|
1. Manjunatha, H., andSrinivasan, K. (2006) Protective effect of dietary curcumin and capsaicin on induced oxidation of low-density lipoprotein, iron-induced hepatotoxicity and carrageenan-induced inflammation in experimental rats. FEBS J. 273, 4528–4537 2. Feng, J., Han, J., Pearce, S. F., Silverstein, R. L., Gotto, A. M., Hajjar, D. P., andNicholson, A. C. (2000) Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-gamma. J. Lipid Res. 41, 688–696 3. Yu, X. H., Fu, Y. C., Zhang, D. W., Yin, K., andTang, C. K. (2013) Foam cells in atherosclerosis. Clin. Chim. Acta. 424, 245–252 4. Aziz, M. (2016) iMedPub Journals Pathogenesis of Atherosclerosis A Review Pathophysiology. 10.21767/2471-299X.100031 5. Glass, C. K., andWitztum, J. L. (2001) Atherosclerosis : The Road Ahead Review. Cell. 104, 503–516 6. Lusis, A. J. (2000) Atherosclerosis. Nature. 407, 233–241 7. Bennett, M. R., Sinha, S., andOwens, G. K. (2016) Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 118, 692–702 8. Fowkes, F. G. R., Housley, E., Riemersma, R. A., Macintyre, C. C. A., Cawood, E. H. H., Prescott, R. J., andRuckley, C. V. (1992) American Journal of EPIDEMIOLOGY. 135, 331–340 9. Ross, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 362, 801–809 10. Li, A. C., andGlass, C. K. (2002) The macrophage foam cell as a target for therapeutic intervention. Nat. Med. 8, 1235–1242 11. Miller, Y. I., Choi, S., Wiesner, P., Fang, L., Harkewicz, R., Hartvigsen, K., Boullier, A., Gonen, A., Diehl, C. J., Que, X., Montano, E., Shaw, P. X., Tsimikas, S., Binder, C. J., andWitztum, L. (2012) Oxidation-specific epitopes are danger associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res. 108, 235–248 12. Chou, M. Y., Hartvigsen, K., Hansen, L. F., Fogelstrand, L., Shaw, P. X., Boullier, A., Binder, C. J., andWitztum, J. L. (2008) Oxidation-specific epitopes are important targets of innate immunity. J. Intern. Med. 263, 479–488 13. Bouchon, A., Dietrich, J., andColonna, M. (2000) Cutting Edge: Inflammatory Responses Can Be Triggered by TREM-1, a Novel Receptor Expressed on Neutrophils and Monocytes. J. Immunol. 164, 4991–4995 14. Klesney-Tait, J., Keck, K., Li, X., Gilfillan, S., Otero, K., Baruah, S., Meyerholz, D. K., Varga, S. M., Knudson, C. J., Moninger, T. O., Moreland, J., Zabner, J., andColonna, M. (2013) Transepithelial migration of neutrophils into the lung requires TREM-1. J. Clin. Invest. 123, 138–149 15. Lanier, L. L. (2009) DAP10- and DAP12-associated receptors in innate immunity. Immunol. Rev. 227, 150–160 16. Chen, X., Eksioglu, E. A., Carter, J. D., Fortenbery, N., Donatelli, S. S., Zhou, J., Liu, J., Yang, L., Gilvary, D., Djeu, J., andWei, S. (2015) Inactivation of dap12 in pmn inhibits trem1-mediated activation in rheumatoid arthritis. PLoS One. 10, 1–17 17. Yuan, Z., Syed, M. A., Panchal, D., Rogers, D., Joo, M., andSadikot, R. T. (2012) Curcumin mediated epigenetic modulation inhibits TREM-1 expression in response to lipopolysaccharide. Int. J. Biochem. Cell Biol. 44, 2032–2043 18. Zysset, D., Weber, B., Rihs, S., Brasseit, J., Freigang, S., Riether, C., Banz, Y., Cerwenka, A., Simillion, C., Marques-Vidal, P., Ochsenbein, A. F., Saurer, L., andMueller, C. (2016) TREM-1 links dyslipidemia to inflammation and lipid deposition in atherosclerosis. Nat. Commun. 7, 13151 19. Ito, H., andHamerman, J. A. (2012) TREM-2, triggering receptor expressed on myeloid cell-2, negatively regulates TLR responses in dendritic cells. Eur. J. Immunol. 42, 176–185 20. Paloneva, J., Manninen, T., Christman, G., Hovanes, K., Mandelin, J., Adolfsson, R., Bianchin, M., Bird, T., Miranda, R., Salmaggi, A., Tranebjærg, L., Konttinen, Y., andPeltonen, L. (2002) Mutations in Two Genes Encoding Different Subunits of a Receptor Signaling Complex Result in an Identical Disease Phenotype. Am. J. Hum. Genet. 71, 656–662 21. Klünemann, H. H., Ridha, B. H., Magy, L., Wherrett, J. R., Hemelsoet, D. M., Keen, R. W., DeBleecker, J. L., Rossor, M. N., Marienhagen, J., Klein, H. E., Peltonen, L., andPaloneva, J. (2005) The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology. 64, 1502–1507 22. Numasawa, Y., Yamaura, C., Ishihara, S., Shintani, S., Yamazaki, M., Tabunoki, H., andSatoh, J. I. (2011) Nasu-Hakola disease with a splicing mutation of TREM2 in a Japanese family. Eur. J. Neurol. 18, 1179–1183 23. Turnbull, I. R., Gilfillan, S., Cella, M., Aoshi, T., Miller, M., Piccio, L., Hernandez, M., andColonna, M. (2006) Cutting edge: TREM-2 attenuates macrophage activation. J. Immunol. 177, 3520–3524 24. Paradowska-Gorycka, A., andJurkowska, M. (2013) Structure, expression pattern and biological activity of molecular complex TREM-2/DAP12. Hum. Immunol. 74, 730–737 25. Sun, M., Zhu, M., Chen, K., Nie, X., Deng, Q., Hazlett, L. D., Wu, Y., Li, M., Wu, M., andHuang, X. (2013) TREM-2 promotes host resistance against Pseudomonas aeruginosa infection by suppressing corneal inflammation via a PI3K/Akt signaling pathway. Investig. Ophthalmol. Vis. Sci. 54, 3451–3462 26. Wu, K., Byers, D. E., Jin, X., Agapov, E., Alexander-Brett, J., Patel, A. C., Cella, M., Gilfilan, S., Colonna, M., Kober, D. L., Brett, T. J., andHoltzman, M. J. (2015) TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. J. Exp. Med. 143, jem.20141732 27. Ulrich, J. D., Ulland, T. K., Colonna, M., andHoltzman, D. M. (2017) Elucidating the Role of TREM2 in Alzheimer’s Disease. Neuron. 94, 237–248 28. Frank, S., Burbach, G. J., Bonin, M., Walter, M., Streit, W., Bechmann, I., andDeller, T. (2008) TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia. 56, 1438–1447 29. Park, M., Yi, J.-W., Kim, E.-M., Yoon, I.-J., Lee, E.-H., Lee, H.-Y., Ji, K.-Y., Lee, K.-H., Jang, J.-H., Oh, S.-S., Yun, C.-H., Kim, S.-H., Lee, K.-M., Song, M.-G., Kim, D.-H., andKang, H.-S. (2014) Triggering receptor expressed on myeloid cells 2 (TREM2) promotes adipogenesis and diet-induced obesity. Diabetes. 2, 2–41 30. Kunjathoor, V.V., Febbraio, M., Podrez, E. A., Moore, K. J., Andersson, L., Koehn, S., Rhee, J. S., Silverstein, R., Hoff, H. F., andFreeman, M. W. (2002) Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 277, 49982–49988 31. Mäkinen, P. I., Lappalainen, J. P., Heinonen, S. E., Leppänen, P., Lähteenvuo, M. T., Aarnio, J.V., Heikkilä, J., Turunen, M. P., andYlä-Herttuala, S. (2010) Silencing of either SR-A or CD36 reduces atherosclerosis in hyperlipidaemic mice and reveals reciprocal upregulation of these receptors. Cardiovasc. Res. 88, 530–538 32. Zani, I. A., Stephen, S. L., Mughal, N. A., Russell, D., Homer-Vanniasinkam, S., Wheatcroft, S. B., andPonnambalam, S. (2015) Scavenger receptor structure and function in health and disease. Cells. 4, 178–201 33. Moore, K. J., andFreeman, M. W. (2006) Scavenger receptors in atherosclerosis: Beyond lipid uptake. Arterioscler. Thromb. Vasc. Biol. 26, 1702–1711 34. Park, Y. M. (2014) CD36, a scavenger receptor implicated in atherosclerosis. Exp. Mol. Med. 46, e99 35. Dodd, C. E., Pyle, C. J., Glowinski, R., Rajaram, M. V. S., andSchlesinger, L. S. (2016) CD36-Mediated Uptake of Surfactant Lipids by Human Macrophages Promotes Intracellular Growth of Mycobacterium tuberculosis. J. Immunol. 197, 4727–4735 36. Yao, S., Miao, C., Tian, H., Sang, H., Yang, N., Jiao, P., Han, J., Zong, C., andQin, S. (2014) Endoplasmic reticulum stress promotes macrophagederived foam cell formation by up-regulating cluster of differentiation 36 (CD36) expression. J. Biol. Chem. 289, 4032–4042 37. Nagy, L., Tontonoz, P., Alvarez, J. G. A., Chen, H., andEvans, R. M. (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell. 93, 229–240 38. Tontonoz, P., Nagy, L., Alvarez, J. G. A., Thomazy, V. A., andEvans, R. M. (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 93, 241–252 39. Tyagi, S., Sharma, S., Gupta, P., Saini, A., andKaushal, C. (2011) The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res. 2, 236 40. Kintscher, U. (2005) PPAR -mediated insulin sensitization: the importance of fat versus muscle. AJP Endocrinol. Metab. 288, E287–E291 41. Yu, M., Jiang, M., Chen, Y., Zhang, S., Zhang, W., Yang, X., Li, X., Li, Y., Duan, S., Han, J., andDuan, Y. (2016) Inhibition of macrophage CD36 expression and cellular oxidized low density lipoprotein (oxLDL) accumulation by tamoxifen a peroxisome proliferator-activated receptor (PPAR)γ-dependent mechanism. J. Biol. Chem. 291, 16977–16989 42. Han, J., Hajjar, D. P., Febbraio, M., andNicholson, A. C. (1997) CELL BIOLOGY AND METABOLISM : Native and Modified Low Density Lipoproteins Increase the Functional Expression of the Macrophage Class B Scavenger Receptor , CD36 Native and Modified Low Density Lipoproteins Increase the Functional Expression of the Macrop. 272, 21654–21659 43. Canton, J., Neculai, D., andGrinstein, S. (2013) Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13, 621–634 44. Teboul, L., Febbraio, M., Gaillard, D., Amri, E. Z., Silverstein, R., andGrimaldi, P. A. (2001) Structural and functional characterization of the mouse fatty acid translocase promoter: activation during adipose differentiation. Biochem. J. 360, 305–12 45. Yang, X., Zhang, W., Chen, Y., Li, Y., Sun, L., Liu, Y., Liu, M., Yu, M., Li, X., Han, J., andDuan, Y. (2016) Activation of peroxisome proliferator-activated receptor γ (PPARγ) and CD36 protein expression: The dual pathophysiological roles of progesterone. J. Biol. Chem. 291, 15108–15118 46. Mehlem, A., Hagberg, C. E., Muhl, L., Eriksson, U., andFalkevall, A. (2013) Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat. Protoc. 8, 1149–1154 47. Ying, W., Cheruku, P. S., Bazer, F. W., Safe, S. H., andZhou, B. (2013) Investigation of macrophage polarization using bone marrow derived macrophages. J. Vis. Exp. 10.3791/50323 48. Wang, Y., Cella, M., Mallinson, K., Ulrich, J. D., Young, K. L., Robinette, M. L., Gilfillan, S., Krishnan, G. M., Sudhakar, S., Zinselmeyer, B. H., Holtzman, D. M., Cirrito, J. R., andColonna, M. (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell. 160, 1061–1071 49. Rivest, S. (2015) TREM2 enables amyloid β clearance by microglia. Cell Res. 25, 535–6 50. Rahaman, S. O., Lennon, D. J., Febbraio, M., Podrez, E. A., Hazen, S. L., andSilverstein, R. L. (2006) A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 4, 211–221 51. Burns, K. A., andVandenHeuvel, J. P. (2007) Modulation of PPAR activity via phosphorylation. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 1771, 952–960 52. Sharif, O., andKnapp, S. (2008) From expression to signaling: Roles of TREM-1 and TREM-2 in innate immunity and bacterial infection. Immunobiology. 213, 701–713 53. Walter, J. (2016) The triggering receptor expressed on myeloid cells 2: A Molecular link of neuroinflammation and neurodegenerative diseases. J. Biol. Chem. 291, 4334–4341 54. Reth, M., andBrummer, T. (2004) Feedback regulation of lymphocyte signalling. Nat. Rev. Immunol. 4, 269–277 55. Brummer, T., Naegele, H., Reth, M., andMisawa, Y. (2003) Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene. 22, 8823–8834 56. Mócsai, A., Ruland, J., andTybulewicz, V. L. J. (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402
|