跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡智閎
研究生(外文):Chih-Hung Hu
論文名稱:嚼食檳榔與香菸中丙烯醛在人體吸收之關係
論文名稱(外文):Betel quid chewing modulates the cigarette smoke containing acrolein uptake in vivo
指導教授:劉宗榮劉宗榮引用關係
指導教授(外文):Tsung-Yun Liu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:環境與職業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:83
中文關鍵詞:丙烯醛3-HPMA檳榔香菸口腔癌液相層析串聯質譜儀
外文關鍵詞:Acrolein3-HPMAbetel quidcigaretteOSCCLC-MS/MS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
丙烯醛 (Acrolein) 是一種具有高度活性與呼吸道刺激性的 α, β 不飽和醛類,於燃燒 (菸草燃燒、汽機車引擎燃燒) 與高溫烹煮 (油煙) 過程中所產生,在體內亦會經由氧化性傷害與多胺類代謝所產生。3-Hydroxypropyl mercapturic acid (3-HPMA) 是丙烯醛經穀胱甘肽 (GSH) 鍵結後產生一連串代謝過程後所產生的一種代謝產物,最後由尿液排出。
在臺灣,嚼食檳榔及抽菸是口腔鱗狀上皮細胞癌 (Oral squamous cell carcinoma, OSCC) 的兩大危險因子,而嚼食檳榔的族群約有九成皆伴隨抽菸;流行病學研究顯示檳榔可協力增強香菸誘發 OSCC,但其機轉不明。含有石灰之檳榔,嚼食後會使口腔環境變成鹼性 (pH 8-11),而香菸中含有大量之丙烯醛 (pKa=9.6),可能會因嚼食檳榔而造成的鹼性環境使香菸中丙烯醛的吸收增加,進而導致尿液中 3-HPMA 的濃度升高。
本研究的目的在於探討抽菸伴隨嚼食檳榔的口腔癌患者尿液中的 3-HPMA 濃度是否高於只抽菸而不嚼食檳榔的患者。口腔癌患者尿液樣本來自林口長庚紀念醫院以及淡水馬偕紀念醫院,一般正常人尿液樣本來自高雄地區一般民眾,並利用液相層析串聯質譜儀 (LC-MS/MS) 分析尿液樣本中的 3-HPMA,同時也利用高效能液相層析搭配紫外光可見光檢測器 (HPLC-UV) 分析尿液中的肌酸酐 (Creatinine)。
本研究結果發現,抽菸且嚼食檳榔的口腔癌患者尿液中3-HPMA (1.91 ng/µg Creatinine) 顯著高於只抽菸患者尿液中的3-HPMA (1.45 ng/µg Creatinine) (p<0.01);抽菸伴隨嚼食檳榔的一般正常人尿液中3-HPMA (1.97 ng/µg Creatinine) 亦顯著高於只抽菸正常人尿液中的3-HPMA (1.38 ng/µg Creatinine) (p<0.05)。以上結果顯示可能是因嚼食檳榔所產生的鹼性環境提升丙烯醛的吸收,因而增加尿液中丙烯醛的濃度。此外,在正常人抽菸者尿液中3-HPMA濃度高於抽菸的口腔癌患者,可能是因為在口腔癌病患體內GSH濃度較低,能與丙烯醛鍵結之GSH量較少所導致。
Acrolein, a highly reactive α, β unsaturated aldehyde and respiratory irritant, is formed during combustion (e.g., cigarette smoke), high-temperature cooking of foods, and in vivo as a by product of oxidative stress and polyamine metabolism. 3-Hydroxypropyl mercapturic acid (3-HPMA), the main metabolite of acrolein in urine, is formed by glutathione (GSH) conjugation following the reduction and normal metabolic processing to a mercapturic acid.
In Taiwan, betel quid chewing and cigarette smoking are two major risk factors for the development of oral squamous cell carcinoma (OSCC), and 90% of betel quid chewers are also cigarette smokers. Moreover, epidemiological studies demonstrated that betel quid can enhance cigarette induced OSCC, but the underlying mechanism remains elusive.
The study was designed to test the hypothesis that the alkaline oral environment (pH 8-11) included by chewing slake lime containing betel quid will facilitate the absorption of acrolein (pKa 9.6) exposed from smoking. The aim of the study was to compare the level of urinary 3-HPMA in cigarette-smoking OSCC patients with and without betel quid chewing history. Urine samples of OSCC patients were obtained from Linkou Chang Gung Memorial Hospital and Mackay Memorial Hospital Tamshui Branch. Urinary 3-HPMA and creatinine were analyzed by HPLC-MS/MS and HPLC-UV, respectively.
The results show that the level of 3-HPMA in OSCC patients with cigarette-smoking and betel quid chewing history (1.90 ng/μg creatinine) was significantly higher (p<0.01) than in patients with smoking history only (1.42 ng/μg creatinine). In smoking and betel quid chewing normal healthy volunteers had significantly higher (p<0.05) urinary 3-HPMA (1.97 ng/μg creatinine) than that in smoking only healthy volunteers (1.38 ng/μg creatinine). The study concludes that the higher level of urinary 3-HPMA in cigarette-smoking patients with chewing betel quid history was associated with the increase of acrolein absorption at alkaline environment. Chewing betel quid could enhance the alkalinity of oral cavity, causing the additional absorption of acrolein.
目錄
中文摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 IX
壹、緒論 1
第一節、檳榔 1
簡介 1
檳榔之組成物 2
檳榔嚼塊中致癌因子 4
第二節、香菸 6
簡介 6
香菸中之致癌物質與致癌機轉 7
第三節、丙烯醛 9
簡介 9
暴露途徑 9
法規 11
第四節、口腔癌 12
簡介 12
口腔癌之流行病學特徵 12
口腔癌之危險因子 13
第五節、穀胱甘肽 14
第六節、3-Hydroxypropylmercapturic acid (3-HPMA) 15
貳、文獻回顧 16
第一節、3-HPMA與抽菸之間的關係 16
第二節、正常人與口腔癌患者體內GSH濃度的關係 16
叁、研究動機及目的 17
第一節、研究動機 17
第二節、研究目的 17
肆、材料與方法 18
第一節、化學藥品與試劑 18
第二節、實驗耗料 19
第三節、儀器設備 19
第四節、樣本來源及處理 21
樣本來源 21
樣本前處理 21
第五節、檢量線配置 22
3-HPMA 22
Creatinine 23
第六節、尿液中3-HPMA量測 24
液相層析串聯質譜儀 24
液相層析系統 (Liquid Chromatography, LC) 26
電噴灑離子霧化串聯質譜儀 (Electrospray Ionization Tandem Mass Spectrometry, ESI-MS/MS) 27
第七節、尿液中Creatinine量測 27
第八節、統計分析 29
伍、研究結果 30
第一節、口腔癌患者與一般正常人樣本統計 30
第二節、液相層析串聯質譜儀分析3-HPMA 30
標準品3-HPMA及同位素內標準品d3-3-HPMA之質譜鑑定: 30
第三節、口腔癌患者尿液中各代謝物質的濃度差異 31
Creatinine 31
3-HPMA 32
第四節、口腔癌患者之基本變項在3-HPMA高低濃度間比較 33
第五節、一般正常人之基本變項在3-HPMA高低濃度間比較 33
第六節、口腔癌患者與一般正常人尿液中3-HPMA濃度之差異比較 34
第七節、以多變項線性迴歸分析3-HPMA與兩組別間之關係 34
第八節、以多變項線性迴歸分析3-HPMA與兩族群間之關係 34
第九節、喝酒與否對3-HPMA之影響 35
陸、討論 36
第一節、尿液中3-HPMA之分析方法 36
第二節、尿液中3-HPMA之濃度比較 36
第三節、嚼食檳榔對尿液中Creatinine之影響 37
第四節、GSH與尿液中3-HPMA之關係 38
第五節、喝酒對尿液中3-HPMA之影響 38
第六節、研究限制 40
柒、結論 41
捌、參考文獻 42

圖目錄
圖一、待測物3-HPMA標準品之子離子掃描圖 52
圖二、Creatinine檢量線 53
圖三、以UPLC-UV分析Creatinine之圖譜 54
圖四、3-HPMA檢量線 55
圖五、以LC-MS/MS分析空白樣本 (Blank sample) 之層析圖譜 56
圖六、以LC-MS/MS分析3-HPMA表準品之層析圖譜 57
圖七、以LC-MS/MS分析尿液樣本中3-HPMA之層析圖譜 58

表目錄
表一、3-HPMA分析方法梯度 59
表二、3-HPMA分析方法儀器條件 60
表三、Creatinine分析方法梯度 61
表四、口腔癌病患人口學資料 62
表五、一般正常人人口學資料 63
表六、口腔癌患者Creatinine濃度分布 64
表七、一般正常人Creatinine濃度分布 64
表八、口腔癌患者3-HPMA濃度分布 65
表九、一般正常人3-HPMA濃度分布 66
表十、口腔癌病患基本變項在3-HPMA高低濃度間之比較 (未經Creatinne校正) 67
表十一、口腔癌病患基本變項在3-HPMA高低濃度間之比較 (經Creatinine校正) 68
表十二、一般正常人基本變項在3-HPMA高低濃度間之比較 (未經Creatinine校正) 69
表十三、一般正常人基本變項在3-HPMA高低濃度間之比較 (經Creatinine校正) 70
表十四、口腔癌病患與一般正常人3-HPMA之比較 71
表十五、口腔癌族群以多變項線性迴歸分析基本變項對3-HPMA濃度之影響 72
表十六、口腔癌與一般人以多變項線性迴歸分析基本變項對3-HPMA濃度之影響 73
表十七、各研究尿液中3-HPMA之濃度比較 74
1. Secretan B, Straif K, Baan R, Grosse Y, Ghissassi F.E, Bouvard V, et al. A review of human carcinogens—Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. The Lancet Oncol, 2009;10:1033-1034.
2. Boucher B.J., Mannan N. Metabolic effects of the consumption of Areca catechu. Addict Biol, 2002;7:103-110.
3. International Agency for Research on Cancer, Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42. Vol. Supplement 7, 1987.
4. International Agency for Research on Cancer, Betel-quid and Areca-nut Chewing and Some Areca-nut-derived Nitrosamines: IARC Monographs on the Evaluation of Carcinogenic Risks to Human, 2004.
5. 臺灣行政院衛生福利部國民健康署。健康主題-檳榔防制,2016。
6. Wei F, Chung F. Trace elements in areca nut from Taiwan. J Radioanal Nucl Chem, 1997;217:45-51.
7. Spyrou N. Elemental composition of betel nut and associated chewing materials. J Radioanal Nucl Chem, 2001;249:67-70.
8. Jayalakshmi A, Mathew A. Chemical composition and processing. The Arecanut Palm, Kerala, Central Plantation Crops Research Institute, 1982;225-244.
9. Harvey W, Scutt A, Meghji S, Canniff J.P. Stimulation of human buccal mucosa fibroblasts in vitro by betel-nut alkaloids. Arch Oral Biol, 1986;31:45-49.
10. Raghavan V, Baruah H. Arecanut: India’s popular masticatory—history, chemistry and utilization. Econ Bot, 1958;12:315-345.
11. Huang J.L, McLeish M.J. High-performance liquid chromatographic determination of the alkaloids in betel nut. J Chromatogr A, 1989;475:447-450.
12. Lord G.A, Lim C.K, Warnakulasuriya S, Peters T.J. Chemical and analytical aspects of areca nut. Addict biol, 2002;7:99-102.
13. Awang M. Betel quid and oral carcinogenesis. Singap Med J, 1988;29:589-593.
14. Huang M.T, Ho C.T, Lee C.Y. Phenolic compounds in food and their effects on health II: antioxidants and cancer prevention. JACS, 1992.
15. Wang C, Wu M. The separation of phenolics from Piper betle leaf and the effect on the mutagenicity of arecoline. Chinese J Agric Chem Soc, 1996;34:638-647.
16. Zaidi J, Arif M, Fatima I, Qureshi I. Radiochemical neutron activation analysis for trace elements of basic ingredients of pan. J Radioanal Nucl Chem, 2002;253:459-464.
17. Nair U.J, Friesen M, Richard I, Maclennan R, Thomas S, Bartsch H. Effect of lime composition on the formation of reactive oxygen species from areca nut extract in vitro. Carcinogenesis, 1990;11:2145-2148.
18. Chu N.S. Effects of betel chewing on the central and autonomic nervous systems. J Biomed Sci, 2001;8:229-236.
19. Chu N.S. Neurological aspects of areca and betel chewing. Addict Biol, 2002;7:111-114.
20. Shirname L.P, Menon M.M, Bhide S.V. Mutagenicity of betel quid and its ingredients using mammalian test systems. Carcinogenesis, 1984;5:501-503.
21. Jeng J.H, Kuo M.L, Hahn L.J, Kuo M.Y.P. Genotoxic and non-genotoxic effects of betel quid ingredients on oral mucosal fibroblasts in vitro. J Dent Res, 1994;73:1043-1049.
22. Nair J, Ohshima H, Friesen M, Croisy A, Bhide S.V, Bartsch H. Tobacco-specific and betel nut-specific N-nitroso compounds: occurrence in saliva and urine of betel quid chewers and formation in vitro by nitrosation of betel quid. Carcinogenesis, 1985;6:295-303.
23. Hoffmann D, Brunnemann K.D, Prokopczyk B, Djordjevic M.V. Tobacco‐specific N‐nitrosamines and ARECA‐derived N‐nitrosamines: Chemistry, biochemistry, carcinogenicity, and relevance to humans. J Toxicol Env Heal, 1994;41:1-52.
24. Wenke G, Hoffmann D. A study of betel quid carcinogenesis. 1. On the in vitro N-nitrosation of arecoline. Carcinogenesis, 1983;4:169-172.
25. Nair U.J, Floyd R.A, Nair J, Bussachini V, Friesen M, Bartsch H. Formation of reactive oxygen species and of 8-hydroxydeoxyguanosine in DNA in vitro with betel quid ingredients. Chem-Biol interact, 1987;63:157-169.
26. Nair U.J, Obe G, Friesen M, Goldberg M.T, Bartsch H. Role of lime in the generation of reactive oxygen species from betel-quid ingredients. Environ health persp, 1992;98:203.
27. Nair U.J, Nair J, Friesen M.D, Bartsch H, Ohshima H. Ortho-and meta-tyrosine formation from phenylalanine in human saliva as a marker of hydroxyl radical generation during betel quid chewing. Carcinogenesis, 1995;16:1195-1198.
28. Rosin M.P. The influence of pH on the convertogenic activity of plant phenolics. Mutat Res-Genet Tox, 1984;135:109-113.
29. Wang C, Hwang L. phenolic compounds of betel quid chewing juice. Food Sci, 1993;20:458-471.
30. Chaloupka F.J, Cummings K.M, Morley C.P, Horan J.K. Tax, price and cigarette smoking: evidence from the tobacco documents and implications for tobacco company marketing strategies. Tob Control, 2002;11(suppl 1):i62-i72.
31. Chaloupka F.J, Straif K, Leon M.E. Effectiveness of tax and price policies in tobacco control. Tob Control, 2010;20:235.
32. 衛生福利部國民健康署菸害防治資訊網. 成年人抽菸行為調查 (Adult Smoking Behavior Surveillance System, ASBS). 2016; Available from: http://tobacco.hpa.gov.tw/Show.aspx?MenuId=581.
33. Hecht S.S. Tobacco smoke carcinogens and lung cancer. Journal of the national cancer institute, 1999;91:1194-1210.
34. Everson R.B, Randerath E, Santella R.M, Cefalo R.C, Avitts T.A, Randerath K. Detection of smoking-related covalent DNA adducts in human placenta. Science, 1986;231:54-58.
35. Auerbach O, Stout A.P, Hammond E.C, Garfinkel L. Changes in bronchial epithelium in relation to cigarette smoking and in relation to lung cancer. N Engl J Med, 1961;265:253-267.
36. Nagaraja N.S, Beckersa S, Mensaha J.K, Waigela S, Vigneswaranc N, Zacharias W. Cigarette smoke condensate induces cytochromes P450 and aldo-keto reductases in oral cancer cells. Toxicol lett, 2006;165:182-194.
37. Moore C. Cigarette smoking and cancer of the mouth, pharynx, and larynx: a continuing study. JAMA, 1971;218:553-558.
38. McGrath M, Wong J.Y.Y, Michaud D, Hunter D.J, Vivo I.D. Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidem Biomar, 2007;16:815-819.
39. Chow W.H, Dong L.M, and Devesa S.S. Epidemiology and risk factors for kidney cancer. Nature Reviews Urology, 2010;7:245-257.
40. Fuchs C.S, Colditz G.A, Stampfer M.J, Giovannucci E.L, Hunter D.J, Rimm E.B, et al. A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med, 1996;156:2255-2260.
41. Giovannucci E. An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer. Cancer Epidem Biomar, 2001;10:725-731.
42. Parsonnet J, Friedman G.D, Orentreich N, Vogelman H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut, 1997;40:297-301.
43. Brinton L.A, Schairer C, Haenszel W, Stolley P, Lehman H.F, Levine R, Savitz D.A. Cigarette smoking and invasive cervical cancer. JAMA, 1986; 255:3265-3269.
44. Ambrose J.A, Barua R.S. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol, 2004;43:1731-1737.
45. Shinton R, Beevers G. Meta-analysis of relation between cigarette smoking and stroke. Bmj, 1989;298:789-794.
46. Fratiglioni L, Wang H.X. Smoking and Parkinson’s and Alzheimer’s disease: review of the epidemiological studies. Behav Brain Res, 2000;113:117-120.
47. Pankow J.F, Mader B.T, Isabelle L.M, Luo W, Pavlick A, Liang C. Conversion of nicotine in tobacco smoke to its volatile and available free-base form through the action of gaseous ammonia. Environ Sci Technol, 1997;31:2428-2433.
48. Hukkanen J, Jacob P, Benowitz N.L, Metabolism and disposition kinetics of nicotine. Pharmacol Rev, 2005;57:79-115.
49. Salem A.F, Al-Zoubi M.S, Whitaker-Menezes D, Martinez-Outschoorn U.E, Lamb R, Hulit J, et al. Cigarette smoke metabolically promotes cancer, via autophagy and premature aging in the host stromal microenvironment. Cell Cycle, 2013;12:818-825.
50. Hecht S.S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer, 2003;3:733-744.
51. Stedman RL. Chemical composition of tobacco and tobacco smoke. Chem Rev, 1968;68:153-207.
52. Fujioka K, Shibamoto T. Determination of toxic carbonyl compounds in cigarette smoke. Environ Toxicol, 2006;21:47-54.
53. Feng Z.H, Hu W.W, Hu Y, Tang M.S. Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci, 2006;103:15404-15409.
53.
54. Hecht S.S. Cigarette smokingl and lung cancer: chemical mechanisms and approaches to prevention. The Lancet Oncol, 2002;3:461-469.
55. Hecht S.S. Human urinary carcinogen metabolites: biomarkers for investigating tobacco and cancer. Carcinogenesis, 2002;23:907-922.
56. Von Weymarn L.B, Chun J.A, Hollenberg P.F. Effects of benzyl and phenethyl isothiocyanate on P450s 2A6 and 2A13: potential for chemoprevention in smokers. Carcinogenesis, 2006;27:782-790.
57. Hecht S.S. DNA adduct formation from tobacco-specific N-nitrosamines. Mutat Res-Fund Mol M, 1999;424:127-142.
58. Hecht, S.S. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol, 1998;11:559-603.
59. Hecht S.S, Carmella S.G, Chen M, Dor Koch J.F, Miller A.T, Murphy S.E, et al. Quantitation of urinary metabolites of a tobacco-specific lung carcinogen after smoking cessation. Cancer Res, 1999;59:590-596.
60. Hecht S.S. Carcinogen derived biomarkers: applications in studies of human exposure to secondhand tobacco smoke. Tob Control, 2004;13(suppl 1):i48-i56.
61. Goniewicz M.L, Eisner M.D, Lazcano-Ponce E, Zielinska-Danch W, Koszowski B, Sobczak A, et al. Comparison of urine cotinine and the tobacco-specific nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and their ratio to discriminate active from passive smoking. Nicotine Tob Res, 2011;13:202-208.
62. DeWoskin R. Toxicological review of acrolein. Support of Summary Information on the Integrated Risk Information System (IRIS), 2003.
63. Ghilarducci D.P, Tjeerdema R.S. Fate and effects of acrolein. Rev Environ Contam Toxicol, 1995;95-146.
64. Lijinsky W, Reuber M.D. Chronic carcinogenesis studies of acrolein and related compounds. Toxicol Ind Health, 1987;3:337-345.
65. Mackay J.M. Dose selection in in vivo genetic toxicology assays. Environ Mol Mutagen, 1995;25:323-327.
66. Anderson, M.M, Hazen S.L, Hsu F.F, Heinecke J.W. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha, beta-unsaturated aldehydes by phagocytes at sites of inflammation. J Clin Invest, 1997;99:424.
67. Esterbauer H, Schaur R.J, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med, 1991;11:81-128.
68. Lilie J, Henglein A. Pulsradiolytische Messung und LCAO‐Berechnung der Absorptionsspektren und pK‐Werte freier Radikale mit konjugierten Doppelbindungen. Ber Bunsen-Ges Phys, 1969;73:170-174.
69. Igarashi K, Kashiwagi K. Protein‐conjugated acrolein as a biochemical marker of brain infarction. Mol Nutr Food Res, 2011;55:1332-1341.
70. Uchida, K, Kanematsu M, Morimitsu Y, Osawa T, Noguchi N, Niki N. Acrolein is a product of lipid peroxidation reaction Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J Biol Chem, 1998;273:16058-16066.
71. Uchida K, Kanematsu M, Sakai K, Matsuda T, Hattori N, Mizuno Y, et al. Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci, 1998;95:4882-4887.
72. Cannon J, Links C.A, Cos L.R. Cyclophosphamide-associated carcinomaof urothelium: Modalities for prevention. Urology, 1991;38:413-416.
73. International Agency for Research on Cancer. Monographs on the evaluation of the carcinogenic risk of chemicals to humans: some monomers, plastics and synthetic elastomers, and acrolein. IARC Monogr Eval Carcinog Risk Chem Hum, 1979;19:1-513.
74. Jones A.P. Indoor air quality and health. Atmos Environ, 1999;33:4535-4564.
75. Rahman I, MacNee W. Lung glutathione and oxidative stress: implications in cigarette smoke-induced airway disease. Am J Physiol Lung Cell Mol Physiol, 1999;277:L1067-L1088.
76. Sithu S.D, Srivastava S, Siddiqui M.A, Vladykovskaya E, Riggs D.W, Conklin D.J, et al. Exposure to acrolein by inhalation causes platelet activation. Toxicol Appl Pharm, 2010;248:100-110.
77. Uchida K. Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med, 2000;28:1685-1696.
78. DeWoskin RS, G.M, Pepelko W, Strickland J. Toxicological review of acrolein, in Support of Summary Information on the Integrated Risk Information System (IRIS) (CAS No. 107-02-8). US Environmental Protection Agency: Washington, DC, 2003.
79. Gomes R, Meek M, Eggleton M. Concise International Chemical Assessment Document 43: Acrolein. World Health Organization, 2002.
80. Kassem N.O, Daffa RM, Liles S, Jackson S.R, Kassem N.O, Younis M.A, et al. Children’s exposure to secondhand and thirdhand smoke carcinogens and toxicants in homes of hookah smokers. Nicotine Tob Res, 2014;16:961-975.
81. Cahill T.M. Ambient acrolein concentrations in coastal, remote, and urban regions in California. Environ Sci Technol, 2014;48:8507-8513.
82. Abraham K, Andres S, Palavinskas R, Berg K, Appel K.E, Lampen A. Toxicology and risk assessment of acrolein in food. Mol Nutr Food Res, 2011;55:1277-1290.
83. Wang G.W, Yiru Guo, Vondriska T.M, Zhang J, Zhang S, Tsai L.L, et al. Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKCε signaling and cardioprotection. J Mol Cell Cardiol, 2008;44:1016-1022.
84. Watzek N, Scherbl D, Feld J, Berger F, Doroshyenko O, Fuhr U, et al. Profiling of mercapturic acids of acrolein and acrylamide in human urine after consumption of potato crisps. Mol Nutr Food Res, 2012;56:1825-1837.
85. Chen G.S, Chen C.H. A statistical analysis of oral squamous cell carcinoma. Gaoxiong yi xue ke xue za zhi = The Kaohsiung journal of medical sciences, 1995;11:582-588.
86. Chen Y.K, Huang HC, Lin LM, Lin CC. Primary oral squamous cell carcinoma: an analysis of 703 cases in southern Taiwan. Oral Oncol, 1999;35:173-179.
87. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol, 2009;45:309-316.
88. Warnakulasuriya S. Living with oral cancer: epidemiology with particular reference to prevalence and life-style changes that influence survival. Oral Oncol, 2010;46:407-410.
89. Ferlay J, Soerjomataram I, Ervik M. GLOBOCON 2012 v1. 0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11. Lyon, France: International Agency for Research on Cancer, 2013.
90. 衛生福利部。105年國人死因統計結果,2017;Available from: http://www.mohw.gov.tw/news/572256044.
91. Marshall J.R, Graham S, Haughey B.P, Shedd D, O'Shea R, Brasure J, Wilkinson G.S, et al. Smoking, alcohol, dentition and diet in the epidemiology of oral cancer. Eur J Cancer B Oral Oncol, 1992;28:9-15.
92. Ko Y.C, Huang Y.L, Lee C.H, Chen M.J, Lin L.M, Tsai C.C. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med, 1995;24:450-453.
93. Herrero R, Castellsagué X, Pawlita M, Lissowska J, Kee F, Balaram P, et al. Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J Natl Cancer Inst, 2003;95:1772-1783.
94. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med, 1999;27:916-921.
95. Estrela J.M, Ortega A, Obrador E. Glutathione in cancer biology and therapy. Crit Rev Cl Lab Sci, 2006;43:143-181.
96. Forman H.J, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med, 2009;30:1-12.
97. Mitchell J, Russo A. The role of glutathione in radiation and drug induced cytotoxicity. Br J Cancer, Supplement, 1987;8:96.
98. Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther, 1991;51:155-194.
99. Calvert P, Yao K.S, Hamilton T.C, O’Dwyer P.J. Clinical studies of reversal of drug resistance based on glutathione. Chem Biol Interact, 1998;111:213-224.
100. Obrador E, Carretero J, Esteve J.M, Pellicer J.A, Pascual A, Petschen I, et al. Glutamine potentiates TNF-α-induced tumor cytotoxicity. Free Radic Biol Med, 2001;31:642-650.
101. Pani G, Galeotti T, Chiarugi P. Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev, 2010;29:351-378.
102. Gamcsik M.P, Kasibhatla M.S, Teeter S.D, Colvin O.M. Glutathione levels in human tumors. Biomarkers, 2012;17:671-691.
103. Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro A.L, Pronzato MA, et al. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev, 2013.
104. Jones D.P. Redox potential of GSH/GSSG couple: Assay and biological significance. Methods Enzymol, 2002;348:93-112.
105. Aquilano K, Baldelli S, Ciriolo M.R. Glutathione: new roles in redox signaling for an old antioxidant. The Changing Faces of Glutathione, a Cellular Protagonist, 2014.
106. Yoshida M, Mikami T, Higashi K, Saikia R, Mizoi M, Fukuda K, et al. Inverse correlation between stroke and urinary 3-hydroxypropyl mercapturic acid, an acrolein-glutathione metabolite. Clin Chim Acta, 2012;413:753-759.
107. Kaye C.M. Biosynthesis of mercapturic acids from allyl alcohol, allyl esters and acrolein. Biochem J, 1973;134:1093-1101.
108. Giles P. The biosynthesis of 3-hydroxypropylmercapturic acid from cyclophosphamide. Xenobiotica, 1979;9:745-762.
109. Parent R.A, Paust D.E, Schrimpf M.K, Talaat R.E, Doane R.A, Caravello H.E, et al. Metabolism and distribution of [2, 3-14C] acrolein in Sprague-Dawley rats II. Identification of urinary and fecal metabolites. Toxicol Sci, 1998;43:110-120.
110. Higashi K, Igarashi K, Toida T. Recent Progress in Analytical Methods for Determination of Urinary 3-Hydroxypropylmercapturic Acid, a Major Metabolite of Acrolein. Biol Pharm Bull, 2016;39:915-919.
111. Mascher D.G, Mascher H.J, Scherer G, Schmid E.R. High-performance liquid chromatographic–tandem mass spectrometric determination of 3-hydroxypropylmercapturic acid in human urine. J Chromatogr B Biomed Sci Appl, 2001;750:163-169.
112. Scherer G, Engl J, Urban M, Gilch G, Janket D, Riedel K. Relationship between machine-derived smoke yields and biomarkers in cigarette smokers in Germany. Regul Toxicol Pharm, 2007;47:171-183.
113. Carmella S.G, Chen M, Zhang Y, Zhang S, Hatsukami D.K, Hecht S.S. Quantitation of acrolein-derived 3-hydroxypropylmercapturic acid in human urine by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry: effects of cigarette smoking. Chem Res Toxicol, 2007;20:986-990.
114. Schettgen T, Musiol A, Kraus T. Simultaneous determination of mercapturic acids derived from ethylene oxide (HEMA), propylene oxide (2‐HPMA), acrolein (3‐HPMA), acrylamide (AAMA) and N, N‐dimethylformamide (AMCC) in human urine using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom, 2008;22:2629-2638.
115. Roethig H.J, Munjal S, Feng S, Liang Q, Sarkar M, Walk R.A, et al. Population estimates for biomarkers of exposure to cigarette smoke in adult US cigarette smokers. Nicotine Tob Res, 2009;11:1216-1225.
116. Alwis K.U, deCastro B.R, Morrow J.C, Blount B.C. Acrolein exposure in US tobacco smokers and non-tobacco users: NHANES 2005–2006. Environ Health Perspect, 2015;123:1302-1308.
117. Wong D.Y.-K, Hsiao Y.L, Poon C.K, Kwan P.C, Chao S.Y, Chou S.T, et al. Glutathione concentration in oral cancer tissues. Cancer lett, 1994;81:111-116.
118. Lu S.C. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J, 1999;13:1169-1183.
119. Fiaschi A, Cozzolino A, Ruggiero G, Giorgi G. Glutathione, ascorbic acid and antioxidant enzymes in the tumor tissue and blood of patients with oral squamous cell carcinoma. Eur Rev Med Pharmacol Sci, 2005;9:361-367.
120. Wen C.P, Tsai S.P, Cheng T.Y, Chen C.J, Levy D.T, Yang H.J, et al. Uncovering the relation between betel quid chewing and cigarette smoking in Taiwan. Tob Control, 2005;14(suppl 1):i16-i22.
121. Hayon E, Simic M. Acid-base properties of free radicals in solution. Acc Chem Res, 1974;7:114-121.
122. Eckert E, Drexler H, Göen T. Determination of six hydroxyalkyl mercapturic acids in human urine using hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC–ESI-MS/MS). J Chromatogr B, 2010;878:2506-2514.
123. Yue‐dong Y. Simultaneous determination of creatine, uric ccid, creatinine and hippuric acid in urine by high performance liquid chromatography. Biomed Chromatogr, 1998;12:47-49.
124. Sanduja R, Ansari G, Boor P.J 3‐Hydroxypropylmercapturic acid: A biologic marker of exposure to allylic and related compounds. J Appl Toxicol, 1989;9:235-238.
125. Stanek W, Krenmayr P, Scherer G, Schmid E.R. Quantitative determination of N‐acetyl (‐L‐) cysteine derivatives in human urine by tandem mass spectrometry. Biol Mass Spectrom, 1993;22:133-142.
126. Carmella S.G, Chen M, Zhang Y, Zhang S, Hatsukami D.K, Hecht S.S. Quantitation of acrolein-derived (3-hydroxypropyl) mercapturic acid in human urine by liquid chromatography− atmospheric pressure chemical ionization tandem mass spectrometry: Effects of cigarette smoking. Chem Res Toxicol, 2007;20:986-990.
127. Yan W, Byrd G.D, Brown B.G, Borgerding M.F. Development and validation of a direct LC-MS-MS method to determine the acrolein metabolite 3-HPMA in urine. J Chromatogr Sci, 2010;48:194-199.
128. Wu K.D, Chuang R.B, Wu F.-L.L, Hsu W.A, Jan I.S, Tsai K.S. The milk-alkali syndrome caused by betelnuts in oyster shell paste. J Toxicol Clin, 1996;34:741-745.
129. Yiang G.T, Ho K.J, Wu C.C, Yang S.S, Juang J.G, Lin S.H. Milk-Alkali Syndrome Caused by Chewing Betel Nuts. J Med Sci, 2000;20:429-434.
130. Lin S.H, Lin Y.F, Cheema‐Dhadli S, Davids M.R, Halperin M.L. Hypercalcaemia and metabolic alkalosis with betel nut chewing: emphasis on its integrative pathophysiology. Nephrol Dial Transpl, 2002;17:708-714.
131. Avezov K, Reznick A.Z, Aizenbud D. Oxidative damage in keratinocytes exposed to cigarette smoke and aldehydes. Toxicol In Vitro, 2014;28:485-491.
132. Maser E. Significance of reductases in the detoxification of the tobacco-specific carcinogen NNK. Trends Pharmacol Sci, 2004;25:235-237.
133. Chiang H.C, Wang C.Y, Lee H.L, Tsou T.C. Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation—a mammalian cell-based mutagenesis approach. Toxicol Appl Pharmacol, 2011;253:145-152.
134. Stevens J.F, Maier C.S. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res, 2008;52:7-25.
135. Hales B.F. Comparison of the mutagenicity and teratogenicity of cyclophosphamide and its active metabolites, 4-hydroxycyclophosphamide, phosphoramide mustard, and acrolein. Cancer Res, 1982;42:3016-3021.
136. Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol, 2008;4:222.
137. Chen W.Y, Zhang J, Ghare S, Barve S, McClain C, Joshi-Barve S. Acrolein Is a Pathogenic Mediator of Alcoholic Liver Disease and the Scavenger Hydralazine Is Protective in Mice. CMGH, 2016;2:685-700.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊