|
1. Sauvé, S. and M. Desrosiers, A review of what is an emerging contaminant. Sauvé and Desrosiers Chemistry Central Journal, 2014. 2. Henley, D.V. and K.S. Korach, Physiological effects and mechanisms of action of endocrine disrupting chemicals that alter estrogen signaling. HORMONES, 2010. 9(3): p. 191-205. 3. Skinner, M.K., Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol, 2014. 398(1-2): p. 4-12. 4. N, K., et al., Is Hypospadias Associated with Prenatal Exposure to Endocrine Disruptors? A French Collaborative Controlled Study of a Cohort of 300 Consecutive Children Without Genetic Defect. EUROPEAN UROLOGY 6 8 (201 5 ) 1023–1030, 2015. 6(8): p. 1023–1030. 5. Epigenetic transgenerational inheritance. Nat Rev Endocrinol., 2016. 12(2): p. 68–70. 6. Peijnenburg, W.J. and J. Struijs, Occurrence of phthalate esters in the environment of The Netherlands. Ecotoxicol Environ Saf, 2006. 63(2): p. 204-15. 7. U, H., M.-S. V, and A. J, Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health, 2007. 210: p. 623–634. 8. Kataria, A., L. Trasande, and H. Trachtman, The effects of environmental chemicals on renal function. Nat Rev Nephrol, 2015. 11(10): p. 610-25. 9. Administration, U.S.F.a.D., Safety assessment of Di(2-ethylhexyl)phthalate (DEHP) released from PVC medical devices. 2014. 10. Singh, S. and S.S. Li, Bisphenol A and phthalates exhibit similar toxicogenomics and health effects. Gene, 2012. 494(1): p. 85-91. 11. M.A. Faouzi a, T.D.a., *, B. Gressier a, K. Kambia a, M. Luyckx a, D. Pagniez b C. Brunet a, M. Cazin a, Exposure of hemodialysis patients to di-2-ethylhexyl phthalate. International Journal of Pharmaceutics, 1999. 12. Zhang, T., et al., Di(2-ethylhexyl)phthalate: Adverse effects on folliculogenesis that cannot be neglected. Environ Mol Mutagen, 2016. 57(8): p. 579-588. 13. Sekaran, S. and A. Jagadeesan, In utero exposure to phthalate downregulates critical genes in Leydig cells of F1 male progeny. J Cell Biochem, 2015. 116(7): p. 1466-77. 14. Zhao, J., et al., Di(2ethylhexyl) phthalate accelerates atherosclerosis in apolipoprotein Edeficient mice. Arch Toxicol, 2014. 15. Caldwell, J.C., DEHP: genotoxicity and potential carcinogenic mechanisms-a review. Mutat Res, 2012. 751(2): p. 82-157. 16. PW, A. and T. RO, Enzymatic hydrolysis of Di-(2-ethylhexyl) phthalate by lipases. Biochim Biophys Acta., 1973. 306(3): p. 380-90. 17. Palleschi, S., et al., Di(2-ethylhexyl)phthalate stimulates Ca2+ entry, chemotaxis and ROS production in human granulocytes. Toxicology Letters, 2009. 187: p. 52–57. 18. Koike, E., et al., Di-(2-ethylhexyl) phthalate affects immune cells from atopic prone mice in vitro. Toxicology, 2009. 259(1-2): p. 54–60. 19. Schlezinger, J.J., et al., Environmental and Endogenous Peroxisome Proliferator-Activated Receptor g Agonists Induce Bone Marrow B Cell Growth Arrest and Apoptosis: Interactions between Mono(2-ethylhexyl)phthalate, 9-cis-Retinoic Acid, and 15-Deoxy-D12,14-prostaglandin J2. The Journal of Immunology, 2004. 173: p. 3165–3177. 20. R, B., Cases and observations: Illustrative of renal disease accompanied by the secretion of albuminous urine. Guys Hosp Rep, 1836. 1(338). 21. DS, S., et al., The Interaction Between Heart Failure and Other Heart Diseases, Renal Failure, and Anemia. Semin Nephrol., 2006. 26(4): p. 296-306. 22. Babitt, J.L. and H.Y. Lin, Mechanisms of anemia in CKD. J Am Soc Nephrol, 2012. 23(10): p. 1631-4. 23. Fisher, J.W., Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood), 2003. 228(1): p. 1-14. 24. Grover, A., et al., Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate. J Exp Med, 2014. 211(2): p. 181-8. 25. Hung, S.C. and D.C. Tarng, ESA and iron therapy in chronic kidney disease: a balance between patient safety and hemoglobin target. Kidney Int, 2014. 86(4): p. 676-8. 26. de Oliveira Junior, W.V., et al., Inflammation and poor response to treatment with erythropoietin in chronic kidney disease. J Bras Nefrol, 2015. 37(2): p. 255-63. 27. Icardi, A., et al., Renal anaemia and EPO hyporesponsiveness associated with vitamin D deficiency: the potential role of inflammation. Nephrol Dial Transplant, 2013. 28(7): p. 1672-9. 28. David, R.M., et al., Chronic toxicity of di(2-ethylhexyl)phthalate in rats. Toxicol Sci, 2000. 55(2): p. 433-43. 29. Wahl, H.G., et al., 4-Heptanone is a metabolite of the plasticizer di(2-ethylhexyl) phthalate (DEHP) in haemodialysis patients. Nephrol Dial Transplant, 2004. 19(10): p. 2576-83. 30. Mettang, T., et al., Uraemic pruritus and exposure to di(2-ethylhexyl) phthalate (DEHP) in haemodialysis patients. Nephrol Dial Transplant, 1996. 11(12): p. 2439-43. 31. Faouzi, M.A., et al., Exposure of hemodialysis patients to di-2-ethylhexyl phthalate. Int J Pharm, 1999. 180(1): p. 113-21. 32. Walker, A.M., et al., Anemia as a Predictor of Cardiovascular Events in Patients with Elevated Serum Creatinine. J Am Soc Nephrol, 2006. 33. Smith, Z.D. and A. Meissner, DNA methylation: roles in mammalian development. Nat Rev Genet, 2013. 14(3): p. 204-20. 34. Bourc'his, D., et al., Dnmt3L and the establishment of maternal genomic imprints. Science, 2001. 294(5551): p. 2536-9. 35. W, Z. and X. J, DNA methyltransferases and their roles in tumorigenesis. Biomark Res., 2017. 5:1. 36. Chen, T. and E. Li, Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol, 2004. 60: p. 55-89. 37. Okano, M., et al., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999. 99(3): p. 247-57. 38. Cedar, H. and Y. Bergman, Epigenetics of haematopoietic cell development. Nat Rev Immunol, 2011. 11(7): p. 478-88. 39. Wienholz, B.L., et al., DNMT3L modulates significant and distinct flanking sequence preference for DNA methylation by DNMT3A and DNMT3B in vivo. PLoS Genet, 2010. 6(9): p. e1001106. 40. Kaneda, M., et al., Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature, 2004. 429(6994): p. 900-3. 41. Subramaniam, D., et al., DNA methyltransferases: a novel target for prevention and therapy. Front Oncol, 2014. 4: p. 80. 42. Goll, M.G., et al., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006. 311(5759): p. 395-8. 43. Chen, T., et al., Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol, 2003. 23(16): p. 5594-605. 44. KE, B., R. MR, and B. SB, Dnmt3a and Dnmt3b Are Transcriptional Repressors That Exhibit Unique Localization Properties to Heterochromatin. J. Biol. Chem., 2001. 276: p. 32282–32287. 45. Hattori, N., et al., Preference of DNA methyltransferases for CpG islands in mouse embryonic stem cells. Genome Res, 2004. 14(9): p. 1733-40. 46. Choi, S.H., et al., Identification of preferential target sites for human DNA methyltransferases. Nucleic Acids Res, 2011. 39(1): p. 104-18. 47. Jeong, M., et al., Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat Genet, 2014. 46(1): p. 17-23. 48. Y, T., et al., De novo DNA methyltransferase is essential for self-renewal, but not for diff erentiation, in hematopoietic stem cells. The Journal of Experimental Medicine, 2007 204(4): p. 715–722. 49. Wu, H., et al., Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science, 2010. 329(5990): p. 444-8. 50. JJ, T., et al., DNA Methyltransferase 1 Is Essential for and Uniquely Regulates Hematopoietic Stem and Progenitor Cells. Cell Stem Cell, 2009. 5(4): p. 442-9. 51. Ann-Marie Bröske1, Lena Vockentanz1,7, Shabnam Kharazi2, Matthew R Huska1, Elena Mancini3, Marina Scheller1, Christiane Kuhl1, Andreas Enns1, Marco Prinz4, Rudolf Jaenisch5, Claus Nerlov3, Achim Leutz1, Miguel A Andrade-Navarro1, Sten Eirik W Jacobsen2,6 & Frank Rosenbauer1, DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nature GeNetics, 2009. 52. Yang, L., R. Rau, and M.A. Goodell, DNMT3A in haematological malignancies. Nat Rev Cancer, 2015. 15(3): p. 152-65. 53. Schulze, I., et al., Increased DNA methylation of Dnmt3b targets impairs leukemogenesis. Blood, 2016. 127(12): p. 1575-86. 54. S, H., et al., High DNA Methyltransferase DNMT3BLevels: A Poor Prognostic Marker in Acute Myeloid Leukemia. PLOS ONE, 2012 7(12): p. e51527. 55. Cancer Genome Atlas Research, N., et al., Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med, 2013. 368(22): p. 2059-74. 56. AR, G., et al., Hematopoietic Stem Cell Transplantation Corrects the Immunologic Abnormalities Associated With Immunodeficiency–Centromeric Instability–Facial Dysmorphism Syndrome. Pediatrics 2007; 120: e1341–e1344, 2007. 120: p. e1341–e1344. 57. Y1, U., et al., Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development, 2006. 133: p. 1183–1192. 58. Zheng, Y., et al., Loss of Dnmt3b accelerates MLL-AF9 leukemia progression. Leukemia, 2016. 30(12): p. 2373-2384. 59. Hlady, R.A., et al., Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis. J Clin Invest, 2012. 122(1): p. 163-77. 60. A, M., et al., De novo DNA Methyltransferases Dnmt3a and Dnmt3b regulate the onset of Igκ light chain rearrangement during early B-cell development. Eur. J. Immunol., 2015. 45(8): p. 2343–2355. 61. Mancini, E., et al., FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors. EMBO J, 2012. 31(2): p. 351-65. 62. M, S. and B. JJ, The multifunctional role of EKLF/KLF1 during erythropoiesis. BLOOD, 2011. 118(8): p. 2044-54. 63. Gregory, C.J. and A.C. Eaves, Human marrow cells capable of erythropoietic differentiation in vitro: definition of three erythroid colony responses. Blood, 1977. 49(6): p. 855-64. 64. Chasis, J.A. and N. Mohandas, Erythroblastic islands: niches for erythropoiesis. Blood, 2008. 112(3): p. 470-8. 65. P, W., et al., From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modification. Blood, 2011. 118(16): p. 6258-6268. 66. Dzierzak, E. and S. Philipsen, Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med, 2013. 3(4): p. a011601. 67. Ney, P.A., Normal and disordered reticulocyte maturation. Curr Opin Hematol, 2011. 18(3): p. 152-7. 68. Tsiftsoglou, A.S., I.S. Vizirianakis, and J. Strouboulis, Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life, 2009. 61(8): p. 800-30. 69. Koury, M.J. and V.H. Haase, Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat Rev Nephrol, 2015. 11(7): p. 394-410. 70. S, E., et al., Alpha4 beta1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development. J Cell Biol., 2007. 177 p. 871–880. 71. H, L., F. J, and C. S, From stem cell to erythroblast: Regulation of red cell production at multiple levels by multiple hormones. IUBMB Life. , 2010 62(7): p. 492–496. 72. Musch, T., et al., Nucleoside drugs induce cellular differentiation by caspase-dependent degradation of stem cell factors. PLoS One, 2010. 5(5): p. e10726. 73. Luisi-DeLuca, C., et al., Induction of terminal differentiation in human K562 erythroleukemia cells by arabinofuranosylcytosine. J Clin Invest, 1984. 74(3): p. 821-7. 74. VM, R. and O.B. JP, Histone Deacetylase Inhibitors: A New Class of Potential Therapeutic Agents for Cancer Treatment. Clin Cancer Res, 2002. 8: p. 662-664. 75. P, M., et al., HISTONE DEACETYLASES AND CANCER: CAUSES AND THERAPIES. Nat Rev Cancer, 2001. 1: p. 194-202. 76. Yin, L., G. Laevsky, and C. Giardina, Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Biol Chem, 2001. 276(48): p. 44641-6. 77. Chen, T.H., et al., Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells. Biochem Biophys Res Commun, 2007. 355(4): p. 913-8. 78. Rahman, M.M., et al., Two histone deacetylase inhibitors, trichostatinAand sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. BLOOD, 2003. 101. 79. Friend, C., et al., Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A, 1971. 68(2): p. 378-82. 80. Marks, P.A. and R.A. Rifkind, ERYTHROLEUKEMIC DIFFERENTIATION. Annu. Rev. Biochem., 1978. 47: p. 419–448. 81. Tsiftsoglou, A.S., I.S. Pappas, and I.S. Vizirianakis, Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther, 2003. 100(3): p. 257-90. 82. G, S., Control of globin gene expression during d. Experimental Hematology, 2005. 33: p. 259–271. 83. Martin, P. and T. Papayannopoulou, HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science, 1982. 216(4551): p. 1233-5. 84. WK, H., et al., Protein Arginine Methyltransferase 1 Interacts with and Activates p38a to Facilitate Erythroid Differentiation. PLOS ONE, 2013. 8(3). 85. Addya, S., et al., Erythroid-induced commitment of K562 cells results in clusters of differentially expressed genes enriched for specific transcription regulatory elements. Physiol Genomics, 2004. 19(1): p. 117-30. 86. T, K., et al., Establishment and Characterization of a Unique Human Cell Line That Proliferates Dependently on CM-CSF, IL-3, or Erythropoietin. JOURNAL OF CELLULAR PHYSIOLOGY, 1989: p. 323-334. 87. Ge, Y., et al., Involvement of H-ras in Erythroid Differentiation of TF1 and Human Umbilical Cord Blood CD34+++ Cells. Blood Cells, Molecules, and Diseases, 1998. 24(8): p. 124–136.
|