|
1. James B. Kaper, et al. Pathogenic Escherichia coli. Nature Reviews Microbiology 2, 123-140 (2004) 2. Orskov F, et al. Escherichia coli serotyping and disease in man and animals. Can J Microbiol 38, 699-704 (1992) 3. Mohamed A. Karmali, et al. Verocytotoxin-producing Escherichia coli (VTEC). Vet. Microbiol. 140, 360–370 (2010) 4. Y Nguyen et al. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol 2, (2012) 5. Kendall MM, et al. Interkingdom Chemical Signaling in Enterohemorrhagic Escherichia coli O157:H7. Adv Exp Med Biol 874, 201-213 (2016) 6. O'Brien, A. D, et al. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr. Top. Microbiol. Immunol. 180, 65–94 (1992) 7. Endo, Y, et al. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur J Biochem 171, 45–50 (1988) 8. Lingwood CA, et al. Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J. Biol. Chem 262, 8834–8839 (1987) 9. A D O'Brien, et al. Purification and characterization of a Shigella dysenteriae 1-like toxin produced by Escherichia coli. Infect.Immun 40, 675–683 (1983) 10. Goldwater PN, et al. Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC Med 10, 12 (2012) 11. Slutsker L, et al. A nationwide case-control study of Escherichia coli O157:H7 infection in the United States. J. Infect.Dis 177, 962–966 (1998) 12. J Lin, et al. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62, 3094–3100 (1996) 13. Price SB, et al. Acid resistance systems required for survival of Escherichia coli O157:H7 in the bovine gastrointestinal tract and in apple cider are different. Appl Environ Microbiol 70, 4792-9 (2004) 14. Pallen MJ, et al. Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 5, 9 (2006) 15. Kimura K, et al. A small-molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with Citrobacter rodentium. J Antibiot (Tokyo) 64, 197-203 (2011) 16. Dean P, et al. EPEC's weapons of mass subversion. Curr Opin Microbiol 8, 28-34 (2005) 17. Elliott SJ, et al. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 68, 6115–6126 (2000) 18. GrlA of enterohemorrhagic Escherichia coli O157:H7 activates LEE1 by binding to the promoter region. J Microbiol Immunol Infect 41, 9-16 (2008) 19. Padavannil, A et al. Structure of GrlR-GrlA complex that prevents GrlA activation of virulence genes. Nat Commun 4, 2546 (2013) 20. Wanyin Deng, et al. Dissecting virulence: Systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A. 101, 3597–3602 (2004) 21. Noriko Nakanishi, et al. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology 155, 521–530 (2005) 22. Takao M, et al. LeuO enhances butyrate-induced virulence expression through a positive regulatory loop in enterohaemorrhagic Escherichia coli. Mol Microbiol 93, 1302-1313 (2014) 23. J.W.Njoroge, et al. Theinteracting Cra and KdpE regulators are involved in the expression of multiple virulence factors in enterohemorrhagic Escherichia coli. Journal of Bacteriology 195, 2499–2508 (2013) 24. Simon J. Elliott, et al. The cloned locus of enterocyte effacement from enterohemorrhagic Escherichia coli O157:H7 is unable to confer the attaching and effacing phenotype upon E. coli K-12. Infect Immun. 67, 4260–4263 (1999) 25. Hayashi T, et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 28, 11-22 (2001) 26. Spellerberg B, et al. The cyl genes of Streptococcus agalactiae are involved in the production of pigment. FEMS Microbiol Lett 188, 125-128 (2000) 27. Activation of motility by sensing short-chain fatty acids via two steps in a flagellar gene regulatory cascade in enterohemorrhagic Escherichia coli. Infect Immun 79, 1016-1024 (2011) 28. Van Heeke G, et al. Expression of human asparagine synthetase in Escherichia coli. J Biol Chem 264, 5503-5509 (1989) 29. Morrison DC, et al. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13, 813-818 (1976) 30. Walsh C, et al. Where will new antibiotics come from? Nat Rev Microbiol 1 65-70 (2003) 31. Florence Hommais, et al. GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology 150, 61–72 (2004) 32. Florence Hommais, et al. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40, 20–36 (2001) 33. R. E.W. Hancock, et al. Antibiotic Uptake into Gram-Negative Bacteria. Eur. J. Clin. Microbiol. Infect 7, 713-720 (1988) 34. Bedard, J., et al. Accumulation of enoxacin by Escherichia coli and Bacillus subtilis. Antimicrobial Agents and Chemotherapy 31, 1348-1354 (1987) 35. Bryan, L.E.: Bacterial resistance and susceptibility to chemotherapeutic agents. Cambridge University Press, Cambridge, 1982. 36. Nikaido, H., et al. Outer membrane permeability of Pseudomonas aeruginosa. In : Sokatch, J.R. (ed.): The bacteria: a treatise on structure and function, Volume 10. Academic Press, New York, p.145-193. (1985) 37. Lambert PA. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol 92, 46-54 (2002) 38. Pugsley AP, et al. Highly efficient uptake of a rifamycin derivative via the FhuA-TonB-dependent uptake route in Escherichia coli. J Gen Microbiol 133, 3505-3511 (1987) 39. M.-H. Laaberki, et al. Concert of regulators to switch on LEE expression in enterohemorrhagic Escherichia coli O157:H7: interplay between Ler, GrlA, HNS and RpoS. International Journal of Medical Microbiology 296, 197-210 (2006) 40. Fernanda M. Franzin, et al. Locus of Enterocyte Effacement: A Pathogenicity Island Involved in the Virulence of Enteropathogenic and Enterohemorragic Escherichia coli Subjected to a Complex Network of Gene Regulation. Biomed Res Int. 534738, (2015) 41. Jacqueline W. Njoroge, et al. Virulence Meets Metabolism: Cra and KdpE Gene Regulation in Enterohemorrhagic Escherichia coli. mBio 3, 280-312 (2012) 42. SspA up-regulates gene expression of the LEE pathogenicity island by decreasing H-NS levels in enterohemorrhagic Escherichia coli. BMC Microbiol 12, 231 (2012) 43. Role of hha and ler in Transcriptional Regulation of the esp Operon of Enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 186, 7290–7301 (2004) 44. J. T. Riordan, et al. Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157:H7. Microbiology 156, 719-730 (2010) 45. Sperandio V, et al. Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infection and Immunity 70, 3085-3093 (2002) 46. M. P. Sircili, et al. Modulation of enteropathogenic Escherichia coli virulence by quorum sensing. Infection and Immunity 72, 2329-2337 (2004) 47. Macritchie DM, et al. Activation of the Cpx envelope stress response down-regulates expression of several locus of enterocyte effacement-encoded genes in enteropathogenic Escherichia coli. Infect Immun 76, 1465-1475 (2008) 48. Weatherspoon-Griffin N, et al. The CpxR/CpxA two-component regulatory system up-regulates the multidrug resistance cascade to facilitate Escherichia coli resistance to a model antimicrobial peptide. J Biol Chem 289, 32571-32585 (2014) 49. Kanamaru K, et al. SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 38, 805-816 (2000) 50. E. A. Shakhnovich, et al. Hfq negatively regulates type III secretion in EHEC and several other pathogens. Molecular Microbiology 74 347-363 (2009) 51. A.-M. Hansen, et al. Hfq affects the expression of the LEE pathogenicity island in enterohaemorrhagic Escherichia coli. Molecular Microbiology 73, 446-465 (2009) 52. M. M. Kendall, et al. Hfq virulence regulation in enterohemorrhagic Escherichia coli O157:H7 Strain 86-24. Journal of Bacteriology 193, 6843-6851 (2011) 53. M.-H. Laaberki, et al. Concert of regulators to switch on LEE expression in enterohemorrhagic Escherichia coli O157:H7: interplay between Ler, GrlA, HNS and RpoS. International Journal of Medical Microbiology 296, 197-210 (2006) 54. P. B. Lodato, et al. Post-transcriptional processing of the LEE4 operon in enterohaemorrhagic Escherichia coli. Molecular Microbiology 71, 273-290 (2009) 55. http://www.kegg.jp/kegg-bin/show_pathway?scale=0.70&query=&map=ece01100&scale=0.35&image=%2Fshare%2Fwww%2Fmark_pathway1495266564101276%2Fece01100.png&auto_image=&show_description=hide&multi_query=&show_module_list= 56. Yong-Mei Zhang, et al. Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology 6, 222-233 (2008) 57. Oursel D, et al. Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. Rapid Commun Mass Spectrom. 21, 1721-1728 (2007) 58. F Martínez-Morales, et al. Pathways for Phosphatidylcholine Biosynthesis in Bacteria. Microbiology. 149, 3461-3471 (2003) 59. Payrastre B, et al. Phosphoinositides and cellular pathogens. Subcell Biochem 59, 363-388 (2012) 60. Carla D. Jorge, et al. A novel pathway for the synthesis of inositol phospholipids uses cytidine diphosphate (CDP)-inositol as donor of the polar head group. Environmental Microbiology 17, 2492-2504 (2015) 61. Grassmé H, et al. Bacterial infections and ceramide. Handb Exp Pharmacol 216, 305-320 (2013) 62. White SW, et al. The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74, 791-831 (2005) 63. Smith S, et al. Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42, 289-317 (2003)
|