跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何榕恒
研究生(外文):Rong-Heng He
論文名稱:FK506結合蛋白51對γ-氨基丁酸神經傳導相關蛋白表現變化之調節-- 周邊發炎與糖皮質固醇誘發小鼠焦慮模式之比較
論文名稱(外文):FK506-Binding Protein 51 Regulates GABAergic Neurotransmission-related Protein Expression in Peripheral Inflammation- versus Glucocorticoid- induced Anxiety Mouse Models
指導教授:李怡萱李怡萱引用關係
指導教授(外文):Yi-Hsuan Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:56
中文關鍵詞:FK506結合蛋白51γ-氨基丁酸周邊發炎糖皮質固醇焦慮症
外文關鍵詞:FKBP51GABAPeripheral inflammationGlucocorticoidAnxiety disorder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
FK506結合蛋白51(FKBP51)是壓力荷爾蒙糖皮質固醇受體(glucocorticoid receptor, GR)的共伴蛋白(co-chaperone protein)之一,扮演著負回饋調節GR活性的重要生理恆定角色,其基因Fkbp5也是由GR活化的目標基因,因此FKBP51表現增加常做為GR活化的分子指標。在長期壓力下常導致FKBP51過度表現並造成GR阻抗性提高,該現象與許多壓力導致的情緒障礙有關,例如:焦慮症、憂鬱症以及創傷後壓力症等等。除此之外,近期研究指出,感染或慢性疾病所造成的周邊發炎反應是導致精神障礙的危險因子。以實驗如細菌內毒素脂多醣(lipopolysaccharide, LPS)所引起的周邊發炎,會導致中樞神經系統的發炎反應,並進一步產生焦慮及憂鬱症等情緒障礙。情緒障礙所造成的行為改變與神經傳導物質及迴路失衡有關。γ-氨基丁酸(-amino butyric acid, 簡稱GABA) 和GABAA受體(GABAAR)是大腦中主要的抑制性神經傳導物質及其受體,調控著神經迴路的興奮-抑制平衡。然而FKBP51在精神障礙中所扮演的角色是否與GABA神經傳導有關仍屬未知。
本篇研究中,我們利用Fkbp5基因剔除(Fkbp5-KO)小鼠來探討並比較FKBP51在周邊發炎或慢性糖皮質固醇引起的情緒障礙所扮演的角色。首先,我們將野生型(WT)及Fkbp5-KO小鼠進行單次腹腔注射給予LPS(3 mg/kg),接續七天的復原期,以此來建立周邊發炎小鼠模型。結果顯示,在LPS注射WT和Fkbp5-KO小鼠後一到三天內兩組皆會產生相同程度的體重減輕及進食量下降等疾病行為,但皆可在七天後復原,而在第一天時,肝臟因發炎所增加的iNOS表現量也均可在第七天回復至初始值,而WT肝臟中FKBP51及GR的表現則沒有受到LPS的影響。有趣的是,在高架十字迷宮測試抗焦慮行為實驗中發現,Fkbp5-KO而非WT小鼠在LPS投予後七天會出現焦慮行為;從西方墨點法結果中進一步發現, 在LPS七天後,WT小鼠海馬迴中之GR和GABAAR的蛋白表現明顯增加,但是在Fkbp5-KO小鼠中則無,血清素受體1A型(5HT1AR)或是NMDA受體之次單元NR2A和NR2B則在兩組皆未受影響。再者,LPS會造成在WT小鼠GABA合成酶GAD65增加,以及後突觸GABAAR支架蛋白gephyrin之切割型(cleaved form)的減少,但在Fkbp5-KO小鼠中則無此現象。以上結果顯示,FKPB51在周邊發炎引起的抗焦慮適應及海馬迴GABA神經傳導相關蛋白的增加扮演重要角色。
我們進一步以地塞米松(Dexamethasone, DEX)持續四天的攝取下建立糖皮質固醇引起的亞慢性壓力模式(subchronic stress model),與LPS造成的發炎型焦慮小鼠模式做比較,結果發現WT小鼠會呈現類焦慮和類憂鬱行為,而Fkbp5-KO小鼠則無,此結果與LPS造成的小鼠焦慮行為相反。此外,亞慢性DEX會增加WT小鼠在肝臟中FKBP51和GR表現,並減少大腦前皮質中5HT1AR以及GR的表現,而這些變化在Fkbp5-KO小鼠則無。再者, GABA神經傳導相關蛋白與NMDA受體次單元皆不會因亞慢性DEX處理而產生變化。
綜上所述,本篇研究說明了FKBP51在周邊發炎引起的情緒障礙中扮演著抗焦慮的角色,其機制可能與增強GABA神經傳導有關。反之,FKBP51在糖皮質固醇引起的壓力模型下為促焦慮的作用,而其機制可能與減少大腦前皮質中5HT1AR有關。本研究所獲得之資訊,或許可對於不同病理機制所引發之精神障礙與疾病提供新的治療策略與方向。
FK506-binding protein 51 kDa (FKBP51) is a co-chaperone protein of glucocorticoid receptor (GR), and play pivotal roles in negative feedback GR activity. GR mediates the physiological activity of glucocorticoid (GC) produced upon activation of hypothalamus-pituitary-adrenal (HPA) axis, a physiological stress-sensitive system to cope the threaten or stress. Excessive FKBP51 expression resulted from chronic stress may lead to GR resistance, which was linked to many stress-related mental disorders, such as anxiety, depression and posttraumatic stress disorder (PTSD). Besides, recent studies have shown that peripheral inflammation induced by infection or chronic diseases is a potential pathogenesis of mental disturbance. Ample studies have demonstrated that peripheral inflammation such as lipopolysaccharide (LPS) infection could cause neuroinflammatory response leading to anxiety, depression and cognitive deficit, whereas GC has been considered as immunosuppressant via binding to GR. Mental disorders and behavioral changes have been potentially associated with the alteration of neurotransmission leading to imbalanced neural circuit. GABA and GABAA receptor (GABAAR) is the major inhibitory transmitter and receptor in the brain that dominate the excitation-inhibition balance of brain circuitry. Serotoninergic neurotransmission is well known player and therapeutic target of anxiety and depression disorders. Whether FKBP51 mediated in the neurotransmission change leading to mental disorder was unknown.
In this study, we used Fkbp5 knockout(Fkbp5-KO) mice to investigate the role of FKBP51 in the peripheral inflammation- versus glucocorticoid-induced mental disturbance. First, we used wild-type (WT) and Fkbp5-KO mice to establish peripheral inflammation by single intraperitoneal (i.p.) injection of LPS (3mg/kg) followed by 7-day recovery. The result showed sickness behavior on day 1 to 3 following LPS injection, and then a full recovery 7 days after the insult with inflammation indicator iNOS in peripheral organ (liver) declined to baseline. The FKBP51 and GR in the liver were also not changed in WT and Fkbp5-KO mice after LPS. Interestingly, elevated plus maze test revealed that Fkbp5-KO, but not WT, mice show increased anxiety after 7 days recovery from the LPS insult. Western blotting result further indicated that GR and GABAAR, but not serotoninergic 5HT1A receptor (5HT1AR) or glutamatergic NMDA receptor subunits NR2A and NR2B, were increased in the WT hippocampus after 7 days recovery from the LPS insult; and these effects were not observed in Fkbp5-KO. Moreover, GABA synthesizing enzyme GAD65 were increased and postsynaptic GABAAR clustering protein gephyrin cleavage were reduced in WT, but not Fkbp5-KO mice after recovery from LPS insult.
We further examined subchronic dexamethasone (DEX) intake for 4 days to establish the glucocorticoid-induced stress model to compare the FKBP51-dependent events with the LPS insult-induced anxiety model. This subchronic DEX intake induced anxiety- and depression-like behavior in WT, but not Fkbp5-KO mice, which is the opposite of the LPS-induced anxiety model. Furthermore, the subchronic DEX model increased FKBP51 and GR in liver, decreased 5HT1AR and GR expression in anterior cortex of WT, but not Fkbp5-KO mice. However, neither GABAergic transmission-related proteins nor NMDA receptor subunits were altered in the subchronic DEX model.
In sum, this thesis study demonstrated that FKBP51 plays an anxiolytic role in the peripheral inflammation-induced mental disturbance, and this function may be attributed to the enhancement of GABAergic neurotransmission. In contrast, FKBP51 seems to have anxiogenic effect on glucocorticoid- induced stress, which may be attributed to the reduction of 5HT1AR in anterior cortex. Information obtained from this study may shed new light to the therapeutic strategies for treating mental disorders based on the different pathogenesis mechanisms.
中文摘要..............I
ABSTRACT..............III
CONTENTS..............V
LIST of FIGURES..............VI
ABBREVIATIONS..............VIII
INTRODUCTION..............1
MATERIAL AND METHODS......8
RESULTS...................18
DISCUSSION................25
CONCLUSION................28
REFERENCES................29
FIGURES...................36
APPENDIX..................56
Anisman H, Merali Z, Hayley S (2008). Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders. Prog Neurobiol 85: 1-74.
Atcha Z, Rourke C, Neo AH, Goh CW, Lim JS, Aw CC, Browne ER, Pemberton DJ (2010). Alternative method of oral dosing for rats. J Am Assoc Lab Anim Sci 49: 335-343.
Aubert A, Vega C, Dantzer R, Goodall G (1995). Pyrogens specifically disrupt the acquisition of a task involving cognitive processing in the rat. Brain Behav Immun 9: 129-148.
Banerjee A, Periyasamy S, Wolf IM, Hinds TD, Jr., Yong W, Shou W, Sanchez ER (2008). Control of glucocorticoid and progesterone receptor subcellular localization by the ligand-binding domain is mediated by distinct interactions with tetratricopeptide repeat proteins. Biochemistry 47: 10471-10480.
Chatterton DE, Nguyen DN, Bering SB, Sangild PT (2013). Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int J Biochem Cell Biol 45: 1730-1747.
Chien IC, Chou YJ, Lin CH, Bih SH, Chou P (2004). Prevalence of psychiatric disorders among National Health Insurance enrollees in Taiwan. Psychiatr Serv 55: 691-697.
Chrousos GP (2009). Stress and disorders of the stress system. Nat Rev Endocrinol 5: 374-381.
Costa JT, Mele M, Baptista MS, Gomes JR, Ruscher K, Nobre RJ, de Almeida LP, Wieloch T, Duarte CB (2016). Gephyrin Cleavage in In Vitro Brain Ischemia Decreases GABAA Receptor Clustering and Contributes to Neuronal Death. Mol Neurobiol 53: 3513-3527.
Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, Wittchen HU (2017). Anxiety disorders. Nat Rev Dis Primers 3: 17024.
Danese A, Moffitt TE, Pariante CM, Ambler A, Poulton R, Caspi A (2008). Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch Gen Psychiatry 65: 409-415.
Dantzer R, Kelley KW (2007). Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21: 153-160.
Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9: 46-56.
Dejager L, Pinheiro I, Puimege L, Fan YD, Gremeaux L, Vankelecom H, Libert C (2010). Increased glucocorticoid receptor expression and activity mediate the LPS resistance of SPRET/EI mice. J Biol Chem 285: 31073-31086.
Dinel AL, Andre C, Aubert A, Ferreira G, Laye S, Castanon N (2011). Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS One 6: e24325.
Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016). Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22: 238-249.
Eichler SA, Meier JC (2008). E-I balance and human diseases - from molecules to networking. Front Mol Neurosci 1: 2.
Flandreau EI, Ressler KJ, Owens MJ, Nemeroff CB (2012). Chronic overexpression of corticotropin-releasing factor from the central amygdala produces HPA axis hyperactivity and behavioral anxiety associated with gene-expression changes in the hippocampus and paraventricular nucleus of the hypothalamus. Psychoneuroendocrinology 37: 27-38.
Frank MG, Thompson BM, Watkins LR, Maier SF (2012). Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain Behav Immun 26: 337-345.
Galigniana NM, Ballmer LT, Toneatto J, Erlejman AG, Lagadari M, Galigniana MD (2012). Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51. J Neurochem 122: 4-18.
Gross C, Hen R (2004). The developmental origins of anxiety. Nat Rev Neurosci 5: 545-552.
Hinds TD, Jr., Stechschulte LA, Cash HA, Whisler D, Banerjee A, Yong W, Khuder SS, Kaw MK, Shou W, Najjar SM, Sanchez ER (2011). Protein phosphatase 5 mediates lipid metabolism through reciprocal control of glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma (PPARgamma). J Biol Chem 286: 42911-42922.
Hoeijmakers L, Harbich D, Schmid B, Lucassen PJ, Wagner KV, Schmidt MV, Hartmann J (2014). Depletion of FKBP51 in female mice shapes HPA axis activity. PLoS One 9: e95796.
Izzo E, Auta J, Impagnatiello F, Pesold C, Guidotti A, Costa E (2001). Glutamic acid decarboxylase and glutamate receptor changes during tolerance and dependence to benzodiazepines. Proc Natl Acad Sci U S A 98: 3483-3488.
Karim N, Irshad S, Khan I, Mohammad A, Anis I, Shah MR, Khan I, Chebib M (2015). GABA(A) receptor modulation and neuropharmacological activities of viscosine isolated from Dodonaea viscosa (Linn). Pharmacol Biochem Behav 136: 64-72.
Kawasaki BT, Hoffman KB, Yamamoto RS, Bahr BA (1997). Variants of the receptor/channel clustering molecule gephyrin in brain: distinct distribution patterns, developmental profiles, and proteolytic cleavage by calpain. J Neurosci Res 49: 381-388.
Kneussel M, Brandstätter JH, Laube B, Stahl S, Müller U, Betz H (1999). Loss of postsynaptic GABA(A) receptor clustering in gephyrin-deficient mice. J Neurosci 19: 9289-9297.
Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, Epperson CN, Goddard A, Mason GF (2002). Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 1: S71-80.
Liu GX, Cai GQ, Cai YQ, Sheng ZJ, Jiang J, Mei Z, Wang ZG, Guo L, Fei J (2007). Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype 1. Neuropsychopharmacology 32: 1531-1539.
Lukins MB, Manninen PH (2005). Hyperglycemia in patients administered dexamethasone for craniotomy. Anesth Analg 100: 1129-1133.
McEwen BS (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87: 873-904.
Nguyen MD, Julien JP, Rivest S (2002). Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3: 216-227.
Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E (2010). The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75: 1-12.
Nuss P (2015). Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat 11: 165-175.
O'Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009). Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14: 511-522.
O'Leary JCr, Zhang B, Koren Jr, Blair L, Dickey CA (2013). The role of FKBP5 in mood disorders: action of FKBP5 on steroid hormone receptors leads to questions about its evolutionary importance. CNS Neurol Disord Drug Targets 12: 1157-1162.
O'Leary JC, 3rd, Dharia S, Blair LJ, Brady S, Johnson AG, Peters M, Cheung-Flynn J, Cox MB, de Erausquin G, Weeber EJ, Jinwal UK, Dickey CA (2011). A new anti-depressive strategy for the elderly: ablation of FKBP5/FKBP51. PLoS One 6: e24840.
Porsolt RD, Antn G, Blavet N, Jalfre M (1978). Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47: 379-391.
Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55: 453-462.
Remus JL, Dantzer R (2016). Inflammation Models of Depression in Rodents: Relevance to Psychotropic Drug Discovery. Int J Neuropsychopharmacol 19.
Riazi K, Galic MA, Pittman QJ (2010). Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res 89: 34-42.
Sandi C (2011). Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends Neurosci 34: 165-176.
Sieghart W, Fuchs K, Tretter V, Ebert V, Jechlinger M, Höger H, Adamiker D (1999). Structure and subunit composition of GABA(A) receptors. Neurochem Int 34: 379-385.
Sigel E, Steinmann ME (2012). Structure, function, and modulation of GABA(A) receptors. J Biol Chem 287: 40224-40231.
Stechschulte LA, Hinds TD, Jr., Ghanem SS, Shou W, Najjar SM, Sanchez ER (2014). FKBP51 reciprocally regulates GRalpha and PPARgamma activation via the Akt-p38 pathway. Mol Endocrinol 28: 1254-1264.
Storer CL, Dickey CA, Galigniana MD, Rein T, Cox MB (2011). FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab 22: 481-490.
Sulakhiya K, Kumar P, Gurjar SS, Barua CC, Hazarika NK (2015). Beneficial effect of honokiol on lipopolysaccharide induced anxiety-like behavior and liver damage in mice. Pharmacol Biochem Behav 132: 79-87.
Sulakhiya K, Keshavlal GP, Bezbaruah BB, Dwivedi S, Gurjar SS, Munde N, Jangra A, Lahkar M, Gogoi R (2016). Lipopolysaccharide induced anxiety- and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin. Neurosci Lett 611: 106-111.
Tao L, Qiu Y, Fu X, Lin R, Lei C, Wang J, Lei B (2016). Angiotensin-converting enzyme 2 activator diminazene aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-kappaB pathways in human retinal pigment epithelium. J Neuroinflammation 13: 35.
Thompson MD, Gallagher WJ, Iaizzo PA, Lanier WL (2000). The effect of chronic dexamethasone-induced hyperglycemia and its acute treatment with insulin on brain glucose and glycogen concentrations in rats. Anesthesiology 93: 1279-1284.
Tretter V, Mukherjee J, Maric HM, Schindelin H, Sieghart W, Moss SJ (2012). Gephyrin, the enigmatic organizer at GABAergic synapses. Front Cell Neurosci 6: 23.
Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML (2000). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29: 52-54.
Tzamaloukas AH, Avasthi PS (1986). Effect of Hyperglycemia on Serum Sodium Concentration and Tonicity in Outpatients on Chronic Dialysis. American Journal of Kidney Diseases 7: 477-482.
Vasconcelos AR, Cabral-Costa JV, Mazucanti CH, Scavone C, Kawamoto EM (2016). The Role of Steroid Hormones in the Modulation of Neuroinflammation by Dietary Interventions. Front Endocrinol (Lausanne) 7: 9.
Walker MK, Boberg JR, Walsh MT, Wolf V, Trujillo A, Duke MS, Palme R, Felton LA (2012). A less stressful alternative to oral gavage for pharmacological and toxicological studies in mice. Toxicol Appl Pharmacol 260: 65-69.
Warrier M, Hinds TD, Jr., Ledford KJ, Cash HA, Patel PR, Bowman TA, Stechschulte LA, Yong W, Shou W, Najjar SM, Sanchez ER (2010). Susceptibility to diet-induced hepatic steatosis and glucocorticoid resistance in FK506-binding protein 52-deficient mice. Endocrinology 151: 3225-3236.
Webster EL, Lewis DB, Torpy DJ, Zachman EK, Rice KC, Chrousos GP (1996). In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin-releasing hormone (CRH) receptor antagonist: suppression of pituitary ACTH release and peripheral inflammation. Endocrinology 137: 5747-5750.
Wei P, Liu Q, Li D, Zheng Q, Zhou J, Li J (2015). Acute nicotine treatment attenuates lipopolysaccharide-induced cognitive dysfunction by increasing BDNF expression and inhibiting neuroinflammation in the rat hippocampus. Neurosci Lett 604: 161-166.
Wolf IM, Periyasamy S, Hinds T, Jr., Yong W, Shou W, Sanchez ER (2009). Targeted ablation reveals a novel role of FKBP52 in gene-specific regulation of glucocorticoid receptor transcriptional activity. J Steroid Biochem Mol Biol 113: 36-45.
Yang L, Wang M, Guo YY, Sun T, Li YJ, Yang Q, Zhang K, Liu SB, Zhao MG, Wu YM (2016). Systemic inflammation induces anxiety disorder through CXCL12/CXCR4 pathway. Brain Behav Immun 56: 352-362.
Yong W, Yang Z, Periyasamy S, Chen H, Yucel S, Li W, Lin LY, Wolf IM, Cohn MJ, Baskin LS, Sanchez ER, Shou W (2007). Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J Biol Chem 282: 5026-5036.
Yu W, Jiang M, Miralles CP, Li RW, Chen G, de Blas AL (2007). Gephyrin clustering is required for the stability of GABAergic synapses. Mol Cell Neurosci 36: 484-500.
Yuan L, Liu S, Bai X, Gao Y, Liu G, Wang X, Liu D, Li T, Hao A, Wang Z (2016). Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J Neuroinflammation 13: 77.
Zhang K, Pan X, Wang F, Ma J, Su G, Dong Y, Yang J, Wu C (2016). Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression. Sci Rep 6: 30951.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top