跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許凱媚
研究生(外文):Kai-Mei Hsu
論文名稱:生長因子受體過度表現癌細胞標靶藥物微脂體艾黴素的開發
論文名稱(外文):Developing EGFR-expressing cells targeting liposomal doxorubicin (LipoDox)
指導教授:藍耿立藍耿立引用關係
指導教授(外文):Keng-Li Lan
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:傳統醫藥研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:71
中文關鍵詞:表皮生長因子受體微脂體腫瘤標靶
外文關鍵詞:EGFRliposometumor-targeting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
人類表皮型的癌症,像是胃癌、肺癌、大腸癌、胰腺癌、乳癌、頭頸癌等,占所有癌症死亡率的 50% 以上,而導致這種類型癌症的特徵在於表皮生長因子受體 (EGFR) 的過度表現和其訊號途徑的活化。當表皮生長因子 (EGF) 與 EGFR 結合後,下游一系列的訊號就會被活化,使得癌細胞增殖、存活和轉移。癌症標靶藥物如EGFR抗體和酪氨酸激酶 (tyrosine kinase) 抑制劑的作用機轉即是針對 EGF 與其受體之間專一性的結合。
在本研究中,我們利用微脂體包覆化療藥物艾黴素 (LipoDox, LD),試圖想要開發以 EGFR 為靶向的微脂體藥物,而其他幾個研究單位也探討了這種方法的研發。但是到目前為止並無顯著成果。為了開發 EGFR 靶向之標靶藥物,我們已經成功地純化出一個融合蛋白質並將其標記到微脂體包覆化療藥物艾黴素,未來,我們將繼續探討以此微脂體藥物來治療 EGFR 過度表現類型的癌症,我們計劃進行動物研究,以進一步證明 EGFR 標靶治療在臨床前研究的潛力。
Human epithelial cancers, such as gastric, lung, colorectal, pancreatic, breast, head and neck etc., are responsible for more than 50% of all cancer-related deaths. These cancers are characterized by significant expression of epidermal growth factor receptor (EGFR) and activation of its signaling pathway. Upon binding to EGF, EGFR results in activation of pathways important for proliferation, survival and metastasis of cancer cells. EGF-EGFR pathway is a well-characterized anticancer drug target of antibodies against EGFR and tyrosine kinase inhibitors.
In this thesis project, we tried to develop an EGFR targeting liposomal drug by liposomal doxorubicin (LipoDox, LD). This approach had been explored by several other research groups. However, success in this field is still limited. To develop an EGFR targeting therapy, we had successfully purified a protein X and labeled it to LD. We will continue exploring the incorporation of this EGFR targeting protein X with a liposomal drug for treatment of EGFR-expressing cancers. We also plan to conduct the animal study to further demonstrate the potential of this EGFR-targeting treatment in a preclinical setting.
誌謝……………………………………………………………..…..…...i
中文摘要………………………………………………………..............ii
Abstract……………………………………………………...…..…....iii
目錄……………………………………………………………….....…iv
圖目錄……………………………………………………………..…..v
表目錄………………………………………………………………...vi
第一章 緒論……………………………………………………….........1
第二章 研究材料與方法……………………………………………...12
第一節 研究材料……………………………………………….....12
第二節 研究方法………………………………………………….16
第三章 研究結果……………………………………………………...28
第四章 討論……………………………………………………………34
第五章 結論……………………………………………………………37
參考文獻………………………………………………………………..38
圖表…………………………………………………………………………………………….........50
1. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability [mdash] an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220-8.
2. Weiderpass E. Lifestyle and Cancer Risk. J Prev Med Public Health. 2010;43:459-71.
3. Dunn B. Cancer: Solving an age-old problem. Nature. 2012;483:S2-S6.
4. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. European Journal of Pharmaceutics and Biopharmaceutics. 2009;71:409-19.
5. Giordano S, Petrelli A. From Single- to Multi-Target Drugs in Cancer Therapy: When Aspecificity Becomes an Advantage. Current Medicinal Chemistry. 2008;15:422-32.
6. Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer. 2006;6:714-27.
7. Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA Drug Approval Summary: Bevacizumab (Avastin®) Plus Carboplatin and Paclitaxel as First-Line Treatment of Advanced/Metastatic Recurrent Nonsquamous Non-Small Cell Lung Cancer. The Oncologist. 2007;12:713-8.
8. Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C, et al. Gefitinib in Combination With Paclitaxel and Carboplatin in Advanced Non–Small-Cell Lung Cancer: A Phase III Trial—INTACT 2. Journal of Clinical Oncology. 2004;22:785-94.
9. The L. Welcome clinical leadership at NICE. The Lancet. 2008;372:601.
10. Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJM, Schrama JG, et al. Chemotherapy, Bevacizumab, and Cetuximab in Metastatic Colorectal Cancer. New England Journal of Medicine. 2009;360:563-72.
11. Fojo T, Grady C. How Much Is Life Worth: Cetuximab, Non–Small Cell Lung Cancer, and the $440 Billion Question. JNCI Journal of the National Cancer Institute. 2009;101:1044-8.
12. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, et al. The Genomic Landscapes of Human Breast and Colorectal Cancers. Science. 2007;318:1108-13.
13. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research. 1986;46:6387-92.
14. Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Critical reviews in therapeutic drug carrier systems. 1989;6:193-210.
15. Muggia FM. Doxorubicin-polymer conjugates: further demonstration of the concept of enhanced permeability and retention. Clinical cancer research : an official journal of the American Association for Cancer Research. 1999;5:7-8.
16. Fang J, Sawa T, Maeda H. Factors and mechanism of "EPR" effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Advances in experimental medicine and biology. 2003;519:29-49.
17. Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. Journal of controlled release : official journal of the Controlled Release Society. 2001;74:47-61.
18. Fang J, Long L, Maeda H. Enhancement of Tumor-Targeted Delivery of Bacteria with Nitroglycerin Involving Augmentation of the EPR Effect. Methods in molecular biology (Clifton, NJ). 2016;1409:9-23.
19. Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Molecular and clinical oncology. 2014;2:904-8.
20. Maeda H, Fang J, Ulbrich K, Etrych T, Nakamura H. [Missile-Type Tumor-Targeting Polymer Drug, P-THP, Seeks Tumors via Three Different Steps Based on the EPR Effect]. Gan to kagaku ryoho Cancer & chemotherapy. 2016;43:549-57.
21. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological reviews. 2004;56:185-229.
22. Ferreira AL, Matsubara LS, Matsubara BB. Anthracycline-induced cardiotoxicity. Cardiovascular & hematological agents in medicinal chemistry. 2008;6:278-81.
23. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. Journal of molecular and cellular cardiology. 2012;52:1213-25.
24. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of molecular and cellular cardiology. 2012;52:1213-25.
25. Gharanei M, Hussain A, Janneh O, Maddock H. Attenuation of Doxorubicin-Induced Cardiotoxicity by mdivi-1: A Mitochondrial Division/Mitophagy Inhibitor. PLoS ONE. 2013;8:e77713.
26. Jain D. Cardiotoxicity of Doxorubicin and other anthracycline derivatives. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology. 2000;7:53-62.
27. Barrett-Lee PJ, Dixon JM, Farrell C, Jones A, Leonard R, Murray N, et al. Expert opinion on the use of anthracyclines in patients with advanced breast cancer at cardiac risk. Annals of oncology : official journal of the European Society for Medical Oncology. 2009;20:816-27.
28. Zhang SH, Wang WQ, Wang JL. Protective effect of tetrahydroxystilbene glucoside on cardiotoxicity induced by Doxorubicin in vitro and in vivo. Acta pharmacologica Sinica. 2009;30:1479-87.
29. O'Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal Doxorubicin HCl (CAELYX/Doxil) versus conventional Doxorubicin for first-line treatment of metastatic breast cancer. Annals of oncology : official journal of the European Society for Medical Oncology. 2004;15:440-9.
30. Balazsovits JA, Mayer LD, Bally MB, Cullis PR, McDonell M, Ginsberg RS, et al. Analysis of the effect of liposome encapsulation on the vesicant properties, acute and cardiac toxicities, and antitumor efficacy of Doxorubicin. Cancer chemotherapy and pharmacology. 1989;23:81-6.
31. Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, Guthrie T, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated Doxorubicin and cyclophosphamide compared with conventional Doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2001;19:1444-54.
32. Kanter PM, Bullard GA, Ginsberg RA, Pilkiewicz FG, Mayer LD, Cullis PR, et al. Comparison of the cardiotoxic effects of liposomal Doxorubicin (TLC D-99) versus free Doxorubicin in beagle dogs. In vivo (Athens, Greece). 1993;7:17-26.
33. Kanter PM, Bullard GA, Pilkiewicz FG, Mayer LD, Cullis PR, Pavelic ZP. Preclinical toxicology study of liposome encapsulated Doxorubicin (TLC D-99): comparison with Doxorubicin and empty liposomes in mice and dogs. In vivo (Athens, Greece). 1993;7:85-95.
34. Mayer LD, Bally MB, Cullis PR, Wilson SL, Emerman JT. Comparison of free and liposome encapsulated Doxorubicin tumor drug uptake and antitumor efficacy in the SC115 murine mammary tumor. Cancer letters. 1990;53:183-90.
35. Mayer LD, Tai LC, Bally MB, Mitilenes GN, Ginsberg RS, Cullis PR. Characterization of liposomal systems containing Doxorubicin entrapped in response to pH gradients. Biochimica et biophysica acta. 1990;1025:143-51.
36. Rivera E. Liposomal anthracyclines in metastatic breast cancer: clinical update. Oncologist. 2003;8 Suppl 2:3-9.
37. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews. 2011;63:131-5.
38. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Research Letters. 2013;8:102-.
39. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug discovery today. 2003;8:1112-20.
40. Sihorkar V, Vyas SP. Potential of polysaccharide anchored liposomes in drug delivery, targeting and immunization. Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques. 2001;4:138-58.
41. Campbell PI. Toxicity of some charged lipids used in liposome preparations. Cytobios. 1983;37:21-6.
42. Gregoriadis G, Florence AT. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs. 1993;45:15-28.
43. O'Brien S, Brus L, Murray CB. Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. Journal of the American Chemical Society. 2001;123:12085-6.
44. Gregoriadis G. The carrier potential of liposomes in biology and medicine (second of two parts). The New England journal of medicine. 1976;295:765-70.
45. Jain A, Jain SK. STIMULI-RESPONSIVE SMART LIPOSOMES IN CANCER TARGETING. Current drug targets. 2016.
46. Callari M, De Souza PL, Rawal A, Stenzel MH. The Effect of Drug Loading on Micelle Properties: Solid-State NMR as a Tool to Gain Structural Insight. Angewandte Chemie (International ed in English). 2017.
47. Zhang X, Yang X, Ji J, Liu A, Zhai G. Tumor targeting strategies for chitosan-based nanoparticles. Colloids and surfaces B, Biointerfaces. 2016;148:460-73.
48. Ho JA, Hsu HW. Procedures for preparing Escherichia coli O157:H7 immunoliposome and its application in liposome immunoassay. Analytical chemistry. 2003;75:4330-4.
49. Ho JA, Hsu HW, Huang MR. Liposome-based microcapillary immunosensor for detection of Escherichia coli O157:H7. Analytical biochemistry. 2004;330:342-9.
50. Bozzuto G, Molinari A. Liposomes as nanomedical devices. International Journal of Nanomedicine. 2015;10:975-99.
51. Davis D, Gregoriadis G. Liposomes as adjuvants with immunopurified tetanus toxoid: influence of liposomal characteristics. Immunology. 1987;61:229-34.
52. Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochimica et biophysica acta. 1990;1029:91-7.
53. Doxil receives FDA market clearance. AIDS patient care and STDs. 1996;10:135.
54. Gabizon AA. Pegylated liposomal Doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer investigation. 2001;19:424-36.
55. Adamo V, Lorusso V, Rossello R, Adamo B, Ferraro G, Lorusso D, et al. Pegylated liposomal Doxorubicin and gemcitabine in the front-line treatment of recurrent/metastatic breast cancer: a multicentre phase II study. British journal of cancer. 2008;98:1916-21.
56. Perez AT, Domenech GH, Frankel C, Vogel CL. Pegylated liposomal Doxorubicin (Doxil) for metastatic breast cancer: the Cancer Research Network, Inc., experience. Cancer investigation. 2002;20 Suppl 2:22-9.
57. Symon Z, Peyser A, Tzemach D, Lyass O, Sucher E, Shezen E, et al. Selective delivery of Doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer. 1999;86:72-8.
58. Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y. Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). International journal of pharmaceutics. 2004;277:39-61.
59. ElBayoumi TA, Torchilin VP. Tumor-targeted nanomedicines: enhanced antitumor efficacy in vivo of Doxorubicin-loaded, long-circulating liposomes modified with cancer-specific monoclonal antibody. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15:1973-80.
60. Elbayoumi TA, Torchilin VP. Tumor-specific anti-nucleosome antibody improves therapeutic efficacy of Doxorubicin-loaded long-circulating liposomes against primary and metastatic tumor in mice. Molecular pharmaceutics. 2009;6:246-54.
61. Hatakeyama H, Akita H, Ishida E, Hashimoto K, Kobayashi H, Aoki T, et al. Tumor targeting of Doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. International journal of pharmaceutics. 2007;342:194-200.
62. Park JW, Benz CC, Martin FJ. Future directions of liposome- and immunoliposome-based cancer therapeutics. Seminars in oncology. 2004;31:196-205.
63. Bohl Kullberg E, Bergstrand N, Carlsson J, Edwards K, Johnsson M, Sjoberg S, et al. Development of EGF-conjugated liposomes for targeted delivery of boronated DNA-binding agents. Bioconjugate chemistry. 2002;13:737-43.
64. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer research. 2006;66:6732-40.
65. Park JW, Kirpotin DB, Hong K, Shalaby R, Shao Y, Nielsen UB, et al. Tumor targeting using anti-her2 immunoliposomes. Journal of controlled release : official journal of the Controlled Release Society. 2001;74:95-113.
66. Torchilin V. Antibody-modified liposomes for cancer chemotherapy. Expert opinion on drug delivery. 2008;5:1003-25.
67. Torchilin VP. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv Drug Deliv Rev. 2005;57:95-109.
68. Varga CM, Wickham TJ, Lauffenburger DA. Receptor-mediated targeting of gene delivery vectors: insights from molecular mechanisms for improved vehicle design. Biotechnology and bioengineering. 2000;70:593-605.
69. Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Progress in lipid research. 2003;42:439-62.
70. Mastrobattista E, Koning GA, Storm G. Immunoliposomes for the targeted delivery of antitumor drugs. Adv Drug Deliv Rev. 1999;40:103-27.
71. Alavizadeh SH, Soltani F, Ramezani M. Recent Advances in Immunoliposome-Based Cancer Therapy. Current Pharmacology Reports. 2016;2:129-41.
72. Preiss MR, Bothun GD. Stimuli-responsive liposome-nanoparticle assemblies. Expert opinion on drug delivery. 2011;8:1025-40.
73. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature materials. 2013;12:991-1003.
74. Lehner R, Wang X, Wolf M, Hunziker P. Designing switchable nanosystems for medical application. Journal of controlled release : official journal of the Controlled Release Society. 2012;161:307-16.
75. Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. Journal of controlled release : official journal of the Controlled Release Society. 2014;190:352-70.
76. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355-65.
77. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer. 2004;4:361-70.
78. Abou-Fayçal C, Hatat A-S, Gazzeri S, Eymin B. Splice Variants of the RTK Family: Their Role in Tumour Progression and Response to Targeted Therapy. International Journal of Molecular Sciences. 2017;18:383.
79. Srivastava A, Alexander J, Lomakin I, Dayal Y. Immunohistochemical expression of transforming growth factor α and epidermal growth factor receptor in pancreatic endocrine tumors. Human Pathology. 2001;32:1184-9.
80. Siegelin MD, Borczuk AC. Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab Invest. 2014;94:129-37.
81. Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cellular and molecular life sciences : CMLS. 2008;65:1566-84.
82. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117-34.
83. Lemmon MA, Schlessinger J, Ferguson KM. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harbor perspectives in biology. 2014;6:a020768.
84. Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010;10:760-74.
85. Krasinskas AM. EGFR Signaling in Colorectal Carcinoma. Pathology research international. 2011;2011:932932.
86. Haines E, Saucier C, Claing A. The adaptor proteins p66Shc and Grb2 regulate the activation of the GTPases ARF1 and ARF6 in invasive breast cancer cells. The Journal of biological chemistry. 2014;289:5687-703.
87. Yarden RI, Wilson MA, Chrysogelos SA. Estrogen suppression of EGFR expression in breast cancer cells: a possible mechanism to modulate growth. Journal of cellular biochemistry Supplement. 2001;Suppl 36:232-46.
88. Khozin S, Blumenthal GM, Jiang X, He K, Boyd K, Murgo A, et al. U.S. Food and Drug Administration approval summary: Erlotinib for the first-line treatment of metastatic non-small cell lung cancer with epidermal growth factor receptor exon 19 deletions or exon 21 (L858R) substitution mutations. Oncologist. 2014;19:774-9.
89. Zhang Z, Stiegler AL, Boggon TJ, Kobayashi S, Halmos B. EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget. 2010;1:497-514.
90. Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial--INTACT 2. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2004;22:785-94.
91. Della Corte CM, Malapelle U, Vigliar E, Pepe F, Troncone G, Ciaramella V, et al. Efficacy of continuous EGFR-inhibition and role of Hedgehog in EGFR acquired resistance in human lung cancer cells with activating mutation of EGFR. Oncotarget. 2017;8:23020-32.
92. Carpenter G, Cohen S. Epidermal growth factor. The Journal of biological chemistry. 1990;265:7709-12.
93. Dreux AC, Lamb DJ, Modjtahedi H, Ferns GA. The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis. Atherosclerosis. 2006;186:38-53.
94. Ai S, Jia T, Ai W, Duan J, Liu Y, Chen J, et al. Targeted delivery of Doxorubicin through conjugation with EGF receptor–binding peptide overcomes drug resistance in human colon cancer cells. British Journal of Pharmacology. 2013;168:1719-35.
95. Hackel PO, Zwick E, Prenzel N, Ullrich A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Current opinion in cell biology. 1999;11:184-9.
96. Diamandis EP, Christopoulos TK. The biotin-(strept)avidin system: principles and applications in biotechnology. Clinical chemistry. 1991;37:625-36.
97. Wilchek M, Bayer EA, Livnah O. Essentials of biorecognition: The (strept)avidin–biotin system as a model for protein–protein and protein–ligand interaction. Immunology Letters. 2006;103:27-32.
98. Maatta JA, Airenne TT, Nordlund HR, Janis J, Paldanius TA, Vainiotalo P, et al. Rational modification of ligand-binding preference of avidin by circular permutation and mutagenesis. Chembiochem : a European journal of chemical biology. 2008;9:1124-35.
99. Laitinen OH, Nordlund HR, Hytonen VP, Kulomaa MS. Brave new (strept)avidins in biotechnology. Trends in biotechnology. 2007;25:269-77.
100. Laitinen OH, Hytonen VP, Nordlund HR, Kulomaa MS. Genetically engineered avidins and streptavidins. Cell Mol Life Sci. 2006;63:2992-3017.
101. Lim KH, Huang H, Pralle A, Park S. Engineered streptavidin monomer and dimer with improved stability and function. Biochemistry. 2011;50:8682-91.
102. Meir A, Helppolainen SH, Podoly E, Nordlund HR, Hytonen VP, Maatta JA, et al. Crystal structure of rhizavidin: insights into the enigmatic high-affinity interaction of an innate biotin-binding protein dimer. Journal of molecular biology. 2009;386:379-90.
103. Aslan FM, Yu Y, Vajda S, Mohr SC, Cantor CR. Engineering a novel, stable dimeric streptavidin with lower isoelectric point. Journal of biotechnology. 2007;128:213-25.
104. Wu SC, Wong SL. Engineering soluble monomeric streptavidin with reversible biotin binding capability. The Journal of biological chemistry. 2005;280:23225-31.
105. Lim KH, Huang H, Pralle A, Park S. Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnology and bioengineering. 2013;110:57-67.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top