跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 23:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李旂緯
研究生(外文):Chi-Wei Lee
論文名稱:探討NMDA接受器的功能在情緒處理上扮演之角色
論文名稱(外文):Investigation on NMDA receptor function in emotional processing
指導教授:林惠菁林惠菁引用關係
指導教授(外文):Hui-Ching Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:51
中文關鍵詞:麩胺酸受體亞型N-甲基-D-天冬氨酸受體拮抗劑壓力電生理
外文關鍵詞:NMDA receptor antagonistStressElectrophysiology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:430
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據世界衛生組織2017年的統計,已超過3億人飽受憂鬱症之苦。基因遺傳與環境皆是造成憂鬱症的風險因子,而我們的研究所關注的是環境因子,環境因子包含了醫療疾病、藥物濫用,以及壓力事件。在病理上,憂鬱症與前額葉皮質有著重要的關聯性。前額葉皮質為調節情緒的主要腦區,在病人上可以觀察到前額葉皮質的神經細胞減少,以及glutamate相關的功能受損。最近的研究指出麩胺酸受體亞型N-甲基-D-天冬氨酸受體(N-methyl-D-aspartate receptor, NMDAR) 在抗憂鬱上扮演重要的角色,且與α-氨基-3-羥基-5-甲基異惡唑-4-丙酸(alpha-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid receptor, AMPAR)有關。然而,前額葉中調控著NMDAR活性對於情緒處理上扮演之角色仍是未知。在本研究中,我們以慢性社交挫敗壓力動物模式(chronic social defeat stress, CSDS)作為憂鬱症的模型,來探討NMDAR 作為抗憂鬱的目標的潛力。我們的結果顯示,在自發境運動測試(Open field test)以及高舉十字迷宮(Elevated plus maze)的行為測試上,憂鬱鼠表現出焦慮的行為表現,在尾部懸吊實驗(Tail suspension test)、強迫游泳試驗(Forced swimming test),以及糖水喜好性測試(Sucrose preference test),憂鬱鼠表現出憂鬱的行為表現。為進一步探討NMDAR在抗憂鬱中所扮演的角色,我們使用了NMDA receptor的拮抗劑Ketamine。結果顯示,Ketamine可改善憂鬱的行為表現,並改善AMPAR 中的GluR1、GluR2,和突觸蛋白PSD95的減少狀況,而長期增益效應(long-term potentiation, LTP)的受損及突觸的減少也都在Ketamine的治療後得到改善。根據上述結果,我們可以得知,NMDAR在抗憂鬱治療上,是一個有潛力的目標的機制。
The World Health Organization estimates that more than 300 million individuals of all ages suffer from depression in 2017. Genetic and environmental factors are associated with the risk factor and the outcome of depression. In our study, we focus on environmental factors, such as medical illness, drug abuse and stressful events. In pathology, the prefrontal cortex (PFC) which is a critical to regulating emotion has been shown to have significant roles in depression. In patients, several studies had indicated reduced neuronal cell and glutamate related function in PFC. Recent studies demonstrate that glutamatergic N-methyl-D-aspartate (NMDA) receptor exhibits an important role of antidepressant effects which mediated by alpha-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid (AMPA) receptor. However, the regulation of synaptic NMDA receptors activity within PFC in emotional processing was remaining unclear. In this study, we used the chronic social defeat stress (CSDS), which is a depression model, to investigate the potential of NMDA receptor as an antidepressant target. In open field test and elevated plus maze, the results showed the anxiety-like behaviors in depression model mice. And the depression model mice showed the depressive-like behaviors in tail suspension test, forced swimming test and sucrose preference test. To investigate the role between antidepressant effect and NMDA receptor. We used the ketamine which is a NMDA receptor antagonist. The results showed that the depressive-like behavior was treated by ketamine. The reduction of AMPA receptor subunits GluR1, GluR2 and synaptic protein PSD95 were reversed by ketamine. The impairment of long-term potentiation (LTP) and the reduction of spine density were reversed by ketamine treatment. These results suggested that modulation of NMDA receptor is a potential antidepressant target in treating depression.
誌謝 I
摘要 II
Abstract III
Contents IV
List of Figures V
Introduction 1
Materials and Methods 8
Results 19
Discussion 23
Summary 27
References 28
Figures 38

List of Figures
Figure 1. Overview of the chronic social defeat stress 39
Figure 2. Mice subjected to CSDS colud be separated into susceptible and resistant subpopulations 40
Figure 3. The susceptible group showed the anxious behavior in open field test 41
Figure 4. The susceptible group exhibited the anxiety-like behavior in elevated plus maze (EPM) 42
Figure 5. The susceptible group showed the depression-like behaviors 43
Figure 6. Ketamine treatment ameliorated CSDS-induced depressive like behavior 44
Figure 7. Reduction of GluR1 and GluR2 protein level could be reversed by Ketamine treatment within the prefrontal cortex in the susceptible mice 45
Figure 8. Reduction of PSD95 protein level could be reversed by Ketamine treatment within the prefrontal cortex in the susceptible mice 46
Figure 9. The susceptible mice reduced synaptic plasticity of LTP and reversed by ketamine treatment in prefrontal cortex 47
Figure 10. The susceptible mice exhibited decreased dendritic spine and was reversed by ketamine treatment 48
Figure 11. Reduction of mTOR protein phosphorylation level could be reversed by Ketamine treatment within the prefrontal cortex in the susceptible mice 49
Figure 12. Reduction of p70S6K and S6 protein phosphorylation level could be reversed by Ketamine treatment within the prefrontal cortex in the susceptible mice 50
Figure 13. Reduction of 4EBP1 protein phosphorylation level could be reversed by Ketamine treatment within the prefrontal cortex in the susceptible mice 51
Akinfiresoye L. and Tizabi Y (2013) Antidepressant effects of AMPA and ketamine combination: role of hippocampal BDNF, synapsin, and mTOR. Psychopharmacology (Berl) 230:291-298.
Andrea Cipriani CB, Rob Butler, Simon Hatcher, and John Geddes (2011) Depression in adults drug and physical treatments. BMJ Clinical Evidence.
Andreasen JT, Gynther M, Rygaard A, Bøgelund T, Nielsen SD, Clausen RP, Mogensen J, Pickering DS (2013) Does increasing the ratio of AMPA-to-NMDA receptor mediated neurotransmission engender antidepressant action? Studies in the mouse forced swim and tail suspension tests. Neurosci Lett 546:6-10.
Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91-95.
Azima H, Vispo RH (1985) Imipramine; a potent new anti-depressant compound. Am J Psychiatry:245-246.
Bai F, Bergeron M, Nelson DL (2003) Chronic AMPA receptor potentiator (LY451646) treatment increases cell proliferation in adult rat hippocampus. Neuropharmacology 44:1013-1021.
Baxter LR Jr, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM. (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46:243-50
Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351-354.
Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential Role of BDNF in the Mesolimbic Dopamine Pathway in Social Defeat Stress. Science 10;311:864-8.
Bevan P, Bradshaw CM, Szabadi E (1975) The effect of tricyclic antidepressants on cholinergic responses of single cortical neurones You have free access to this content. Br J Pharmacol 55:17-25.
Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220-6.
Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de Girolamo G, de Graaf R, Demyttenaere K, Hu C, Iwata N, Karam AN, Kaur J, Kostyuchenko S, Lépine JP, Levinson D, Matschinger H, Mora ME, Browne MO, Posada-Villa J, Viana MC, Williams DR, Kessler RC (2011) Cross-national epidemiology of DSM-IV major depressive episode. BMC Medicine 9:90.
Chaouloff F, Hémar A, Manzoni O (2007) Acute stress facilitates hippocampal CA1 metabotropic glutamate receptor-dependent long-term depression. J Neurosci 27:7130-7135.
Chou D, Huang CC, Hsu KS (2014) Brain-derived neurotrophic factor in the amygdala mediates susceptibility to fear conditioning. Exp Neurol 255:19-29.
Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60:236-248.
Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775-790.
Daher F, Mattioli R (2015) Impairment in the aversive memory of mice in the inhibitory avoidance task but not in the elevated plus maze through intra-amygdala injections of histamine. Pharmacol Biochem Behav 135:237-245.
Geschwind DH, Flint J (2015) Genetics and genomics of psychiatric disease. Science 349:1489-1494.
Dong JY, Zhang YH, Tong J, Qin LQ (2012) Depression and risk of stroke: a meta-analysis of prospective studies. Stroke 43:32-37.
Elliott R (1998) The neuropsychological profile in unipolar depression. Trends Cogn Sci 447-454.
Fava M (2003) Diagnosis and definition of treatment-resistant depression. Biol Psychiatry 53:649-659.
Fletcher PC, Honey GD (2006) Schizophrenia, ketamine and cannabis: evidence of overlapping memory deficits. Trends Cogn Sci 10:167-174.
Flint J. and Kendler KS (2014) The genetics of major depression. Neuron 81:484-503.
Fuchs E, Flügge G (2002) Social stress in tree shrews effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol Biochem Behav 73:247-258.
Gao Y, Huang C, Zhao K, Ma L, Qiu X, Zhang L, Xiu Y, Chen L, Lu W, Huang C, Tang Y, Xiao Q (2013) Depression as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Int J Geriatr Psychiatry 28:441-449.
Serafini G, Howland RH, Rovedi F, Girardi P, Amore M (2014) The Role of Ketamine in Treatment-Resistant Depression A Systematic Review. Curr Neuropharmacol 12:444–461.
Glowinski J, Axelrod J (1964) Inhibition of Uptake of Tritiated-noradrenaline in the Intact Rat Brain by Imipramine and Structurally Related Compounds. Nature 1318-1319.
Hains AB, Arnsten AF (2008) Molecular mechanisms of stress-induced prefrontal cortical impairment: implications for mental illness. Learn Mem 15:551-564.
Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682-696.
Holtzheimer PE, Mayberg HS (2011) Stuck in a rut: rethinking depression and its treatment. Trends Neurosci 34:1-9.
Huang YF, Yang CH, Huang CC, Hsu KS (2012) Vascular endothelial growth factor-dependent spinogenesis underlies antidepressant-like effects of enriched environment. J Biol Chem 287:40938-40955.
Ibrahim L, Diaz Granados N, Jolkovsky L, Brutsche N, Luckenbaugh DA, Herring WJ, Potter WZ, Zarate CA Jr (2012) A Randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J Clin Psychopharmacol 32:551-557.
Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders- a review of supporting evidence. Am J Psychiatry 509-522.
Joseph A. Lieberman III (2003) History of the Use of Antidepressants in Primary Care. J Clin Psychiatry 6-10.
Jourdi H, Hsu YT, Zhou M, Qin Q, Bi X, Baudry M (2009) Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 29:8688-8697.
Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, Lepack A, Majik MS, Jeong LS, Banasr M, Son H, Duman RS (2012) Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 18:1413-1417.
Kemp AH, Gordon E, Rush AJ (2008) Improving the prediction of treatment response in depression: integration of clinical, cognitive, psychophysiological, neuroimaging, and genetic measures. CNS Spectr 13(12):1066–86.
Kessler RC (1997) The effects of stressful life events on depression. Annu Rev Psychol 48:191-214.
Koenigs M, Grafman J (2009) The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res 201:239-243.
Koike H, Iijima M, Chaki S (2011) Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res 224:107-111.
Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894-902.
Krishnan V, Nestler EJ (2010) Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167:1305-1320.
Krystal JH, D'Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 169:215-233.
Kudryavtseva NN, Bakshtanovskaya IV, Koryakina LA (1991) Social model of depression in mice of C57BL6J strain. P Pharmacol Biochem Behav 38:315-320.
Larkin GL, Beautrais AL (2011) A preliminary naturalistic study of low-dose ketamine for depression and suicide ideation in the emergency department. Int J Neuropsychopharmacol 14:1127-1131.
Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959-964.
Liu W, Ge T, Leng Y, Pan Z, Fan J, Yang W, Cui R (2017) The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast 2017:6871089.
Madhukar H. Trivedi, A. John Rush, Stephen R. Wisniewski, Andrew A. Nierenberg, Diane Warden, M.B.A., Louise Ritz, Grayson Norquist, Robert H. Howland, Barry Lebowitz, Patrick J. McGrath, Kathy Shores-Wilson, Melanie M. Biggs, G. K. Balasubramani, and Maurizio Fava, M.D.STAR*D Study Team (2006) Evaluation of Outcomes With Citalopram for Depression Using Measurement-Based Care in STARD Implications for Clinical Practice. Am J Psychiatry 163:28-40.
Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349-352.
Mathews DC, Henter ID, Zarate CA (2012) Targeting the glutamatergic system to treat major depressive disorder: rationale and progress to date. Drugs 72:1313-1333.
Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651-60.
McEwen BS, Magarinos AM (2001) Stress and hippocampal plasticity implications for the pathophysiology of affective disorders. Hum Psychopharmacology 16:S7-S19.
Mezuk, B., W. W. Eaton, S. Albrecht and S. H. Golden (2008) Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care 31:2383-2390.
Mezuk B, Eaton WW, Albrecht S, Golden SH (1974) Effect of an update inhibitor on serotonin metabolism in rat brain studies with 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylopropylamine (Lilly 110140). Life Sci 15:1161-1171.
Morgan CJ, Muetzelfeldt L, Curran HV (2010) Consequences of chronic ketamine self-administration upon neurocognitive function and psychological wellbeing: a 1-year longitudinal study. Addiction 105:121-133.
Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161-1169.
Nicholson A, Kuper H, Hemingway H (2006) Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146 538 participants in 54 observational studies. Eur Heart J 27:2763-2774.
Okbay A., et al. (2016) Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet 48:624-633.
Pałucha-Poniewiera A, Szewczyk B, Pilc A (2014) Activation of the mTOR signaling pathway in the antidepressant-like activity of the mGlu5 antagonist MTEP and the mGlu7 agonist AMN082 in the FST in rats. Neuropharmacology 82:59-68.
Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry 54:515-528.
Pilc A, Wierońska JM, Skolnick P (2013) Glutamate-based antidepressants: preclinical psychopharmacology. Biol Psychiatry 73:1125-1132.
Porsolt RD, Le Pichon M, Jalfre M (1977) Depression a new animal model sensitive to antidepressant treatments. Nature 226:730 - 732.
Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW (2008) An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 28:631-637.
Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3-33.
Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085-1098.
Rosenkranz JA, Venheim ER, Padival M (2010) Chronic stress causes amygdala hyperexcitability in rodents. Biol Psychiatry 67:1128-1136.
Scarr E, Pavey G, Sundram S, MacKinnon A, Dean B (2003) Decreased hippocampal NMDA, but not kainate or AMPA receptors in bipolar disorder. Bipolar Disord 5:257-64.
Skolnick P, Popik P, Trullas R (2009) Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 30:563-569.
Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R (1996) Adaptation of N-Methyl-D-Aspartate (NMDA) Receptors following Antidepressant Treatment Implications for the Pharmacotherapy of Depression. Pharmacopsychiatry 29:23-26.
Slattery DA, Neumann ID, Cryan JF (2011) Transient inactivation of the infralimbic cortex induces antidepressant-like effects in the rat. J Psychopharmacol 25:1295-1303.
Smith DJ., et al. (2016) Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci. Mol Psychiatry 21:749-757.
Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test A new method for screening antidepressants in mice. Psychopharmacology (Berl) 83:367-370.
Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519-525.
Wang W, Guo H, Zhang SX, Li J, Cheng K, Bai SJ, Yang DY, Wang HY, Liang ZH, Liao L, Sun L4, Xie P (2016) Targeted Metabolomic Pathway Analysis and Validation Revealed Glutamatergic Disorder in the Prefrontal Cortex among the Chronic Social Defeat Stress Mice Model of Depression. J Proteome Res 15:3784-3792.
Yuen EY, Wei J, Liu W, Zhong P, Li X, Yan Z (2012) Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 73:962-977.
Zanos P1, Moaddel R, Morris PJ, Georgiou P1, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481-486.
Zarate CA Jr, Singh JB, Quiroz JA, De Jesus G, Denicoff KK, Luckenbaugh DA, Manji HK, Charney DS (2006) A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry 163:153-5
Zarate CA Jr, Mathews D, Ibrahim L, Chaves JF, Marquardt C, Ukoh I, Jolkovsky L, Brutsche NE, Smith MA, Luckenbaugh DA (2013) A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression. Biol Psychiatry 74:257-264.
Zeller EA, Barsky J, Fouts JR, Kirchheimer WF, Van Orden LS (1952) Influence of isonicotinic acid hydrazide (INH) and 1-isonicotinyl-2-isopropyl hydrazide (IIH) on bacterial and mammalian enzymes. Experientia 8:349–350.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊