跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳盈均
研究生(外文):Ying-Chun Chen
論文名稱:RIG-I調節的流行性感冒病毒M2蛋白的降解
論文名稱(外文):RIG-I mediated influenza M2 protein degradation
指導教授:陳紀如
指導教授(外文):Chi-Ju Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:59
中文關鍵詞:RIG-I訊息流行性感冒病毒流感病毒蛋白M2蛋白的降解
外文關鍵詞:RIG-IInfluenzainfluenza viral M2protein degradation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
RIG-I受體 (RLR) 訊息的活化促使第一型干擾素的反應發生而去對抗流行性感冒病毒的感染。RIG-I和粒線體上的調控蛋白MAVS的過量表現也會促使自噬作用的發生來維持粒線體的恆定。本實驗室先前的研究發現在RIG-I訊息的傳遞下會造成A/Puerto Rico/34/8/H1N1 (PR8) 病毒株的PB1-F2降解,因此我們探討RIG-I訊息路徑的活化下是否會造成其他流感病毒蛋白的降解,我們發現PB1、PA、 HA以及NP的表現量會受到RIG-I的影響而輕微減少,而病毒蛋白PB1-F2、M2以及NS2則較明顯的減少。比較不同流感病毒蛋白受到RIG-I過量表現的影響程度後,我們選擇M2作為我們的研究降解機制的對象。M2在流感病毒的生活史當中主要參與在病毒從核內體釋放到細胞核中;除此之外,M2會藉由阻擋自噬體和溶酶體融合進而幫助病毒逃避病毒感染所引起的自噬作用。
為了瞭解RIG-I如何調節M2病毒蛋白,在RIG-I訊息強化下,我們使用不同抑制劑處理細胞後,觀察M2蛋白表現量。我們發現M2的表現量可以被蛋白酶體抑制劑lactacystin以及三個自噬相關的抑制劑,包含3-MA、Bafilomycin-A1及Leupeptin而救回來,推論蛋白酶體路徑和溶酶體路徑可能都參與M2的降解。在自噬作用與溶酶體路徑研究中,我們更進一步發現在細胞處於自噬標記LC3的過度表現或是CCCP處理誘發自噬作用的情況下,也會促進M2降解,證明自噬作用的確參與在M2的降解當中。而在蛋白酶體路徑的研究過程中,我們探討參與在RIG-I受體訊息路徑中的泛素連接酶是否也參與在M2的降解當中。我們發現在RIG-I訊息的活化狀態下,RNF125、RNF135以及Parkin這些泛素連接酶會更進一步增強M2的降解,故推論泛素連接體可能在RIG-I調節的M2衰退機制中也扮演了一個角色,然而詳細的蛋白酶體降解機制仍然需要更加探討。
RIG-I like receptors (RLR) signaling activation induces type I interferon response to defend against influenza virus infection. RIG-I and MAVS overexpression also induces autophagy to maintain mitochondrial homeostasis. In our previous studies, we observed that activation of RIG-I signaling led to PB1-F2 derived from A/Puerto Rico/34/8/H1N1 (PR8) degradation. As a result, we investigated whether activation of RIG-I signaling induces other influenza viral proteins degradation. We found that PR8 PB1, PA, HA and NP expression level decreased slightly when N-RIG, an active form of RIG-I, was overexpressed, while PR8 PB1-F2, M2 and NS2 viral proteins reduced more significantly. After comparing the expression level of different influenza viral proteins under N-RIG overexpression, we chose viral protein M2 as our model to study the degradation mechanisms. M2 is responsible for virus releasing to nucleus and is known to help virus to evade infection-induced autophagy by blocking autophagosome fusion with lysosome, thus M2 plays an important role in the life cycle of influenza virus.
To investigate how RIG-I mediated M2 degradation, cells were treated with different pharmacological inhibitors in the presence of RLR signaling activation. We observed that M2 expression level could be rescued by a proteasome inhibitor, lactacystin, and three autophagy-related inhibitors, 3-MA, Bafilomycin-A1 and Leupeptin, indicating that M2 might be degraded via both proteasomel and lysosomal pathways. In the study of autophagy and lysosomal pathways, we further observed that M2 could be degraded when cells were transfected with plasmids expressing EGFP-LC3 or treated with CCCP to induce autophagy. It showed that autophagy and lysosomal pathway indeed participated in RIG-I mediated M2 degradation. In the study of proteasome degradation pathway, we also investigated whether E3 ligases involved in RLR signaling led to M2 degradation. We found that several E3 ligases, such as RNF125, RNF135 and Parkin, could further enhance M2 degradation in the presence of RIG-I signaling, suggesting that E3 ligases might also play a role in RIG-I mediated M2 degradation. However, the detailed mechanisms remain to be deduced.
Index
致謝 ........................................... i
摘要 ........................................... iii
Abstract ....................................... v
Index .......................................... vii
List of figures ................................ viii
Chapter 1 Introduction ......................... 1
1.1 Influenza A virus .......................... 1
1.2 Influenza A virus M2 ....................... 3
1.3 RLR signaling .............................. 5
1.4 Protein degradation ........................ 8
Chapter 2 Objective ............................ 11
Chapter 3 Materials and Methods ................ 12
3.1 Materials .................................. 12
3.2 Methods .................................... 17
Chapter 4 Results .............................. 23
Chapter 5 Conclusion ........................... 31
Chapter 6 Discussion ........................... 34
Chapter 7 Figures .............................. 39
References ..................................... 52

List of figures
Figure 1.RIG-I also induced other influenza viral proteins degradation other than PB1-F2 ...........39
Figure 2.The effect of RLR signaling on M2 .......40
Figure 3.NS1 rescued RIG-I induced influenza M2 degradation ......................................42
Figure 4.Screening for the potential degradation pathways of M2 ............................................43
Figure 5.The effect of Bafilomycin A1 and Leupeptin on M2................................................45
Figure 6.M2 degraded by autophagy induction ......47
Figure 7. Activation of RIG-I or MAVS could induce autophagy ........................................49
Figure 8.Several E3 ligases participated in RLR signaling and M2 degradation ...............................51
1. Zhang, Y., Zou, S.M., Li, X.D., Dong, L.B., Bo, H., Gao, R.B., Wang, D.Y., Shu, Y.L., 2016. Detection of reassortant avian influenza A (H11N9) virus in environmental samples from live poultry markets in China. Infectious diseases of poverty 5, 59.
2. Chen W, C.P., Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW., 2001. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med. 7, 1306-1312
3. Wise, H.M., Foeglein, A., Sun, J., Dalton, R.M., Patel, S., Howard, W., Anderson, E.C., Barclay, W.S., Digard, P., 2009. A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. Journal of virology 83, 8021-8031.
4. Jagger, B.W., Wise, H.M., Kash, J.C., Walters, K.A., Wills, N.M., Xiao, Y.L., Dunfee, R.L., Schwartzman, L.M., Ozinsky, A., Bell, G.L., Dalton, R.M., Lo, A., Efstathiou, S., Atkins, J.F., Firth, A.E., Taubenberger, J.K., Digard, P., 2012. An Overlapping Protein-Coding Region in Influenza A Virus Segment 3 Modulates the Host Response. Science 337, 199.
5. Muramoto, Y., Noda, T., Kawakami, E., Akkina, R., Kawaoka, Y., 2013. Identification of novel influenza A virus proteins translated from PA mRNA. Journal of virology 87, 2455-2462.
6. Bavagnoli, L., Cucuzza, S., Campanini, G., Rovida, F., Paolucci, S., Baldanti, F., Maga, G., 2015. The novel influenza A virus protein PA-X and its naturally deleted variant show different enzymatic properties in comparison to the viral endonuclease PA. Nucleic acids research 43, 9405-9417
7. Wise, H.M., Hutchinson, E.C., Jagger, B.W., Stuart, A.D., Kang, Z.H., Robb, N., Schwartzman, L.M., Kash, J.C., Fodor, E., Firth, A.E., Gog, J.R., Taubenberger, J.K., Digard, P., 2012. Identification of a Novel Splice Variant Form of the Influenza A Virus M2 Ion Channel with an Antigenically Distinct Ectodomain. PLOS Pathogens 8, e1002998.
8. Selman, M., Dankar, S.K., Forbes, N.E., Jia, J.J., Brown, E.G., 2012. Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerging microbes & infections 1, e42.
9. Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., Yang, H., Chen, X., Recuenco, S., Gomez, J., Chen, L.-M., Johnson, A., Tao, Y., Dreyfus, C., Yu, W., McBride, R., Carney, P.J., Gilbert, A.T., Chang, J., Guo, Z., Davis, C.T., Paulson, J.C., Stevens, J., Rupprecht, C.E., Holmes, E.C., Wilson, I.A., Donis, R.O., 2013. New World Bats Harbor Diverse Influenza A Viruses. PLOS Pathogens 9, e1003657
10. Zhang, Y., Zou, S.M., Li, X.D., Dong, L.B., Bo, H., Gao, R.B., Wang, D.Y., Shu, Y.L., 2016. Detection of reassortant avian influenza A (H11N9) virus in environmental samples from live poultry markets in China. Infectious diseases of poverty 5, 59.
11. Schrauwen, E.J., Fouchier, R.A., 2014. Host adaptation and transmission of influenza A viruses in mammals. Emerging microbes & infections 3, e9.
12. Stubbs, T.M., Te Velthuis, A.J., 2014. The RNA-dependent RNA polymerase of the influenza A virus. Future virology 9, 863-876.
13. Sugita, Y., Sagara, H., Noda, T., Kawaoka, Y., 2013. Configuration of viral ribonucleoprotein complexes within the influenza A virion. Journal of virology 87, 12879-12884.
14. Wagner, R., Matrosovich, M., Klenk, H.D., 2002. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Reviews in medical virology 12, 159-166
15. Gamblin, S.J., Skehel, J.J., 2010. Influenza Hemagglutinin and Neuraminidase Membrane Glycoproteins. The Journal of biological chemistry 285, 28403-28409.
16. Horimoto, T., Kawaoka, Y., 2005. Influenza: lessons from past pandemics, warnings from current incidents. Nature reviews. Microbiology 3, 591-600.
17. Noton, S.L., Medcalf, E., Fisher, D., Mullin, A.E., Elton, D., Digard, P., 2007. Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. The Journal of general virology 88, 2280-2290.
18. Pielak, R.M., Chou, J.J., 2011. Influenza M2 proton channels. Biochimica et biophysica acta 1808, 522-529.
19. Pinto, L.H., Lamb, R.A., 2006. The M2 proton channels of influenza A and B viruses. The Journal of biological chemistry 281, 8997-9000.
20. Dubois, J., Terrier, O., Rosa-Calatrava, M., 2014. Influenza viruses and mRNA splicing: doing more with less. mBio 5, e00070-00014.
21. Hale, B.G., Randall, R.E., Ortin, J., Jackson, D., 2008. The multifunctional NS1 protein of influenza A viruses. The Journal of general virology 89, 2359-2376.
22. Gack, M.U., Albrecht, R.A., Urano, T., Inn, K.S., Huang, I.C., Carnero, E., Farzan, M., Inoue, S., Jung, J.U., Garcia-Sastre, A., 2009. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell host & microbe 5, 439-449
23. O'Neill, R.E., Talon, J., Palese, P., 1998. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. The EMBO Journal 17, 288-296.
24. Beale, R., Wise, H., Stuart, A., Ravenhill, Benjamin J., Digard, P., Randow, F., 2014. A LC3-Interacting Motif in the Influenza A Virus M2 Protein Is Required to Subvert Autophagy and Maintain Virion Stability. Cell host & microbe 15, 239-247.
25. Gannagé, M., Schmid, D., Albrecht, R., Dengjel, J., Torossi, T., Rämer, P.C., Lee, M., Strowig, T., Arrey, F., Conenello, G., Pypaert, M., Andersen, J., García-Sastre, A., Münz, C., 2009. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell host & microbe 6, 367-380.
26. Ren, Y., Li, C., Feng, L., Pan, W., Li, L., Wang, Q., Li, J., Li, N., Han, L., Zheng, X., Niu, X., Sun, C., Chen, L., 2016. Proton Channel Activity of Influenza A Virus Matrix Protein 2 Contributes to Autophagy Arrest. Journal of Virology 90, 591-598.
27. Ichinohe, T., Pang, I.K., Iwasaki, A., 2010. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 11, 404-410.
28. Takemasa Sakaguchi, G.P.L., and Robert A. Lamb 1996. The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus. The Journal of Cell Biology 133, 733-747.
29. Bruns, A.M., Horvath, C.M., 2014. Antiviral RNA Recognition and Assembly by RLR Family Innate Immune Sensors. Cytokine & growth factor reviews 25, 507-512.
30. Maelfait, J., Beyaert, R., 2012. Emerging Role of Ubiquitination in Antiviral RIG-I Signaling. Microbiology and Molecular Biology Reviews : MMBR 76, 33-45.
31. Chan, Y.K., Gack, M.U., 2016. Viral evasion of intracellular DNA and RNA sensing. Nat Rev Micro 14, 360-373.
32. Baum, A., García-Sastre, A., 2010. Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino Acids 38, 1283-1299.
33. Israël, A., 2010. The IKK Complex, a Central Regulator of NF-κB Activation. Cold Spring Harbor Perspectives in Biology 2, a000158.
34. Sun, X., Sun, L., Zhao, Y., Li, Y., Lin, W., Chen, D., Sun, Q., 2016. MAVS maintains mitochondrial homeostasis via autophagy. Cell discovery 2, 16024.
35. Jiang, X., Kinch, L., Brautigam, C.A., Chen, X., Du, F., Grishin, N., Chen, Z.J., 2012. Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response. Immunity 36, 959-973.
36. Gack, M.U., Shin, Y.C., Joo, C.-H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., Jung, J.U., 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920.
37. Arimoto, K.-i., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., Shimotohno, K., 2007. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proceedings of the National Academy of Sciences of the United States of America 104, 7500-7505.
38. Oshiumi, H., Matsumoto, M., Hatakeyama, S., Seya, T., 2009. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. The Journal of biological chemistry 284, 807-817.
39. Fu, B., Wang, L., Ding, H., Schwamborn, J.C., Li, S., Dorf, M.E., 2015. TRIM32 Senses and Restricts Influenza A Virus by Ubiquitination of PB1 Polymerase. PLoS Pathog 11, e1004960
40. Ben-Nissan, G., Sharon, M., 2014. Regulating the 20S Proteasome Ubiquitin-Independent Degradation Pathway. Biomolecules 4, 862-884.
41. Satoh, T., Kato, H., Kumagai, Y., Yoneyama, M., Sato, S., Matsushita, K., Tsujimura, T., Fujita, T., Akira, S., Takeuchi, O., 2010. LGP2 is a positive regulator of RIG-I– and MDA5-mediated antiviral responses. Proceedings of the National Academy of Sciences of the United States of America 107, 1512-1517.
42. Lyon, R.C., , S.L., , a.F.S., 2013. Breaking down protein degradation mechanisms in cardiac muscle. Trends in Molecular Medicine 19, 239-249.
43. Cuervo, A.M., Wong, E., 2014. Chaperone-mediated autophagy: roles in disease and aging. Cell research 24, 92-104.
44. Grigoreva, T.A., Tribulovich, V.G., Garabadzhiu, A.V., Melino, G., Barlev, N.A., 2015. The 26S proteasome is a multifaceted target for anti-cancer therapies. Oncotarget 6, 24733-24749.
45. Lecker, S.H., Goldberg, A.L., Mitch, W.E., 2006. Protein Degradation by the Ubiquitin–Proteasome Pathway in Normal and Disease States. Journal of the American Society of Nephrology 17, 1807-1819.
46. Yang, J., Carra, S., Zhu, W.G., Kampinga, H.H., 2013. The regulation of the autophagic network and its implications for human disease. International journal of biological sciences 9, 1121-1133.
47. Per O. SEGLEN, B.m.G., and Anne E. SOLHEIM, 1979. Inhibition of the Lysosomal Pathway of Protein Degradation in Isolated Rat Hepatocytes by Ammonia, Methylamine, Chloroquine and Leupeptin. Eur. J. Biochem 95, 215-225.
48. Varga, Z.T., Grant, A., Manicassamy, B., Palese, P., 2012. Influenza virus protein PB1-F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential. Journal of virology 86, 8359-8366.
49. Varga, Z.T., Ramos, I., Hai, R., Schmolke, M., García-Sastre, A., Fernandez-Sesma, A., Palese, P., 2011. The Influenza Virus Protein PB1-F2 Inhibits the Induction of Type I Interferon at the Level of the MAVS Adaptor Protein. PLOS Pathogens 7, e1002067.
50. Müller-Rischart, Anne K., Pilsl, A., Beaudette, P., Patra, M., Hadian, K., Funke, M., Peis, R., Deinlein, A., Schweimer, C., Kuhn, P.-H., Lichtenthaler, Stefan F., Motori, E., Hrelia, S., Wurst, W., Trümbach, D., Langer, T., Krappmann, D., Dittmar, G., Tatzelt, J., Winklhofer, Konstanze F., 2013. The E3 Ligase Parkin Maintains Mitochondrial Integrity by Increasing Linear Ubiquitination of NEMO. Molecular cell 49, 908-921.
51. Yoshii, S.R., Kishi, C., Ishihara, N., Mizushima, N., 2011. Parkin Mediates Proteasome-dependent Protein Degradation and Rupture of the Outer Mitochondrial Membrane. The Journal of biological chemistry 286, 19630-19640.
52. Liu, G., Zhong, M., Guo, C., Komatsu, M., Xu, J., Wang, Y., Kitazato, K., 2016. Autophagy is involved in regulating influenza A virus RNA and protein synthesis associated with both modulation of Hsp90 induction and mTOR/p70S6K signaling pathway. The international journal of biochemistry & cell biology 72, 100-108.
53. Altenburg, A.F., van de Sandt, C.E., van Trierum, S.E., De Gruyter, H.L., van Run, P.R., Fouchier, R.A., Roose, K., Saelens, X., Volz, A., Sutter, G., de Vries, R.D., Rimmelzwaan, G.F., 2016. Increased Protein Degradation Improves Influenza Virus Nucleoprotein-Specific CD8+ T Cell Activation In Vitro but Not in C57BL/6 Mice. Journal of virology 90, 10209-10219.
54. Liu, X., Zhao, Z., Xu, C., Sun, L., Chen, J., Zhang, L., Liu, W., 2012. Cyclophilin A Restricts Influenza A Virus Replication through Degradation of the M1 Protein. PLOS ONE 7, e31063.
55. Liu, X., Zhao, Z., Liu, W., 2013. Insights into the roles of cyclophilin A during influenza virus infection. Viruses 5, 182-191
56. Fu, B., Wang, L., Ding, H., Schwamborn, J.C., Li, S., Dorf, M.E., 2015. TRIM32 Senses and Restricts Influenza A Virus by Ubiquitination of PB1 Polymerase. PLoS Pathog 11, e1004960.
57. Košík, I., Práznovská, M., Košíková, M., Bobišová, Z., Hollý, J., Varečková, E., Kostolanský, F., Russ, G., 2015. The Ubiquitination of the Influenza A Virus PB1-F2 Protein Is Crucial for Its Biological Function. PLOS ONE 10, e0118477.
58. Varga, Z.T., Grant, A., Manicassamy, B., Palese, P., 2012. Influenza virus protein PB1-F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential. Journal of virology 86, 8359-8366.
59. Dalet, A., Gatti, E., Pierre, P., 2015. Integration of PKR-dependent translation inhibition with innate immunity is required for a coordinated anti-viral response. FEBS letters 589, 1539-1545.
60. Son, J.H., Shim, J.H., Kim, K.H., Ha, J.Y., Han, J.Y., 2012. Neuronal autophagy and neurodegenerative diseases. Experimental & molecular medicine 44, 89-98.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top