跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡長憶
研究生(外文):Chang-Yi Tsai
論文名稱:討論鄰苯二甲酸二(2-乙基己基)酯(DEHP)對於紅血球分化的影響
論文名稱(外文):Study on the influence of Di(2-ethylhexyl) phthalate in erythrocytic differentiation
指導教授:張原翊張原翊引用關係
指導教授(外文):Yuan-I Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:51
中文關鍵詞:鄰苯二甲酸二(2-乙基己基)酯紅血球分化
外文關鍵詞:Di(2-ethylhexyl) phthalateerythrocytic differentiation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
慢性腎臟病 (CKD) 是一種緩慢喪失腎功能的疾病,目前是台灣主要的健康問題之一,其病程會引發許多併發症,其中一個為貧血。儘管在任何的CKD分期中都可以被診斷出貧血,然而貧血與CKD的嚴重程度有極大的相關性。腎所製造的紅血球生成素(EPO)產量減少是產生慢性腎臟病相關貧血的主因,因為EPO對於紅血球生長和分化是必須的。臨床上使用基因重組合成的人類EPO治療慢性腎臟病相關貧血,不幸的是有部分病人對於此藥物沒有反應或者產生EPO抗性,研究其他的機制對於發展新的診斷方式和療法是關鍵的。
鄰苯二甲酸二(2-乙基己基)酯 (DEHP) 是一種廣泛使用於醫療器材的塑化劑,先前的報告指出洗腎的CKD的病人血漿中被偵測出高濃度的DEHP,因此我們假設DEHP會影響紅血球分化。人類K562和HEL細胞具有可以分化成紅血球系的能力,被用於測試我們的假說。此外DEHP在兩個細胞模型中明顯的抑制紅血球分化,由於表觀遺傳學對於細胞表現非常重要,其中包括DNA甲基化,其會被環境所影響。因此我們進一步分析DNA甲基轉移酶 (DNMT) 的表現,我們假定DEHP對於不同的DNMT表現影響不同。而我們將重點放在DNMT3A和DNMT3B,降低DNMT3A和DNMT3B可以減少DEHP的影響,但是過度表達DNMT3A時,DEHP的影響會存在。另一方面,我們也使用DNA微陣列 (microarray) 去分析在DEHP環境培養的K562細胞,進而去確定其他的分子機制。綜合以上結果,本篇研究證實DNMT3A和DNMT3B在DEHP作用中扮演重要的角色。
Chronic kidney disease (CKD) is the slow loss of kidney function over time, and is a major health problem in Taiwan. Its progression is associated with many serious complications, such as anemia. Although anemia may be diagnosed at any CKD stage, there is a strong correlation between anemia and the severity of CKD. Decreased erythropoietin (EPO) synthesis in kidney is the most important for CKD-associated anemia, because it is essential for growth and differentiation of red blood cells. Therefore, recombinant human EPO is used to treat CKD patients with anemia. Unfortunately, some patients are not response, or develop the resistance to EPO (Thomas, et al., 2008). Identifying other mechanisms is importance for developing new diagnosis or therapy. Di-(2-ethylhexyl) phthalate (DEHP) is widely used as plasticizers in manufacturing numerous medical devices. Previous report demonstrated that high plasma levels of DEHP were detected in CKD patients undergoing hemodialysis (Faouzi, et al., 1999). Thus, we hypothesized DEHP can affect erythropoiesis. Human K562 or HEL cells with capacity differentiating into erythroid cells were used to test our hypothesis. 1 g/ml of DEHP, detected in CKD patients undergoing hemodialysis, decreased proliferation at 96 hrs after DEHP treatment, but did not induce cell death.
In addition, DEHP significantly suppressed erythrocytic differentiation in both cell models. Due to the importance of epigenetics, such as DNA methylation, in responding to environmental stimuli, the expression of DNA methyltransferases (DNMTs) was analyzed. As we assumed, DEHP differentially modulated expressions of DNMTs. We focused on DNMT3B and DNMT3A. Knockdown of DNMT3A and DNMT3B abolished DEHP effects. While overexpression of DNMT3A showed DEHP effect significantly. On the other hand, we also used microarray to characterize gene expression signatures in DEHP-treated K562 cells to identify other molecular mechanisms. Taken together, we demonstrated the DNMT3B and DNMT3A play important role in DEHP effect.
中文摘要.......i
Abstract.......ii
Contents.......iv
Chapter 1. Introduction.......1
1.1 Di-(2-ethylhexyl) phthalate (DEHP) is the commonly used phthalates.......1
1.2 The influence of DEHP in hematopoietic system is not fully elucidated.......2
1.3 DNA methylation is an important epigenetic regulation.......5
1.4 The role of DNMTs in hematopoietic system is not fully understood.......6
1.5 Erythropoiesis.......7
1.6 Ara-C and Nab are used as erythropoiesis differentiation stimulators.......9
1.7 Human leukemic cell lines are used as models for hematopoietic differentiation study.......9
Chapter 2. Research aims.......11
Chapter 3. Materials and Methods.......12
3.1 Materials.......12
3.1.1 Drugs and reagents.......12
3.1.2 Cell lines and bacterial strains.......15
3.1.3 Plasmids.......15
3.1.4 Antibodies.......15
3.1.5 Instruments.......15
3.2 Cells and Cell culture.......16
3.3 Western analysis.......17
3.4 Benzidine staining.......17
3.5 Selection of K562 stable cell clones.......18
3.6 RNA extraction.......18
3.7 Microarray analysis.......18
3.8 Gene set enrichment analysis (GSEA).......19
3.9 Ingenuity pathway analysis (IPA).......19
3.10 Statistical analysis.......20
Chapter 4. Results....... 21
4.1 The cell proliferation was slightly decreased at 96 hours after DEHP treatment.......21
4.2 DEHP suppressed erythrocytic differentiation.......21
4.3 DEHP influenced some DNMT expression.......21
4.4 Knockdown of DNMT3B abolished DEHP effect in erythroid differentiation by transiently mix clone.......22
4.5 Overexpression of DNMT3B abolished DEHP effect in erythroid differentiation.......23
4.6 The role of DNMT3A in the effect of DEHP during erythrocytic differentiation.......23
4.7 Microarray and bioinformatic analysis revealed DEHP modulated erythrocytic differentiation.......24
Chapter 5. Conclusion and Discussion.......24
Chapter 6. References.......25
Chapter 7.Tables.......34
Table 1. Primary antibodies list.......34
Table 2. Secondary antibodies list.......35
Table 3. KEGG: Genetic Information Processing.......35
Table 4. KEGG: Human Diseases.......35
Table 5. KEGG: Organismal Systems.......36
Table 6. KEGG: Environmental Information Processing.......37
Table 7. KEGG: Metabolism.......37
Table 8. KEGG: Cellular Processes.......38
Chapter 8. Figures.......39
Figure 1. Treatment with 1 μg/ml DEHP slightly influenced the proliferation of K562 cells, but not affect survival........39
Figure 2. DEHP suppressed erythrocytic differentiation of K562 cells........40
Figure 3. DEHP suppressed erythrocytic differentiation of HEL cells........41
Figure 4. The effect of DEHP in DNMT expression........42
Figure 5. Transfection efficiency in K562 cells .......44
Figure 6. Selection of DNMT3B knockdown clones.......45
Figure 7. Knockdown of DNMT3B abolished DEHP effect in erythroid differentiation. .......46
Figure 8. Transient expression of two DNMT3B shRNAs in K562 cells suppressed erythrocyte differentiation. .......47
Figure 9. Overexpression of DNMT3B also abolished DEHP-mediated suppression in erythrocyte differentiation........48
Figure 10. DEHP did not further decrease erythrocytic differentiation in DNMT3A deficient cells........49
Figure 11. Overexpression DNMT3A cells showed less function in DEHP effect........50
Figure 12. Correlation between DEHP mechanism and erythroid differentiation genes in K562.......51
1. Sauvé, S. and M. Desrosiers, A review of what is an emerging contaminant. Sauvé and Desrosiers Chemistry Central Journal, 2014.
2. Henley, D.V. and K.S. Korach, Physiological effects and mechanisms of action of endocrine disrupting chemicals that alter estrogen signaling. HORMONES, 2010. 9(3): p. 191-205.
3. Skinner, M.K., Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol, 2014. 398(1-2): p. 4-12.
4. N, K., et al., Is Hypospadias Associated with Prenatal Exposure to Endocrine Disruptors? A French Collaborative Controlled Study of a Cohort of 300 Consecutive Children Without Genetic Defect. EUROPEAN UROLOGY 6 8 (201 5 ) 1023–1030, 2015. 6(8): p. 1023–1030.
5. Epigenetic transgenerational inheritance. Nat Rev Endocrinol., 2016. 12(2): p. 68–70.
6. Peijnenburg, W.J. and J. Struijs, Occurrence of phthalate esters in the environment of The Netherlands. Ecotoxicol Environ Saf, 2006. 63(2): p. 204-15.
7. U, H., M.-S. V, and A. J, Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health, 2007. 210: p. 623–634.
8. Kataria, A., L. Trasande, and H. Trachtman, The effects of environmental chemicals on renal function. Nat Rev Nephrol, 2015. 11(10): p. 610-25.
9. Administration, U.S.F.a.D., Safety assessment of Di(2-ethylhexyl)phthalate (DEHP) released from PVC medical devices. 2014.
10. Singh, S. and S.S. Li, Bisphenol A and phthalates exhibit similar toxicogenomics and health effects. Gene, 2012. 494(1): p. 85-91.
11. M.A. Faouzi a, T.D.a., *, B. Gressier a, K. Kambia a, M. Luyckx a, D. Pagniez b C. Brunet a, M. Cazin a, Exposure of hemodialysis patients to di-2-ethylhexyl phthalate. International Journal of Pharmaceutics, 1999.
12. Zhang, T., et al., Di(2-ethylhexyl)phthalate: Adverse effects on folliculogenesis that cannot be neglected. Environ Mol Mutagen, 2016. 57(8): p. 579-588.
13. Sekaran, S. and A. Jagadeesan, In utero exposure to phthalate downregulates critical genes in Leydig cells of F1 male progeny. J Cell Biochem, 2015. 116(7): p. 1466-77.
14. Zhao, J., et al., Di(2ethylhexyl) phthalate accelerates atherosclerosis in apolipoprotein Edeficient mice. Arch Toxicol, 2014.
15. Caldwell, J.C., DEHP: genotoxicity and potential carcinogenic mechanisms-a review. Mutat Res, 2012. 751(2): p. 82-157.
16. PW, A. and T. RO, Enzymatic hydrolysis of Di-(2-ethylhexyl) phthalate by lipases. Biochim Biophys Acta., 1973. 306(3): p. 380-90.
17. Palleschi, S., et al., Di(2-ethylhexyl)phthalate stimulates Ca2+ entry, chemotaxis and ROS production in human granulocytes. Toxicology Letters, 2009. 187: p. 52–57.
18. Koike, E., et al., Di-(2-ethylhexyl) phthalate affects immune cells from atopic prone mice in vitro. Toxicology, 2009. 259(1-2): p. 54–60.
19. Schlezinger, J.J., et al., Environmental and Endogenous Peroxisome Proliferator-Activated Receptor g Agonists Induce Bone Marrow B Cell Growth Arrest and Apoptosis: Interactions between Mono(2-ethylhexyl)phthalate, 9-cis-Retinoic Acid, and 15-Deoxy-D12,14-prostaglandin J2. The Journal of Immunology, 2004. 173: p. 3165–3177.
20. R, B., Cases and observations: Illustrative of renal disease accompanied by the secretion of albuminous urine. Guys Hosp Rep, 1836. 1(338).
21. DS, S., et al., The Interaction Between Heart Failure and Other Heart Diseases, Renal Failure, and Anemia. Semin Nephrol., 2006. 26(4): p. 296-306.
22. Babitt, J.L. and H.Y. Lin, Mechanisms of anemia in CKD. J Am Soc Nephrol, 2012. 23(10): p. 1631-4.
23. Fisher, J.W., Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood), 2003. 228(1): p. 1-14.
24. Grover, A., et al., Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate. J Exp Med, 2014. 211(2): p. 181-8.
25. Hung, S.C. and D.C. Tarng, ESA and iron therapy in chronic kidney disease: a balance between patient safety and hemoglobin target. Kidney Int, 2014. 86(4): p. 676-8.
26. de Oliveira Junior, W.V., et al., Inflammation and poor response to treatment with erythropoietin in chronic kidney disease. J Bras Nefrol, 2015. 37(2): p. 255-63.
27. Icardi, A., et al., Renal anaemia and EPO hyporesponsiveness associated with vitamin D deficiency: the potential role of inflammation. Nephrol Dial Transplant, 2013. 28(7): p. 1672-9.
28. David, R.M., et al., Chronic toxicity of di(2-ethylhexyl)phthalate in rats. Toxicol Sci, 2000. 55(2): p. 433-43.
29. Wahl, H.G., et al., 4-Heptanone is a metabolite of the plasticizer di(2-ethylhexyl) phthalate (DEHP) in haemodialysis patients. Nephrol Dial Transplant, 2004. 19(10): p. 2576-83.
30. Mettang, T., et al., Uraemic pruritus and exposure to di(2-ethylhexyl) phthalate (DEHP) in haemodialysis patients. Nephrol Dial Transplant, 1996. 11(12): p. 2439-43.
31. Faouzi, M.A., et al., Exposure of hemodialysis patients to di-2-ethylhexyl phthalate. Int J Pharm, 1999. 180(1): p. 113-21.
32. Walker, A.M., et al., Anemia as a Predictor of Cardiovascular Events in Patients with Elevated Serum Creatinine. J Am Soc Nephrol, 2006.
33. Smith, Z.D. and A. Meissner, DNA methylation: roles in mammalian development. Nat Rev Genet, 2013. 14(3): p. 204-20.
34. Bourc'his, D., et al., Dnmt3L and the establishment of maternal genomic imprints. Science, 2001. 294(5551): p. 2536-9.
35. W, Z. and X. J, DNA methyltransferases and their roles in tumorigenesis. Biomark Res., 2017. 5:1.
36. Chen, T. and E. Li, Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol, 2004. 60: p. 55-89.
37. Okano, M., et al., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999. 99(3): p. 247-57.
38. Cedar, H. and Y. Bergman, Epigenetics of haematopoietic cell development. Nat Rev Immunol, 2011. 11(7): p. 478-88.
39. Wienholz, B.L., et al., DNMT3L modulates significant and distinct flanking sequence preference for DNA methylation by DNMT3A and DNMT3B in vivo. PLoS Genet, 2010. 6(9): p. e1001106.
40. Kaneda, M., et al., Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature, 2004. 429(6994): p. 900-3.
41. Subramaniam, D., et al., DNA methyltransferases: a novel target for prevention and therapy. Front Oncol, 2014. 4: p. 80.
42. Goll, M.G., et al., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006. 311(5759): p. 395-8.
43. Chen, T., et al., Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol, 2003. 23(16): p. 5594-605.
44. KE, B., R. MR, and B. SB, Dnmt3a and Dnmt3b Are Transcriptional Repressors That Exhibit Unique Localization Properties to Heterochromatin. J. Biol. Chem., 2001. 276: p. 32282–32287.
45. Hattori, N., et al., Preference of DNA methyltransferases for CpG islands in mouse embryonic stem cells. Genome Res, 2004. 14(9): p. 1733-40.
46. Choi, S.H., et al., Identification of preferential target sites for human DNA methyltransferases. Nucleic Acids Res, 2011. 39(1): p. 104-18.
47. Jeong, M., et al., Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat Genet, 2014. 46(1): p. 17-23.
48. Y, T., et al., De novo DNA methyltransferase is essential for self-renewal, but not for diff erentiation, in hematopoietic stem cells. The Journal of Experimental Medicine, 2007 204(4): p. 715–722.
49. Wu, H., et al., Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science, 2010. 329(5990): p. 444-8.
50. JJ, T., et al., DNA Methyltransferase 1 Is Essential for and Uniquely Regulates Hematopoietic Stem and Progenitor Cells. Cell Stem Cell, 2009. 5(4): p. 442-9.
51. Ann-Marie Bröske1, Lena Vockentanz1,7, Shabnam Kharazi2, Matthew R Huska1, Elena Mancini3, Marina Scheller1, Christiane Kuhl1, Andreas Enns1, Marco Prinz4, Rudolf Jaenisch5, Claus Nerlov3, Achim Leutz1, Miguel A Andrade-Navarro1, Sten Eirik W Jacobsen2,6 & Frank Rosenbauer1, DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nature GeNetics, 2009.
52. Yang, L., R. Rau, and M.A. Goodell, DNMT3A in haematological malignancies. Nat Rev Cancer, 2015. 15(3): p. 152-65.
53. Schulze, I., et al., Increased DNA methylation of Dnmt3b targets impairs leukemogenesis. Blood, 2016. 127(12): p. 1575-86.
54. S, H., et al., High DNA Methyltransferase DNMT3BLevels: A Poor Prognostic Marker in Acute Myeloid Leukemia. PLOS ONE, 2012 7(12): p. e51527.
55. Cancer Genome Atlas Research, N., et al., Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med, 2013. 368(22): p. 2059-74.
56. AR, G., et al., Hematopoietic Stem Cell Transplantation Corrects the Immunologic Abnormalities Associated With Immunodeficiency–Centromeric Instability–Facial Dysmorphism Syndrome. Pediatrics 2007; 120: e1341–e1344, 2007. 120: p. e1341–e1344.
57. Y1, U., et al., Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development, 2006. 133: p. 1183–1192.
58. Zheng, Y., et al., Loss of Dnmt3b accelerates MLL-AF9 leukemia progression. Leukemia, 2016. 30(12): p. 2373-2384.
59. Hlady, R.A., et al., Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis. J Clin Invest, 2012. 122(1): p. 163-77.
60. A, M., et al., De novo DNA Methyltransferases Dnmt3a and Dnmt3b regulate the onset of Igκ light chain rearrangement during early B-cell development. Eur. J. Immunol., 2015. 45(8): p. 2343–2355.
61. Mancini, E., et al., FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors. EMBO J, 2012. 31(2): p. 351-65.
62. M, S. and B. JJ, The multifunctional role of EKLF/KLF1 during erythropoiesis. BLOOD, 2011. 118(8): p. 2044-54.
63. Gregory, C.J. and A.C. Eaves, Human marrow cells capable of erythropoietic differentiation in vitro: definition of three erythroid colony responses. Blood, 1977. 49(6): p. 855-64.
64. Chasis, J.A. and N. Mohandas, Erythroblastic islands: niches for erythropoiesis. Blood, 2008. 112(3): p. 470-8.
65. P, W., et al., From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modification. Blood, 2011. 118(16): p. 6258-6268.
66. Dzierzak, E. and S. Philipsen, Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med, 2013. 3(4): p. a011601.
67. Ney, P.A., Normal and disordered reticulocyte maturation. Curr Opin Hematol, 2011. 18(3): p. 152-7.
68. Tsiftsoglou, A.S., I.S. Vizirianakis, and J. Strouboulis, Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life, 2009. 61(8): p. 800-30.
69. Koury, M.J. and V.H. Haase, Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat Rev Nephrol, 2015. 11(7): p. 394-410.
70. S, E., et al., Alpha4 beta1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development. J Cell Biol., 2007. 177 p. 871–880.
71. H, L., F. J, and C. S, From stem cell to erythroblast: Regulation of red cell production at multiple levels by multiple hormones. IUBMB Life. , 2010 62(7): p. 492–496.
72. Musch, T., et al., Nucleoside drugs induce cellular differentiation by caspase-dependent degradation of stem cell factors. PLoS One, 2010. 5(5): p. e10726.
73. Luisi-DeLuca, C., et al., Induction of terminal differentiation in human K562 erythroleukemia cells by arabinofuranosylcytosine. J Clin Invest, 1984. 74(3): p. 821-7.
74. VM, R. and O.B. JP, Histone Deacetylase Inhibitors: A New Class of Potential Therapeutic Agents for Cancer Treatment. Clin Cancer Res, 2002. 8: p. 662-664.
75. P, M., et al., HISTONE DEACETYLASES AND CANCER: CAUSES AND THERAPIES. Nat Rev Cancer, 2001. 1: p. 194-202.
76. Yin, L., G. Laevsky, and C. Giardina, Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Biol Chem, 2001. 276(48): p. 44641-6.
77. Chen, T.H., et al., Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells. Biochem Biophys Res Commun, 2007. 355(4): p. 913-8.
78. Rahman, M.M., et al., Two histone deacetylase inhibitors, trichostatinAand sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. BLOOD, 2003. 101.
79. Friend, C., et al., Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A, 1971. 68(2): p. 378-82.
80. Marks, P.A. and R.A. Rifkind, ERYTHROLEUKEMIC DIFFERENTIATION. Annu. Rev. Biochem., 1978. 47: p. 419–448.
81. Tsiftsoglou, A.S., I.S. Pappas, and I.S. Vizirianakis, Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther, 2003. 100(3): p. 257-90.
82. G, S., Control of globin gene expression during d. Experimental Hematology, 2005. 33: p. 259–271.
83. Martin, P. and T. Papayannopoulou, HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science, 1982. 216(4551): p. 1233-5.
84. WK, H., et al., Protein Arginine Methyltransferase 1 Interacts with and Activates p38a to Facilitate Erythroid Differentiation. PLOS ONE, 2013. 8(3).
85. Addya, S., et al., Erythroid-induced commitment of K562 cells results in clusters of differentially expressed genes enriched for specific transcription regulatory elements. Physiol Genomics, 2004. 19(1): p. 117-30.
86. T, K., et al., Establishment and Characterization of a Unique Human Cell Line That Proliferates Dependently on CM-CSF, IL-3, or Erythropoietin. JOURNAL OF CELLULAR PHYSIOLOGY, 1989: p. 323-334.
87. Ge, Y., et al., Involvement of H-ras in Erythroid Differentiation of TF1 and Human Umbilical Cord Blood CD34+++ Cells. Blood Cells, Molecules, and Diseases, 1998. 24(8): p. 124–136.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top