|
參考文獻
1. Odumade, O.A., K.A. Hogquist, and H.H. Balfour, Jr., Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev, 2011. 24(1): p. 193-209. 2. Rickinson, A.B., Co-infections, inflammation and oncogenesis: future directions for EBV research. Semin Cancer Biol, 2014. 26: p. 99-115. 3. Connolly, S.A., et al., Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol, 2011. 9(5): p. 369-81. 4. Hutt-Fletcher, L.M., Epstein-Barr virus entry. J Virol, 2007. 81(15): p. 7825-32. 5. Lieberman, P.M., Keeping it quiet: chromatin control of gammaherpesvirus latency. Nat Rev Microbiol, 2013. 11(12): p. 863-75. 6. Smeenk, G. and H. van Attikum, The chromatin response to DNA breaks: leaving a mark on genome integrity. Annu Rev Biochem, 2013. 82: p. 55-80. 7. Nanbo, A., A. Sugden, and B. Sugden, The coupling of synthesis and partitioning of EBV's plasmid replicon is revealed in live cells. EMBO J, 2007. 26(19): p. 4252-62. 8. Ali, A.S., et al., Epstein- Barr Virus: Clinical and Epidemiological Revisits and Genetic Basis of Oncogenesis. Open Virol J, 2015. 9: p. 7-28. 9. Rowe, M., et al., Burkitt's lymphoma: the Rosetta Stone deciphering Epstein-Barr virus biology. Semin Cancer Biol, 2009. 19(6): p. 377-88. 10. Gruffat, H., R. Marchione, and E. Manet, Herpesvirus Late Gene Expression: A Viral-Specific Pre-initiation Complex Is Key. Front Microbiol, 2016. 7: p. 869. 11. Liu, P. and S.H. Speck, Synergistic autoactivation of the Epstein-Barr virus immediate-early BRLF1 promoter by Rta and Zta. Virology, 2003. 310(2): p. 199-206. 12. Mahot, S., et al., A novel function for the Epstein-Barr virus transcription factor EB1/Zta: induction of transcription of the hIL-10 gene. J Gen Virol, 2003. 84(Pt 4): p. 965-74. 13. Borras, A.M., J.L. Strominger, and S.H. Speck, Characterization of the ZI domains in the Epstein-Barr virus BZLF1 gene promoter: role in phorbol ester induction. J Virol, 1996. 70(6): p. 3894-901. 14. Flemington, E. and S.H. Speck, Evidence for coiled-coil dimer formation by an Epstein-Barr virus transactivator that lacks a heptad repeat of leucine residues. Proc Natl Acad Sci U S A, 1990. 87(23): p. 9459-63. 15. Liu, S., et al., Cyclosporin A-sensitive induction of the Epstein-Barr virus lytic switch is mediated via a novel pathway involving a MEF2 family member. EMBO J, 1997. 16(1): p. 143-53. 16. Lu, J., et al., Upregulation of tyrosine kinase TKT by the Epstein-Barr virus transactivator Zta. J Virol, 2000. 74(16): p. 7391-9. 17. Kraus, R.J., J.G. Perrigoue, and J.E. Mertz, ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus. J Virol, 2003. 77(1): p. 199-207. 18. Montalvo, E.A., et al., Negative regulation of the BZLF1 promoter of Epstein-Barr virus. J Virol, 1991. 65(7): p. 3647-55. 19. Li, H., et al., Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci, 2016. 12(11): p. 1309-1318. 20. Bergbauer, M., et al., CpG-methylation regulates a class of Epstein-Barr virus promoters. PLoS Pathog, 2010. 6(9): p. e1001114. 21. Woellmer, A. and W. Hammerschmidt, Epstein-Barr virus and host cell methylation: regulation of latency, replication and virus reactivation. Curr Opin Virol, 2013. 3(3): p. 260-5. 22. Buisson, M., et al., The C-terminal region but not the Arg-X-Pro repeat of Epstein-Barr virus protein EB2 is required for its effect on RNA splicing and transport. J Virol, 1999. 73(5): p. 4090-100. 23. Cayrol, C. and E.K. Flemington, The Epstein-Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. EMBO J, 1996. 15(11): p. 2748-59. 24. Gao, Z., et al., The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol, 1998. 72(11): p. 8559-67. 25. Gradoville, L., et al., Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle. J Virol, 2002. 76(11): p. 5612-26. 26. Westphal, E.M., et al., Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Res, 2000. 60(20): p. 5781-8. 27. Adamson, A.L., et al., Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol, 2000. 74(3): p. 1224-33. 28. Fixman, E.D., G.S. Hayward, and S.D. Hayward, trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol, 1992. 66(8): p. 5030-9. 29. Reyskens, K.M. and J.S. Arthur, Emerging Roles of the Mitogen and Stress Activated Kinases MSK1 and MSK2. Front Cell Dev Biol, 2016. 4: p. 56. 30. McCoy, C.E., et al., MSK1 activity is controlled by multiple phosphorylation sites. Biochem J, 2005. 387(Pt 2): p. 507-17. 31. Hauge, C. and M. Frodin, RSK and MSK in MAP kinase signalling. J Cell Sci, 2006. 119(Pt 15): p. 3021-3. 32. McCoy, C.E., et al., Identification of novel phosphorylation sites in MSK1 by precursor ion scanning MS. Biochem J, 2007. 402(3): p. 491-501. 33. Thomson, S., et al., The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J, 1999. 18(17): p. 4779-93. 34. Vermeulen, L., et al., The versatile role of MSKs in transcriptional regulation. Trends Biochem Sci, 2009. 34(6): p. 311-8. 35. Kew, V.G., et al., Mitogen and stress activated kinases act co-operatively with CREB during the induction of human cytomegalovirus immediate-early gene expression from latency. PLoS Pathog, 2014. 10(6): p. e1004195. 36. Hancock, R.L., et al., Epigenetic regulation by histone demethylases in hypoxia. Epigenomics, 2015. 7(5): p. 791-811. 37. Thinnes, C.C., et al., Targeting histone lysine demethylases - progress, challenges, and the future. Biochim Biophys Acta, 2014. 1839(12): p. 1416-32. 38. Kim, K.Y., et al., Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen regulates the KSHV epigenome by association with the histone demethylase KDM3A. J Virol, 2013. 87(12): p. 6782-93. 39. Wille, C.K., et al., Viral genome methylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein-Barr virus lytic gene expression and viral replication. J Virol, 2013. 87(2): p. 935-50.
|