|
1 Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic Kidney Disease. Lancet 389, 1238-1252, doi:10.1016/S0140-6736(16)32064-5 (2017). 2 Wen, C. P. et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 371, 2173-2182, doi:10.1016/S0140-6736(08)60952-6 (2008). 3 Schieppati, A. & Remuzzi, G. Chronic renal diseases as a public health problem: epidemiology, social, and economic implications. Kidney Int Suppl, S7-S10, doi:10.1111/j.1523-1755.2005.09801.x (2005). 4 Duffield, J. S. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest 124, 2299-2306, doi:10.1172/JCI72267 (2014). 5 Zoccali, C., Kramer, A. & Jager, K. J. Chronic kidney disease and end-stage renal disease--a review produced to contribute to the report 'the status of health in the European union: towards a healthier Europe'. Clinical Kidney Journal 3, 213-224, doi:10.1093/ndtplus/sfp127 (2009). 6 Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7, 684-696, doi:10.1038/nrneph.2011.149 (2011). 7 Chevalier, R. L., Forbes, M. S. & Thornhill, B. A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int 75, 1145-1152, doi:10.1038/ki.2009.86 (2009). 8 Ricardo, S. D. & Diamond, J. R. The role of macrophages and reactive oxygen species in experimental hydronephrosis. Semin Nephrol 18, 612-621 (1998). 9 Nikolic-Paterson, D. J., Wang, S. & Lan, H. Y. Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl (2011) 4, 34-38, doi:10.1038/kisup.2014.7 (2014). 10 Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14-20, doi:10.1016/j.immuni.2014.06.008 (2014). 11 Lu, G., Haider, H. K., Jiang, S. & Ashraf, M. Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation 119, 2587-2596, doi:10.1161/CIRCULATIONAHA.108.827691 (2009). 12 Lo, T. H. et al. TREM-1 regulates macrophage polarization in ureteral obstruction. Kidney Int 86, 1174-1186, doi:10.1038/ki.2014.205 (2014). 13 Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 8, 726-736, doi:10.1038/nri2395 (2008). 14 Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317, doi:10.1080/14653240600855905 (2006). 15 Chung, E. & Son, Y. Crosstalk between mesenchymal stem cells and macrophages in tissue repair. Tissue Engineering and Regenerative Medicine 11, 431-438, doi:10.1007/s13770-014-0072-1 (2014). 16 Ren, G. et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2, 141-150, doi:10.1016/j.stem.2007.11.014 (2008). 17 Lu, G. et al. Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat Commun 6, 6676, doi:10.1038/ncomms7676 (2015). 18 Tsai, C. C., Yew, T. L., Yang, D. C., Huang, W. H. & Hung, S. C. Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am J Blood Res 2, 148-159 (2012). 19 Tsai, C. C. et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117, 459-469, doi:10.1182/blood-2010-05-287508 (2011). 20 Yew, T. L. et al. Scale-up of MSC under hypoxic conditions for allogeneic transplantation and enhancing bony regeneration in a rabbit calvarial defect model. J Orthop Res 30, 1213-1220, doi:10.1002/jor.22070 (2012). 21 Huang, W. H. et al. Hypoxic mesenchymal stem cells engraft and ameliorate limb ischaemia in allogeneic recipients. Cardiovasc Res 101, 266-276, doi:10.1093/cvr/cvt250 (2014). 22 Okuyama, H. et al. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J Biol Chem 281, 15554-15563, doi:10.1074/jbc.M602003200 (2006). 23 Yew, T. L. et al. Efficient expansion of mesenchymal stem cells from mouse bone marrow under hypoxic conditions. J Tissue Eng Regen Med 7, 984-993, doi:10.1002/term.1491 (2013). 24 Mishra, O. P., Zubrow, A. B. & Ashraf, Q. M. Nitric oxide-mediated activation of extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) during hypoxia in cerebral cortical nuclei of newborn piglets. Neuroscience 123, 179-186 (2004). 25 Zhang, Y. et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23, 898-914, doi:10.1038/cr.2013.75 (2013). 26 Bogdan, C. Nitric oxide and the immune response. Nat Immunol 2, 907-916, doi:10.1038/ni1001-907 (2001). 27 Marshall, H. E., Merchant, K. & Stamler, J. S. Nitrosation and oxidation in the regulation of gene expression. FASEB J 14, 1889-1900, doi:10.1096/fj.00.011rev (2000). 28 Gaston, B. Nitric oxide and thiol groups. Biochim Biophys Acta 1411, 323-333 (1999). 29 Henson, S. E., Nichols, T. C., Holers, V. M. & Karp, D. R. The ectoenzyme gamma-glutamyl transpeptidase regulates antiproliferative effects of S-nitrosoglutathione on human T and B lymphocytes. J Immunol 163, 1845-1852 (1999). 30 Allione, A. et al. Nitric oxide suppresses human T lymphocyte proliferation through IFN-gamma-dependent and IFN-gamma-independent induction of apoptosis. J Immunol 163, 4182-4191 (1999). 31 Saini, A. S., Shenoy, G. N., Rath, S., Bal, V. & George, A. Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells. Nat Immunol 15, 275-282, doi:10.1038/ni.2806 (2014). 32 Kobayashi, Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J Leukoc Biol 88, 1157-1162, doi:10.1189/jlb.0310149 (2010). 33 Schwentker, A., Vodovotz, Y., Weller, R. & Billiar, T. R. Nitric oxide and wound repair: role of cytokines? Nitric Oxide 7, 1-10 (2002). 34 Rosin, D. L. & Okusa, M. D. Dangers within: DAMP responses to damage and cell death in kidney disease. J Am Soc Nephrol 22, 416-425, doi:10.1681/ASN.2010040430 (2011). 35 Taylor, P. R., Gordon, S. & Martinez-Pomares, L. The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol 26, 104-110, doi:10.1016/j.it.2004.12.001 (2005). 36 Stoecklin, G. et al. Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J Biol Chem 283, 11689-11699, doi:10.1074/jbc.M709657200 (2008). 37 Tudor, C. et al. The p38 MAPK pathway inhibits tristetraprolin-directed decay of interleukin-10 and pro-inflammatory mediator mRNAs in murine macrophages. FEBS Lett 583, 1933-1938, doi:10.1016/j.febslet.2009.04.039 (2009). 38 Guan, W. et al. S-Nitrosylation of mitogen activated protein kinase phosphatase-1 suppresses radiation-induced apoptosis. Cancer Lett 314, 137-146, doi:10.1016/j.canlet.2011.09.022 (2012). 39 Pouyssegur, J. & Lenormand, P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Eur J Biochem 270, 3291-3299 (2003). 40 Lang, R., Hammer, M. & Mages, J. DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. J Immunol 177, 7497-7504 (2006). 41 Brondello, J. M., Pouyssegur, J. & McKenzie, F. R. Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286, 2514-2517 (1999).
|