.
100. Janssens A, Voets T. Ligand stoichiometry of the cold- and menthol-activated channel TRPM8. J Physiol. 589 (20): 4827-4835, 2011.
101. Bandell M, Dubin AE, Petrus MJ, Orth A, Mathur J, Hwang SW, Patapoutian A. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nat Neurosci. 9: 493-500, 2006.
102. Valente P, Garcia-Sanz N, Gomis A, Fernandez-Carvajal A, Fernandez-Ballester G, Viana F, Belmonte C, Ferrer-Montiel A. Identification of molecular determinants of channel gating in the transient receptor potential box of vanilloid receptor I. FASEB J. 22 (9): 3298-3309, 2008.
103. Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci. 26 (18): 4835-4840, 2006.
104. Rohacs T, Lopes CM, Michailidis I, Logothetis DE. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci. 8 (5): 626-634, 2005.
105. Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci. 25 (12): 633-639, 2004.
106. Phelps CB, Gaudet R. The role of the N terminus and transmembrane domain of TRPM8 in channel localization and tetramerization. J Biol Chem. 282 (50): 36474-36480, 2007.
107. Erler I, Al Ansary DM, Wissenbach U, Wagner TF, Flockerzi V, Niemeyer BA. Trafficking and assembly of the cold-sensitive TRPM8 channel. J Biol Chem. 281 (50): 38396-38404, 2006.
108. Bavencoffe A, Gkika D, Kondratskyi A, Beck B, Borowiec AS, Bidaux G, Busserolles J, Eschalier A, Shuba Y, Skryma R, Prevarskaya N. The transient receptor potential channel TRPM8 is inhibited via the alpha 2A adrenoreceptor signaling pathway. J Biol Chem. 285 (13): 9410-9419, 2010.
109. Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R. Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol. 141 (4): 737-745, 2004.
110. Bodding M, Wissenbach U, Flockerzi V. Characterisation of TRPM8 as a pharmacophore receptor. Cell Calcium. 42 (6): 618-628, 2007.
111. Beck B, Bidaux G, Bavencoffe A, Lemonnier L, Thebault S, Shuba Y, Barrit G, Skryma R, Prevarskaya N. Prospects for prostate cancer imaging and therapy using high-affinity TRPM8 activators. Cell Calcium. 41 (3): 285-294, 2007.
112. Viana F. Chemosensory properties of the trigeminal system. ACS Chem Neurosci. 2: 38-50, 2011.
113. Nocchi L, Daly DM, Chapple C, Grundy D. Induction of oxidative stress causes functional alterations in mouse urothelium via a TRPM8-mediated mechanism: implications for aging. Aging Cell. 13: 540-550, 2014.
114. Ma S1, G G, Ak VE, Jf D, H H. Menthol derivative WS-12 selectively activates transient receptor potential melastatin-8 (TRPM8) ion channels. Pak J Pharm Sci. 21 (4): 370-378, 2008.
115. Sherkheli MA, Gissellmann G, Mitchell R, Vogt-Eisele AK, Hatt H. Selective TRPM8 agonists: a novel group of neuropathic analgesics. FEBS J. 274 (S1): 232, 2007
116. McCoy DD, Knowlton WM, McKemy DD. Scraping through the ice: uncovering the role of TRPM8 in cold transduction. Am J Physiol Regul Integr Comp Physiol. 300 (6): 1278-1287, 2011.
117. Viana F, Ferna´ndez-Pen˜a C. Targeting TRPM8 for pain relief. Open Pain J. 6 (Suppl 1: M15): 154-164, 2013.
118. Reid G. ThermoTRP channels and cold sensing: what are they really up to? Pflugers Arch. 451 (1): 250-263, 2005.
119. Belmonte C, Brock JA, Viana F. Converting cold into pain. Exp Brain Res. 196 (1): 13-30, 2009.
120. Takashima Y, Daniels RL, Knowlton W, Teng J, Liman ER, McKemy DD. Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci. 27 (51): 14147-14157, 2007.
121. Dhaka A, Earley TJ, Watson J, Patapoutian A. Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci. 28 (3): 566-575, 2008.
122. Xing H, Chen M, Ling J, Tan W, Gu JG. TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci. 27 (50): 13680-13690, 2007.
123. Knowlton WM, Daniels RL, Palkar R, McCoy DD, McKemy DD. Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS One. 6 (9): e25894, 2011.
124. Su L, Wang C, Yu YH, Ren YY, Xie KL, Wang GL. Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain. BMC Neurosci. 12: 120, 2011.
125. Orani GP, Anderson JW, Sant’Ambrogio G, Sant’Ambrogio FB. Upper airway cooling and l-menthol reduce ventilation in the guinea pig. J Appl Physiol. 70 (5): 2080-2086, 1991.
126. Willis DN, Liu B, Ha MA, Jordt SE, Morris JB. Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. FASEB J. 25 (12): 4434-4444, 2011.
127. Plevkova J, Kollarik M, Poliacek I, Brozmanova M, Surdenikova L, Tatar M, Mori N, Canning BJ. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol. J Appl Physiol. 115 (2): 268-274, 1985.
128. Yee NS, Zhou W, Lee M. Transient receptor potential channel TRPM8 is over-expressed and required for cellular proliferation in pancreatic adenocarcinoma. Cancer Lett. 297 (1): 49-55, 2010.
129. Journigan VB, Zaveri NT. TRPM8 ion channel ligands for new therapeutic applications and as probes to study menthol pharmacology. Life Sci. 92: 425-437, 2013.
130. Yang XR, Lin MJ, McIntosh LS, Sham JS. Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol. 290 (6): 1267-1276, 2006.
131. Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P, Zholos AV. Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol Heart Circ Physiol. 296 (6): 1868-1877, 2009.
132. Liu XR, Liu Q, Chen GY, Hu Y, Sham JS, Lin MJ. Down-regulation of TRPM8 in pulmonary arteries of pulmonary hypertensive rats. Cell Physiol Biochem. 31 (6): 892-904, 2013.
133. Stein RJ, Santos S, Nagatomi J, Hayashi Y, Minnery BS, Xavier M, Patel AS, Nelson JB, Futrell WJ, Yoshimura N, Chancellor MB, De Miguel F. Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J Urol. 172 (3): 1175–1178, 2004.
134. De Blas GA, Darszon A, Ocampo AY, Serrano CJ, Castellano LE, Hernandez-Gonzalez EO, Chirinos M, Larrea F, Beltran C, Trevino CL. TRPM8, a versatile channel in human sperm. PLoS One. 4 (6): e6095, 2009.
135. Gibbs GM, Orta G, Reddy T, Koppers AJ, Martinez-Lopez P, de la Vega-Beltran JL, Lo JC,
136. Veldhuis N, Jamsai D, McIntyre P, Darszon A, O’Bryan MK. Cysteine-rich secretory protein 4 is an inhibitor of transient receptor potential M8 with a role in establishing sperm function. Proc Natl Acad Sci USA. 108 (17): 7034-7039, 2011.
137. Martinez-Lopez P, Trevino CL, de la Vega-Beltran JL, De Blas G, Monroy E, Beltran C, Orta G, Gibbs GM, O’Bryan MK, Darszon A. TRPM8 in mouse sperm detects temperature changes and may influence the acrosome reaction. J Cell Physiol. 226 (6): 1620-1631, 2011.
138. Zhang L, An X, Wang Q, He M. Activation of cold-sensitive channels TRPM8 and TRPA1 inhibits the proliferative airway smooth muscle cell phenotype. Lung. 194: 595-603, 2016.
139. Ashwini SS, Mohammad S, Garold SY, Christopher AR. Human Lung Epithelial Cells Express a Functional Cold-Sensing TRPM8 Variant. Am J Respir Cell Mol Biol. 39: 466-474, 2008.
140. Li M, Li Q, Yang G, Kolosov VP, Perelman JM, Zhou XD. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J Allergy Clin Immunol. 128 (3): 626-634, 2011.
141. Premkumar LS, Raisinghani M, Pingle SC, Long C, Pimentel F. Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J Neurosci. 25 (49): 11322-11329, 2005.
142. Abe J, Hosokawa H, Sawada Y, Matsumura K, Kobayashi S. Ca2+-dependent PKC activation mediates menthol-induced desensitization of transient receptor potential M8. Neurosci Lett. 397 (1-2): 140-144, 2006.
143. Linte RM, Ciobanu C, Reid G, Babes A. Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp Brain Res. 178 (1): 89-98, 2007.
144. De Petrocellis L, Starowicz K, Moriello AS, Vivese M, Orlando P, Di Marzo V. Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB(1) receptors and endovanilloids. Exp Cell Res. 313 (9): 1911-1920, 2007.
145. Than JY, Li L, Hasan R, Zhang X. Excitation and modulation of TRPA1, TRPV1, and TRPM8 channel-expressing sensory neurons by the pruritogen chloroquine. J Biol Chem. 288 (18): 12818-12827, 2013.
146. Klasen K, Hollatz D, Zielke S, Gisselmann G, Hatt H, Wetzel CH. The TRPM8 ion channel comprises direct Gq protein-activating capacity. Pflugers Arch. 463 (6): 779-797, 2012.
147. Liu BY, Qin F. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci. 25 (7): 1674-1681, 2005.
148. Vanden Abeele F, Zholos A, Bidaux G, Shuba Y, Thebault S, Beck B, Flourakis M, Panchin Y, Skryma R, Prevarskaya N. iPLA2-dependent gating of TRPM8 by lysophospholipids. J Biol Chem. 281: 40174-40182, 2006.
149. Andersson DA, Nash M, Bevan S. Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J Neurosci. 27 (12): 3347-3355, 2007.
150. Gentry C, Stoakley N, Andersson DA, Bevan S. The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity. Mol Pain. 6: 4, 2010.
151. Yamaguchi Y, Nasu F, Harada A, Kunitomo M. Oxidants in the gas phase of cigarette smoke pass through the lung alveolar wall and raise systemic oxidative stress. J Pharmacol Sci. 103 (3): 275-282, 2007.
152. Peluffo G, Calcerrada P, Piacenza L, Pizzano N, Radi R. Superoxide-mediated inactivation of nitric oxide and peroxynitrite formation by tobacco smoke in vascular endothelium: studies in cultured cells and smokers. Am J Physiol Heart Circ Physiol. 296 (6): 1781-1792, 2009.
153. Büch TR, Schäfer EA, Demmel MT, Boekhoff I, Thiermann H, Gudermann T, Steinritz D, Schmidt A. Functional expression of the transient receptor potential channel TRPA1, a sensor for toxic lung inhalants, in pulmonary epithelial cells. Chem Biol Interact. 206 (3): 462-471, 2013.
154. Mukhopadhyay I, Gomes P, Aranake S, Shetty M, Karnik P, Damle M, Kuruganti S, Thorat S, Khairatkar-Joshi N. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J Recept Signal Transduct Res. 31 (5): 350-358, 2011.
155. Wu YL, Lin AH, Chen CH, Huang WC, Wang HY, Liu MH, Lee TS, Kou YR. Glucosamine attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Free Radic Biol Med. 69: 208-218, 2014.
156. Benov L, Sztejnberg L, Fridovich I. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med. 25 (7): 826-831, 1998.
157. Yang YL, Tang GJ, Wu YL, Yien HW, Lee TS, Kou YR. Exacerbation of wood smoke-induced acute lung injury by mechanical ventilation using moderately high tidal volume in mice. Respir Physiol Neurobiol. 160 (1): 99-108, 2008.
158. Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, Uchida K, Mori Y. Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin). 2 (4):287-298, 2008.
159. Lassègue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol. 30 (4): 653-661, 2010.
160. Trebak M, Ginnan R, Singer HA, Jourd'heuil D. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxid Redox Signal. 12 (5): 657-674, 2010.
161. Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 63 (1): 218-242, 2011.
162. Park SJ, Foreman MG, Demeo DL, Bhatt SP, Hansel NN, Wise RA, Soler X, Bowler RP. Menthol cigarette smoking in the COPDGene cohort: relationship with COPD, comorbidities and CT metrics.
163. Lashinger ES, Steiginga MS, Hieble JP, Leon LA, Gardner SD, Nagilla R. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am J Physiol Renal Physiol. 295, 803-810, 2008.
164. Redmond WJ, Gu L, Camo M, McIntyre P, Connor M. Ligand determinants of fatty acid activation of the pronociceptive ion channel TRPA1. PeerJ. 2: e248, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊