跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃宇翔
研究生(外文):Yu-Hsiang Huang
論文名稱:出血性大腸桿菌致病島嶼外之fasyn基因群對第三型分泌系統之影響
論文名稱(外文):Enterohemorrhagic E. coli (EHEC) fasyn genes outside the pathogenicity island affect the bacterial type-III secretion
指導教授:許萬枝許萬枝引用關係
指導教授(外文):Wan-Jr Syu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:50
中文關鍵詞:出血性大腸桿菌第三型分泌系統
外文關鍵詞:EHECType-3 secretion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
大多數的一般的大腸桿菌對人來說是無害的,但是腸出血性大腸桿菌 (EHEC)對人的健康卻有嚴重的危害。被這種出血性的大腸桿菌感染會有許多病徵,例如胃部痙攣、腹瀉、發燒、嘔吐以及溶血性尿毒症,而其中最嚴重的是溶血性尿毒症 (HUS),有此症狀之後可能會導致腎功能失調,若更嚴重甚至會造成腎衰竭,其死亡率非常高。EHEC的感染在全世界的衛生健康議題上也是一種不可忽視的威脅,尤其是對於開發中國家或較落後的地區:印度、非洲或是中東地區。出血性大腸桿菌與一般的大腸桿菌最大的不同在於:前者有志賀毒素 (shiga-like toxin),是感染後造成細胞死亡的主因之一。第三型分泌系統 (Type III secretion system)是EHEC中另一個主要的致病機轉,EHEC會利用由LEE 致病基因群 (locus of enterocyte effacement pathogenicity island)上所表現的Tir與Esp這些功能性蛋白,藉由此系統分泌並且能夠造成宿主細胞產生attaching and effacing lesion (A/E lesion)。除了上述兩種感染系統之外,EHEC還具有溶血素 (enterohemolysin)可以造成人類紅血球破裂而導致溶血現象。先前比較了EHEC與非致病的大腸桿菌菌種K-12的全基因體序列差異,挑選了一個只出現在EHEC中,並且被生物資訊軟體推測為脂肪酸合成相關的基因,我們將它命名為 “fasyn”。在這段特殊的基因簇內,包含了許多基因,但只有四個基因z4863, z4864, z4865, 以及 z4866被軟體推測跟已知的脂肪酸合成基因有一定的相似度。我們的實驗室建立了這四種基因以及整個fasyn的基因剔除菌株,並且已經證明了∆fasyn的確會造成第三型分泌系統中的蛋白質表現量降低。在本篇論文中,我們試圖了解這些基因所轉譯的蛋白質功能,藉由細菌雙雜合系統 (bacterial two hybrid system)來檢視可能的蛋白質反應。利用即時逆轉錄聚合酶鏈式反應 (qRT-PCR)來測試許多不同的調控基因,以了解他們的RNA表現量是否與先前的RNA sequencing結果一致。此外,利用最小抑制濃度(MIC)之測試來檢驗fasyn對常用抗生素的效果。最後,我們分析了野生型菌株與fasyn剃除菌株的脂質組成,發現有三種脂質有明顯的差異,然而其脂質的差異是否可以直接連結到fasyn存在與否所導致仍有待釐清。
Most Escherichia coli (E. coli) strains are harmless to humankind, but some strains like enterohaemorrhagic Escherichia coli (EHEC) are hazardous to human health. EHEC can cause diseases with several different symptoms including stomach muscle spasms, diarrhea, fever, vomiting, and hemolytic uremic syndrome (HUS). The most severe presentation is the HUS because it could cause dysfunction and failure of kidney, which have an extremely high opportunity of causing death. Therefore, EHEC infection is one of important public health threats in the world, including developed countries and the stragglier areas, like India, Africa, or middle-east countries. The most different factor between EHEC and commensally seen E. coli is that EHEC secretes Shiga-like toxin, and this is the main factor causing cell death. Type-3 secretion system is another pathogenic determinant of EHEC. EHEC injects effector proteins such as Tir and Esp proteins encoded from the locus of enterocyte effacement (LEE) pathogenicity island into the host cell through this secretion system and causes attaching and effacing (A/E) lesion. Besides these two infection systems, EHEC also secretes enterohemolysin that can cause human erythrocyte burst that leads to hemolysis. Previously, comparing the differences of E. coli genome between EHEC and K-12 strain revealed one of gene clusters unique in EHEC, of which function was annotated to associate with fatty acid synthesis. We name these gene cluster “fasyn.” The fasyn cluster contains several genes, but only four consecutive genes (z4863 to z4866) have certain degrees of identity to the known fatty acid synthesis genes. We have generated knockout strains of individual genes and of the entire fasyn. We have also demonstrated that Δfasyn decreases the secretion of type-3 secreted proteins. In this thesis, we aimed at better understanding the functions of proteins encoded by these genes. By bacterial two-hybrid system, possible protein-protein interactions among these proteins were examined. By using RT-qPCR, we examine numerous regulatory genes to see whether their RNA levels match those from the RNA sequencing results. Moreover, by using minimal inhibitory concentration(MIC) test, we examined the effect of fasyn on commonly used antibiotics. Lastly, we analyzed the lipid composition differences between the wild type strain and the fasyn deletion strain. Three major lipids were readily found distributed differently between the two strains, which are isogenic. However, whether the lipid differences could be linked directly to the fasyn remains to be clarified.
Abstract----i
中文摘要----iii
Content----v
1. Introduction----1
2. Material and method----6
2.1 Bacterial strains and cultures----6
2.2 Plasmid construction----6
2.3 Bacterial two hybrid system----6
2.4 Type III secretion assay----7
2.5 SDS-PAGE electrophoresis----8
2.6 Western blotting assay----9
2.7 Bacterial RNA extraction----10
2.8 cDNA preparation and qRT-PCR----11
2.9 Minimal inhibitory concentration (MIC) test----11
2.10 Cell fractionation and lipid extraction and----12
2.11 LC/MS/MS----13
3. Results----14
3.1 Effect of knockout fasyn cluster on RNA expression----14
3.2 The effect of fasyn deletion on antibiotic minimal inhibitory concentration (MIC)----15
3.3 Over-expressed, non-lee encoded regulators in ∆fasyn----16
3.4 Examination of additional regulators affected in ∆fasyn by RT-qPCR----17
3.5 The ability of protein-protein interaction between genes encoded in fasyn cluster----18
3.6 The comparison of total lipid composition between wild type and ∆fasyn strain----18
4. Discussions----20
5. Table----27
5.1 Table 1----27
5.2 Table 2----28
5.3 Table 3----30
5.4 Table 4----32
5.5 Table 5----33
5.6 Table 6----34
6. Figures----36
6.1 Figure 1----36
6.2 Figure 2----38
6.3 Figure 3----40
6.4 Figure 4----41
6.5 Figure 5----43
7. References----44
8. Supplementary figure----49
1. James B. Kaper, et al. Pathogenic Escherichia coli. Nature Reviews Microbiology 2, 123-140 (2004)
2. Orskov F, et al. Escherichia coli serotyping and disease in man and animals. Can J Microbiol 38, 699-704 (1992)
3. Mohamed A. Karmali, et al. Verocytotoxin-producing Escherichia coli (VTEC). Vet. Microbiol. 140, 360–370 (2010)
4. Y Nguyen et al. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol 2, (2012)
5. Kendall MM, et al. Interkingdom Chemical Signaling in Enterohemorrhagic Escherichia coli O157:H7. Adv Exp Med Biol 874, 201-213 (2016)
6. O'Brien, A. D, et al. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr. Top. Microbiol. Immunol. 180, 65–94 (1992)
7. Endo, Y, et al. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur J Biochem 171, 45–50 (1988)
8. Lingwood CA, et al. Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J. Biol. Chem 262, 8834–8839 (1987)
9. A D O'Brien, et al. Purification and characterization of a Shigella dysenteriae 1-like toxin produced by Escherichia coli. Infect.Immun 40, 675–683 (1983)
10. Goldwater PN, et al. Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC Med 10, 12 (2012)
11. Slutsker L, et al. A nationwide case-control study of Escherichia coli O157:H7 infection in the United States. J. Infect.Dis 177, 962–966 (1998)
12. J Lin, et al. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62, 3094–3100 (1996)
13. Price SB, et al. Acid resistance systems required for survival of Escherichia coli O157:H7 in the bovine gastrointestinal tract and in apple cider are different. Appl Environ Microbiol 70, 4792-9 (2004)
14. Pallen MJ, et al. Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 5, 9 (2006)
15. Kimura K, et al. A small-molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with Citrobacter rodentium. J Antibiot (Tokyo) 64, 197-203 (2011)
16. Dean P, et al. EPEC's weapons of mass subversion. Curr Opin Microbiol 8, 28-34 (2005)
17. Elliott SJ, et al. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 68, 6115–6126 (2000)
18. GrlA of enterohemorrhagic Escherichia coli O157:H7 activates LEE1 by binding to the promoter region. J Microbiol Immunol Infect 41, 9-16 (2008)
19. Padavannil, A et al. Structure of GrlR-GrlA complex that prevents GrlA activation of virulence genes. Nat Commun 4, 2546 (2013)
20. Wanyin Deng, et al. Dissecting virulence: Systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A. 101, 3597–3602 (2004)
21. Noriko Nakanishi, et al. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology 155, 521–530 (2005)
22. Takao M, et al. LeuO enhances butyrate-induced virulence expression through a positive regulatory loop in enterohaemorrhagic Escherichia coli. Mol Microbiol 93, 1302-1313 (2014)
23. J.W.Njoroge, et al. Theinteracting Cra and KdpE regulators are involved in the expression of multiple virulence factors in enterohemorrhagic Escherichia coli. Journal of Bacteriology 195, 2499–2508 (2013)
24. Simon J. Elliott, et al. The cloned locus of enterocyte effacement from enterohemorrhagic Escherichia coli O157:H7 is unable to confer the attaching and effacing phenotype upon E. coli K-12. Infect Immun. 67, 4260–4263 (1999)
25. Hayashi T, et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 28, 11-22 (2001)
26. Spellerberg B, et al. The cyl genes of Streptococcus agalactiae are involved in the production of pigment. FEMS Microbiol Lett 188, 125-128 (2000)
27. Activation of motility by sensing short-chain fatty acids via two steps in a flagellar gene regulatory cascade in enterohemorrhagic Escherichia coli. Infect Immun 79, 1016-1024 (2011)
28. Van Heeke G, et al. Expression of human asparagine synthetase in Escherichia coli. J Biol Chem 264, 5503-5509 (1989)
29. Morrison DC, et al. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13, 813-818 (1976)
30. Walsh C, et al. Where will new antibiotics come from? Nat Rev Microbiol 1 65-70 (2003)
31. Florence Hommais, et al. GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology 150, 61–72 (2004)
32. Florence Hommais, et al. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40, 20–36 (2001)
33. R. E.W. Hancock, et al. Antibiotic Uptake into Gram-Negative Bacteria. Eur. J. Clin. Microbiol. Infect 7, 713-720 (1988)
34. Bedard, J., et al. Accumulation of enoxacin by Escherichia coli and Bacillus subtilis. Antimicrobial Agents and Chemotherapy 31, 1348-1354 (1987)
35. Bryan, L.E.: Bacterial resistance and susceptibility to chemotherapeutic agents. Cambridge University Press, Cambridge, 1982.
36. Nikaido, H., et al. Outer membrane permeability of Pseudomonas aeruginosa. In : Sokatch, J.R. (ed.): The bacteria: a treatise on structure and function, Volume 10. Academic Press, New York, p.145-193. (1985)
37. Lambert PA. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol 92, 46-54 (2002)
38. Pugsley AP, et al. Highly efficient uptake of a rifamycin derivative via the FhuA-TonB-dependent uptake route in Escherichia coli. J Gen Microbiol 133, 3505-3511 (1987)
39. M.-H. Laaberki, et al. Concert of regulators to switch on LEE expression in enterohemorrhagic Escherichia coli O157:H7: interplay between Ler, GrlA, HNS and RpoS. International Journal of Medical Microbiology 296, 197-210 (2006)
40. Fernanda M. Franzin, et al. Locus of Enterocyte Effacement: A Pathogenicity Island Involved in the Virulence of Enteropathogenic and Enterohemorragic Escherichia coli Subjected to a Complex Network of Gene Regulation. Biomed Res Int. 534738, (2015)
41. Jacqueline W. Njoroge, et al. Virulence Meets Metabolism: Cra and KdpE Gene Regulation in Enterohemorrhagic Escherichia coli. mBio 3, 280-312 (2012)
42. SspA up-regulates gene expression of the LEE pathogenicity island by decreasing H-NS levels in enterohemorrhagic Escherichia coli. BMC Microbiol 12, 231 (2012)
43. Role of hha and ler in Transcriptional Regulation of the esp Operon of Enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 186, 7290–7301 (2004)
44. J. T. Riordan, et al. Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157:H7. Microbiology 156, 719-730 (2010)
45. Sperandio V, et al. Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infection and Immunity 70, 3085-3093 (2002)
46. M. P. Sircili, et al. Modulation of enteropathogenic Escherichia coli virulence by quorum sensing. Infection and Immunity 72, 2329-2337 (2004)
47. Macritchie DM, et al. Activation of the Cpx envelope stress response down-regulates expression of several locus of enterocyte effacement-encoded genes in enteropathogenic Escherichia coli. Infect Immun 76, 1465-1475 (2008)
48. Weatherspoon-Griffin N, et al. The CpxR/CpxA two-component regulatory system up-regulates the multidrug resistance cascade to facilitate Escherichia coli resistance to a model antimicrobial peptide. J Biol Chem 289, 32571-32585 (2014)
49. Kanamaru K, et al. SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 38, 805-816 (2000)
50. E. A. Shakhnovich, et al. Hfq negatively regulates type III secretion in EHEC and several other pathogens. Molecular Microbiology 74 347-363 (2009)
51. A.-M. Hansen, et al. Hfq affects the expression of the LEE pathogenicity island in enterohaemorrhagic Escherichia coli. Molecular Microbiology 73, 446-465 (2009)
52. M. M. Kendall, et al. Hfq virulence regulation in enterohemorrhagic Escherichia coli O157:H7 Strain 86-24. Journal of Bacteriology 193, 6843-6851 (2011)
53. M.-H. Laaberki, et al. Concert of regulators to switch on LEE expression in enterohemorrhagic Escherichia coli O157:H7: interplay between Ler, GrlA, HNS and RpoS. International Journal of Medical Microbiology 296, 197-210 (2006)
54. P. B. Lodato, et al. Post-transcriptional processing of the LEE4 operon in enterohaemorrhagic Escherichia coli. Molecular Microbiology 71, 273-290 (2009)
55. http://www.kegg.jp/kegg-bin/show_pathway?scale=0.70&query=&map=ece01100&scale=0.35&image=%2Fshare%2Fwww%2Fmark_pathway1495266564101276%2Fece01100.png&auto_image=&show_description=hide&multi_query=&show_module_list=
56. Yong-Mei Zhang, et al. Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology 6, 222-233 (2008)
57. Oursel D, et al. Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. Rapid Commun Mass Spectrom. 21, 1721-1728 (2007)
58. F Martínez-Morales, et al. Pathways for Phosphatidylcholine Biosynthesis in Bacteria. Microbiology. 149, 3461-3471 (2003)
59. Payrastre B, et al. Phosphoinositides and cellular pathogens. Subcell Biochem 59, 363-388 (2012)
60. Carla D. Jorge, et al. A novel pathway for the synthesis of inositol phospholipids uses cytidine diphosphate (CDP)-inositol as donor of the polar head group. Environmental Microbiology 17, 2492-2504 (2015)
61. Grassmé H, et al. Bacterial infections and ceramide. Handb Exp Pharmacol 216, 305-320 (2013)
62. White SW, et al. The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74, 791-831 (2005)
63. Smith S, et al. Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42, 289-317 (2003)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊