跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 22:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾伊賞
研究生(外文):I-Shang Tseng
論文名稱:缺氧處理間葉幹細胞於體外腎纖維化模式中藉上調誘導型一氧化氮合成酶調控M2巨噬細胞極化
論文名稱(外文):Upregulation of Inducible Nitric Oxide Synthase in Hypoxic Mesenchymal Stem Cells Promotes M2 Macrophage Polarization in an in vitro Renal Fibrosis Model
指導教授:唐德成唐德成引用關係
指導教授(外文):Der-Cherng Tarng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:43
中文關鍵詞:間葉幹細胞誘導行巨噬細胞極化誘導型一氧化氮合成酶
外文關鍵詞:mesenchymal stem cellmacrophage polarizationinducible nitric oxide synthase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腎臟纖維化乃進行性慢性腎臟病的最終結果。未緩解的過度腎臟發炎反應導致製造細胞外基質的細胞過度活化與增生,因而導致腎臟纖維化。愈來愈多的證據顯示在腎臟纖維化中,巨噬細胞從促發炎的M1亞型轉為具抗發炎與組織修補能力的M2亞型之現象至關重要。然而,在腎臟纖維化中調控M1/M2 亞型平衡的因子尚未完全被了解。由骨髓衍生的間葉幹細胞為多功能幹細胞,能夠藉由感測發炎環境中的訊息來調控免疫反應以及巨噬細胞極化現象的方式達到促進組織修復的功能。缺氧處理間葉幹細胞在單側輸尿管結紮小鼠模式中相較於常氧間葉幹細胞具有較佳之組織修復能力,但詳細機轉為何目前並不清楚。於本研究中,利用單側輸尿管結紮小鼠之腎臟裂解液刺激J774細胞株成為似M1巨噬細胞的體外模式來模擬腎臟纖維化,我們發現缺氧處理間葉幹細胞較常氧間葉幹細胞更能有效促進似M1巨噬細胞的mannose receptor與arginase 1之表現,並抑制誘導型一氧化氮合成酶(iNOS)的信使核糖核酸與蛋白質表達。有趣的是在發炎環境下,缺氧處理間葉幹細胞本身的iNOS表現量與一氧化氮(NO)的產量會增加,事先以L-NAME (iNOS抑制劑)處理缺氧處理間葉幹細胞之後,缺氧處理間葉幹細胞之促M2極化現象能力則顯著減弱; 加入SNAP(NO產生劑)後則可直接促使似M1巨噬細胞轉成M2表型。綜合以上,本研究發現在體外腎臟纖維化模式中,缺氧處理間葉幹細胞可上調iNOS表現,進而增加NO的釋放量來促進巨噬細胞之M2極化現象。我們的發現提供實驗室的佐證:缺氧處理間葉幹細胞未來將有潛力可治療臨床發炎性腎纖維疾病。
Renal fibrosis is the common final consequence of progressive chronic kidney diseases. Non-resolving inflammation triggers the excessive activation and expansion of matrix-producing cells, which ultimately lead to renal fibrosis. Mounting evidence suggests that the phenotypic switch of macrophages from a pro-inflammatory M1 phenotype to anti-inflammatory, reparative M2 ones critically governs renal fibrosis. Nonetheless, regulators of the M1/M2 balance in renal fibrosis remain incompletely understood. Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent stem cells that can enhance tissue regeneration by tempering immune responses and macrophage polarization in response to the inflammatory microenvironment. Hypoxia-preconditioned MSCs (hMSCs) have greater tissue repairing capability in unilateral ureteral obstructed (UUO) mice with renal fibrosis. Whether hMSCs improve renal fibrosis in UUO via modulation of macrophage phenotypes is still elusive. Herein, to mimic the inflammatory microenvironment in renal fibrosis, we first utilized UUO-kidney lysate (UUO-KL) to establish M1-polarized J774 macrophages. Furthermore, hMSCs increased mannose receptor and arginase 1 expressions and decreased inducible nitric oxide synthase (iNOS) expression in co-cultured J774 macrophages as compared to normoxia-cultured MSCs. Interestingly, the expression levels of iNOS and nitric oxide (NO) in hMSCs per se were upregulated by the pro-inflammatory milieu. Pre-treatment with L-NAME (an iNOS inhibitor) significantly suppressed the M2-promoting effect of hMSCs, while administration of SNAP (an NO donor) skewed M1-J774 macrophages toward M2 phenotypes. Taken together, the present study found that hMSCs promoted an M1-to-M2 macrophage polarization in UUO, possibly through upregulating iNOS expression and augmenting NO production. Our findings provided the bench evidence to support that hMSCs could be a potential therapeutic approach for inflammatory fibrotic kidney diseases in the future.
Contents
Acknowledgement.......i
中文摘要.......iii
Abstract.......iv
Contents.......v
List of tables.......vii
List of figures.......viii
1. Introduction.......1
1-1. Chronic Kidney Disease and Renal Fibrosis.......1
1-2. Unilateral Ureteral Obstruction (UUO) Model and Macrophage Polarization.......2
1-3. Mesenchymal Stem Cells (MSCs) and Macrophage Polarization.......3
1-4. Hypoxic Mesenchymal Stem Cells (hMSCs) and Renal Fibrosis.......3
2. Hypothesis and Specific Aims of this Study.......4
3. Materials.......5
3-1. Animals.......5
3-2. Cells.......5
3-3. Cell Culture Media.......5
3-4. UUO-KL Preparation.......6
3-5. Cell Coculture System.......6
3-6. RNA Purification and Reverse Transcription.......6
3-7. Real-Time PCR for mRNA Detection.......6
3-8. Western Blotting.......6
3-9. Flow Cytometry.......7
3-10. Enzyme-Linked Immunosorbent Assay (ELISA).......7
3-11. Griess Reaction for Nitrite Detection.......7
3-12. NO Donor.......8
3-13. iNOS Inhibitor.......8
3-14. Lentivirus Construction.......8
4. Methods.......9
4-1. Experimental UUO Animal Model.......9
4-2. UUO-KL Preparation.......9
4-3. J774 cells and MSCs/hMSCs Coculture Experiment.......9
4-4. Western Blotting Analysis.......9
4-5. RNA Isolation and Real-Time Quantitative Polymerase Chain Reaction.......10
4-6. Flow Cytometry.......10
4-7. ELISA Assay.......10
4-8. Griess Reation.......10
4-9. iNOS Inhibition.......11
4-10. Lentivirus Construction and Nos2 shRNA Transduction.......11
4-11. Statistical Analysis.......11
5. Results.......12
5-1. UUO-KL Polarized J774 Cells into a M1-like Macrophage.......12
5-2. hMSCs Exerted Earlier M2 Polarizing Effect on J774 Cells via Paracrine Effect.......12
5-3. Soluble-Factors-Based Crosstalk between hMSCs and UUO-KL-primed J774 Cells is Crucial to hMSCs-Modulated M2 Polarization.......12
5-4. NO is a Novel Molecule in hMSCs-Modulated M2 Polarization.......13
5-5. Extracellular Signal-Regulated Kinase (ERK) and Mitogen-Activated Protein Kinase Phosphatase-1 (MKP-1) Pathways were Activated in hMSCs-Derived-NO-Directed M2 Polarization.......14
6. Discussion.......15
7. References.......18
1 Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic Kidney Disease. Lancet 389, 1238-1252, doi:10.1016/S0140-6736(16)32064-5 (2017).
2 Wen, C. P. et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 371, 2173-2182, doi:10.1016/S0140-6736(08)60952-6 (2008).
3 Schieppati, A. & Remuzzi, G. Chronic renal diseases as a public health problem: epidemiology, social, and economic implications. Kidney Int Suppl, S7-S10, doi:10.1111/j.1523-1755.2005.09801.x (2005).
4 Duffield, J. S. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest 124, 2299-2306, doi:10.1172/JCI72267 (2014).
5 Zoccali, C., Kramer, A. & Jager, K. J. Chronic kidney disease and end-stage renal disease--a review produced to contribute to the report 'the status of health in the European union: towards a healthier Europe'. Clinical Kidney Journal 3, 213-224, doi:10.1093/ndtplus/sfp127 (2009).
6 Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7, 684-696, doi:10.1038/nrneph.2011.149 (2011).
7 Chevalier, R. L., Forbes, M. S. & Thornhill, B. A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int 75, 1145-1152, doi:10.1038/ki.2009.86 (2009).
8 Ricardo, S. D. & Diamond, J. R. The role of macrophages and reactive oxygen species in experimental hydronephrosis. Semin Nephrol 18, 612-621 (1998).
9 Nikolic-Paterson, D. J., Wang, S. & Lan, H. Y. Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl (2011) 4, 34-38, doi:10.1038/kisup.2014.7 (2014).
10 Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14-20, doi:10.1016/j.immuni.2014.06.008 (2014).
11 Lu, G., Haider, H. K., Jiang, S. & Ashraf, M. Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation 119, 2587-2596, doi:10.1161/CIRCULATIONAHA.108.827691 (2009).
12 Lo, T. H. et al. TREM-1 regulates macrophage polarization in ureteral obstruction. Kidney Int 86, 1174-1186, doi:10.1038/ki.2014.205 (2014).
13 Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 8, 726-736, doi:10.1038/nri2395 (2008).
14 Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317, doi:10.1080/14653240600855905 (2006).
15 Chung, E. & Son, Y. Crosstalk between mesenchymal stem cells and macrophages in tissue repair. Tissue Engineering and Regenerative Medicine 11, 431-438, doi:10.1007/s13770-014-0072-1 (2014).
16 Ren, G. et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2, 141-150, doi:10.1016/j.stem.2007.11.014 (2008).
17 Lu, G. et al. Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat Commun 6, 6676, doi:10.1038/ncomms7676 (2015).
18 Tsai, C. C., Yew, T. L., Yang, D. C., Huang, W. H. & Hung, S. C. Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am J Blood Res 2, 148-159 (2012).
19 Tsai, C. C. et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117, 459-469, doi:10.1182/blood-2010-05-287508 (2011).
20 Yew, T. L. et al. Scale-up of MSC under hypoxic conditions for allogeneic transplantation and enhancing bony regeneration in a rabbit calvarial defect model. J Orthop Res 30, 1213-1220, doi:10.1002/jor.22070 (2012).
21 Huang, W. H. et al. Hypoxic mesenchymal stem cells engraft and ameliorate limb ischaemia in allogeneic recipients. Cardiovasc Res 101, 266-276, doi:10.1093/cvr/cvt250 (2014).
22 Okuyama, H. et al. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J Biol Chem 281, 15554-15563, doi:10.1074/jbc.M602003200 (2006).
23 Yew, T. L. et al. Efficient expansion of mesenchymal stem cells from mouse bone marrow under hypoxic conditions. J Tissue Eng Regen Med 7, 984-993, doi:10.1002/term.1491 (2013).
24 Mishra, O. P., Zubrow, A. B. & Ashraf, Q. M. Nitric oxide-mediated activation of extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) during hypoxia in cerebral cortical nuclei of newborn piglets. Neuroscience 123, 179-186 (2004).
25 Zhang, Y. et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23, 898-914, doi:10.1038/cr.2013.75 (2013).
26 Bogdan, C. Nitric oxide and the immune response. Nat Immunol 2, 907-916, doi:10.1038/ni1001-907 (2001).
27 Marshall, H. E., Merchant, K. & Stamler, J. S. Nitrosation and oxidation in the regulation of gene expression. FASEB J 14, 1889-1900, doi:10.1096/fj.00.011rev (2000).
28 Gaston, B. Nitric oxide and thiol groups. Biochim Biophys Acta 1411, 323-333 (1999).
29 Henson, S. E., Nichols, T. C., Holers, V. M. & Karp, D. R. The ectoenzyme gamma-glutamyl transpeptidase regulates antiproliferative effects of S-nitrosoglutathione on human T and B lymphocytes. J Immunol 163, 1845-1852 (1999).
30 Allione, A. et al. Nitric oxide suppresses human T lymphocyte proliferation through IFN-gamma-dependent and IFN-gamma-independent induction of apoptosis. J Immunol 163, 4182-4191 (1999).
31 Saini, A. S., Shenoy, G. N., Rath, S., Bal, V. & George, A. Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells. Nat Immunol 15, 275-282, doi:10.1038/ni.2806 (2014).
32 Kobayashi, Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J Leukoc Biol 88, 1157-1162, doi:10.1189/jlb.0310149 (2010).
33 Schwentker, A., Vodovotz, Y., Weller, R. & Billiar, T. R. Nitric oxide and wound repair: role of cytokines? Nitric Oxide 7, 1-10 (2002).
34 Rosin, D. L. & Okusa, M. D. Dangers within: DAMP responses to damage and cell death in kidney disease. J Am Soc Nephrol 22, 416-425, doi:10.1681/ASN.2010040430 (2011).
35 Taylor, P. R., Gordon, S. & Martinez-Pomares, L. The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol 26, 104-110, doi:10.1016/j.it.2004.12.001 (2005).
36 Stoecklin, G. et al. Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J Biol Chem 283, 11689-11699, doi:10.1074/jbc.M709657200 (2008).
37 Tudor, C. et al. The p38 MAPK pathway inhibits tristetraprolin-directed decay of interleukin-10 and pro-inflammatory mediator mRNAs in murine macrophages. FEBS Lett 583, 1933-1938, doi:10.1016/j.febslet.2009.04.039 (2009).
38 Guan, W. et al. S-Nitrosylation of mitogen activated protein kinase phosphatase-1 suppresses radiation-induced apoptosis. Cancer Lett 314, 137-146, doi:10.1016/j.canlet.2011.09.022 (2012).
39 Pouyssegur, J. & Lenormand, P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Eur J Biochem 270, 3291-3299 (2003).
40 Lang, R., Hammer, M. & Mages, J. DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. J Immunol 177, 7497-7504 (2006).
41 Brondello, J. M., Pouyssegur, J. & McKenzie, F. R. Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286, 2514-2517 (1999).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top