參考文獻
[1] 翁久惠. (1994). 嫌惡性設施對生活環境品質影響之研究-以台北市內湖, 木柵, 士林三個垃圾焚化廠為例.
[2] 中華民國行政院環境保護署焚化廠營運管理資訊系統. from https://swims.epa.gov.tw/swims/swims_net/Summary/Summary_WEPB2401_Data.aspx
[3] Hu, C. W., Chao, M. R., Wu, K. Y., Chang-Chien, G. P., Lee, W. J., Chang, L. W., & Lee, W. S. (2003). Characterization of multiple airborne particulate metals in the surroundings of a municipal waste incinerator in Taiwan. Atmospheric Environment, 37(20), 2845-2852.
[4] Agramunt, M. C., Domingo, A., Domingo, J. L., & Corbella, J. (2003). Monitoring internal exposure to metals and organic substances in workers at a hazardous waste incinerator after 3 years of operation. Toxicology Letters, 146(1), 83-91.
[5] Llobet, J., Falco, G., Casas, C., Teixido, A., & Domingo, J. (2003). Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. Journal of Agricultural and Food Chemistry, 51(3), 838-842.
[6] International Agency for Research on Cancer (IARC). (1980). Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man: Some Metals and Metallic Compounds. 23, 39–141.
[7] Agency, U. S. E. P. (2001). Drinking Water Requirements for States and Public Water Systems. from https://www.epa.gov/dwreginfo/chemical-contaminant-rules
[8] Smith, A. H., Hopenhayn-Rich, C., Bates, M. N., Goeden, H. M., Hertz-Picciotto, I., Duggan, H. M., Smith, M. T. (1992). Cancer risks from arsenic in drinking water. Environmental Health Perspectives, 97, 259-267.
[9] Bates, M. N., Smith, A. H., & Cantor, K. P. (1995). Case-control study of bladder cancer and arsenic in drinking water. American Journal of Epidemiology, 141(6), 523-530.
[10] Chen, C., Chen, C., Wu, M., & Kuo, T. (1992). Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. British Journal of Cancer, 66(5), 888.
[11] Feldstein, A. L. (1983). Arsenic and respiratory cancer in humans: follow-up of copper smelter employees in Montana. Journal of the National Cancer Institute, 70(4), 601-609.
[12] Lee-Feldstein, A. (1986). Cumulative exposure to arsenic and its relationship to respiratory cancer among copper smelter employees. Journal of Occupational And Environmental Medicine, 28(4), 296-302.
[13] Tseng, W.P. (1977). Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environmental Health Perspectives, 19, 109.
[14] Robberecht, H., Van Cauwenbergh, R., Bosscher, D., Cornelis, R., & Deelstra, H. (2002). Daily dietary total arsenic intake in Belgium using duplicate portion sampling and elemental content of various foodstuffs. European Food Research and Technology, 214(1), 27-32.
[15] Borak, J., & Hosgood, H. D. (2007). Seafood arsenic: implications for human risk assessment. Regulatory Toxicology and Pharmacology, 47(2), 204-212.
[16] Heitland, P., & Köster, H. D. (2006). Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clinica Chimica Acta, 365(1), 310-318.
[17] Calderon, J., Navarro, M., Jimenez-Capdeville, M., Santos-Diaz, M., Golden, A., Rodriguez-Leyva, I., Dıaz-Barriga, F. (2001). Exposure to arsenic and lead and neuropsychological development in Mexican children. Environmental Research, 85(2), 69-76.
[18] Tsai, S. Y., Chou, H. Y., The, H. W., Chen, C. M., & Chen, C. J. (2003). The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology, 24(4), 747-753.
[19] Wasserman, G. A., Liu, X., Parvez, F., Ahsan, H., Factor-Litvak, P., van Geen, A., Hussain, I. (2004). Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh. Environmental Health Perspectives, 1329-1333.
[20] Wright, R. O., Amarasiriwardena, C., Woolf, A. D., Jim, R., & Bellinger, D. C. (2006). Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology, 27(2), 210-216.
[21] Bernard, A. (2004). Renal dysfunction induced by cadmium: biomarkers of critical effects. Biometals, 17(5), 519-523.
[22] Barbier, O., Jacquillet, G., Tauc, M., Cougnon, M., & Poujeol, P. (2005). Effect of heavy metals on, and handling by, the kidney. Nephron Physiology, 99(4), p105-p110.
[23] Seidal, K., Jörgensen, N., Elinder, C.-G., Sjögren, B., & Vahter, M. (1993). Fatal cadmium-induced pneumonitis. Scandinavian Journal of Work, Environment & Health, 429-431.
[24] Kazantzis, G. (2004). Cadmium, osteoporosis and calcium metabolism. Biometals, 17(5), 493-498.
[25] Bernhoft, R. A. (2013). Cadmium toxicity and treatment. The Scientific World Journal, 2013.
[26] Kjellström, T. (1991). Mechanism and epidemiology of bone effects of cadmium. IARC Scientific Publications(118), 301-310.
[27] Zheng, L., Wu, K., Li, Y., Qi, Z., Han, D., Zhang, B., Chen, S. (2008). Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environmental Research, 108(1), 15-20.
[28] Gibb, H. J., Lees, P. S., Pinsky, P. F., & Rooney, B. C. (2000). Lung cancer among workers in chromium chemical production. American Journal of Industrial Medicine, 38(2), 115-126.
[29] Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167-182.
[30] International Agency for Research on Cancer (IARC) (1987). IARC Monograpghs on the Evaluation of Carcinogenic Risks to Humans-Supplement 7. 61.
[31] Cookson, M. R., & Shaw, P. J. (1999). Oxidative stress and motor neurone disease. Brain Pathology, 9(1), 165-186.
[32] Strausak, D., Mercer, J. F., Dieter, H. H., Stremmel, W., & Multhaup, G. (2001). Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Research Bulletin, 55(2), 175-185.
[33] Grandjean, P., Weihe, P., White, R. F., & Debes, F. (1998). Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environmental Research, 77(2), 165-172.
[34] Grandjean, P., Weihe, P., & Nielsen, J. B. (1994). Methylmercury: significance of intrauterine and postnatal exposures. Clinical Chemistry, 40(7), 1395-1400.
[35] Counter, S. A., & Buchanan, L. H. (2004). Mercury exposure in children: a review. Toxicology and Applied Pharmacology, 198(2), 209-230.
[36] Zahir, F., Rizwi, S. J., Haq, S. K., & Khan, R. H. (2005). Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 20(2), 351-360.
[37] Grandjean, P., & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. The Lancet, 368(9553), 2167-2178.
[38] Agency, U. S. E. P. (1986). Guidelines for Carcinogen Risk Assessment. from https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=277
[39] Olivieri, G., Novakovic, M., Savaskan, E., Meier, F., Baysang, G., Brockhaus, M., & Müller-Spahn, F. (2002). The effects of β-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and β-amyloid secretion. Neuroscience, 113(4), 849-855.
[40] Pang, Y., Peng, R. D., Jones, M. R., Francesconi, K. A., Goessler, W., Howard, B. V., Navas-Acien, A. (2016). Metal mixtures in urban and rural populations in the US: The Multi-Ethnic Study of Atherosclerosis and the Strong Heart Study. Environmental Research, 147, 356-364.
[41] Doll, R. (1958). Cancer of the lung and nose in nickel workers. British Journal of Industrial Medicine, 15(4), 217-223.
[42] Pedersen, E., Høgetveit, A. C., & Andersen, A. (1973). Cancer of respiratory organs among workers at a nickel refinery in Norway. International Journal of Cancer, 12(1), 32-41.
[43] Sorahan, T., & Esmen, N. (2004). Lung cancer mortality in UK nickel-cadmium battery workers, 1947–2000. Occupational and Environmental Medicine, 61(2), 108-116.
[44] Agency for Toxic Substances and Disease Registry. Toxic Substances Portal - Nickel. from https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=244&tid=44
[45] Mantere, P., Hänninen, H., Hernberg, S., & Luukkonen, R. (1984). A prospective follow-up study on psychological effects in workers exposed to low levels of lead. Scandinavian Journal of Work, Environment & Health, 43-50.
[46] Hänninen, H., Aitio, A., Kovala, T., Luukkonen, R., Matikainen, E., Mannelin, T., Riihimäki, V. (1998). Occupational exposure to lead and neuropsychological dysfunction. Occupational and Environmental Medicine, 55(3), 202-209.
[47] Lidsky, T. I., & Schneider, J. S. (2003). Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain, 126(1), 5-19.
[48] International Agency for Research on Cancer (IARC) (1987). IARC Monograpghs on the Evaluation of Carcinogenic Risks to Humans-Supplement 7. 230-232.
[49] Jakubowski, M. (2011). Low-level environmental lead exposure and intellectual impairment in children—the current concepts of risk assessment. International Journal of Occupational Medicine and Environmental Health, 24(1), 1-7.
[50] Gennart, J.-P., Bernard, A., & Lauwerys, R. (1992). Assessment of thyroid, testes, kidney and autonomic nervous system function in lead-exposed workers. International Archives of Occupational and Environmental Health, 64(1), 49-57.
[51] Foster, L., & Sumar, S. (1997). Selenium in health and disease: a review. Critical Reviews. Food Science & Nutrition, 37(3), 211-228.
[52] Peretz, A., Neve, J., Duchateau, J., & Famaey, J.-P. (1992). Adjuvant treatment of recent onset rheumatoid arthritis by selenium supplementation: preliminary observations. Rheumatology, 31(4), 281-282.
[53] Knekt, P., Heliövaara, M., Aho, K., Alfthan, G., Marniemi, J., & Aromaa, A. (2000). Serum selenium, serum alpha-tocopherol, and the risk of rheumatoid arthritis. Epidemiology, 11(4), 402-405.
[54] Yu, M. W., Horng, S., Hsu, K. H., Chiang, Y. C., Liaw, Y. F., & Chen, C. J. (1999). Plasma selenium levels and risk of hepatocellular carcinoma among men with chronic hepatitis virus infection. American Journal of Epidemiology, 150(4), 367-374.
[55] Yoshizawa, K., Willett, W. C., Morris, S. J., Stampfer, M. J., Spiegelman, D., Rimm, E. B., & Giovannucci, E. (1998). Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer. Journal of the National Cancer Institute, 90(16), 1219-1224.
[56] International Agency for Research on Cancer (IARC) (1987). IARC Monograpghs on the Evaluation of Carcinogenic Risks to Humans-Supplement 7. International Agency for Research on Cancer, 71.
[57] Aggett, P. (1983). Acrodermatitis enteropathica. Journal of Inherited Metabolic Disease, 6, 39-43.
[58] Fessatou, S., Fagerhol, M. K., Roth, J., Stamoulakatou, A., Kitra, V., Hadarean, M., Papassotiriou, I. (2005). Severe anemia and neutropenia associated with hyperzincemia and hypercalprotectinemia. Journal of Pediatric Hematology/Oncology, 27(9), 477-480.
[59] Smith, J. C., Zeller, J. A., Brown, E. D., & Ong, S. (1976). Elevated plasmz zinc: a heritable anomaly. Science, 193(4252), 496-498.
[60] Saito, Y., Saito, K., Hirano, Y., Ikeya, K., Suzuki, H., Shishikura, K., Iwasa, A. (2002). Hyperzincemia with systemic inflammation: a heritable disorder of calprotectin metabolism with rheumatic manifestations? The Journal of Pediatrics, 140(2), 267-269.
[61] Sampson, B., Kovar, I. Z., Rauscher, A., Fairweather-Tait, S., Beattie, J., Mcardle, H. J., Green, C. (1997). A case of hyperzincemia with functional zinc depletion: a new disorder? Pediatric Research, 42(2), 219-225.
[62] Vogelmeier, C., Bencze, K., & Fruhmann, G. (1987). Pulmonary involvement in zinc fume fever. CHEST Journal, 92(5), 946-948.
[63] Laker, M. (1982). On determining trace element levels in man: the uses of blood and hair. The Lancet, 320(8292), 260-262.
[64] Hopps, H. C. (1977). The biologic bases for using hair and nail for analyses of trace elements. Science of the Total Environment, 7(1), 71-89.
[65] Maugh, T. H. (1978). Hair: a diagnostic tool to complement blood serum and urine. Science, 202(4374), 1271-1273.
[66] Petering, H. G., Yeager, D. W., & Witherup, S. O. (1971). Trace metal content of hair. Archives of Environmental Health: An International Journal, 23(3), 202-207.
[67] Olguín, A., Jauge, P., Cebrián, M. E., & Albores, A. (1983). Arsenic levels in blood, urine, hair and nails from a chronically exposed human population. Paper presented at the Proc. West Pharmacol. Soc.
[68] Jenkins, D. W. (1979). Toxic trace metals in mammalian hair and nails (Vol. 1): Environmental Monitoring and Support Laboratory, Office of Research and Development, US Environmental Protection Agency.
[69] Yoshinaga, J., Imai, H., Nakazawa, M., Suzuki, T., & Morita, M. (1990). Lack of significantly positive correlations between elemental concentrations in hair and in organs. Science of the Total Environment, 99(1-2), 125-135.
[70] Nowak, B., & Kozłowski, H. (1998). Heavy metals in human hair and teeth. Biological Trace Element Research, 62(3), 213-228.
[71] Van Dael, P., Davidsson, L., Muñoz-Box, R., Fay, L. B., & Barclay, D. (2001). Selenium absorption and retention from a selenite-or selenate-fortified milk-based formula in men measured by a stable-isotope technique. British Journal of Nutrition, 85(02), 157-163.
[72] Longnecker, M. P., Stampfer, M. J., Morris, J. S., Spate, V., Baskett, C., Mason, M., & Willett, W. C. (1993). A 1-y trial of the effect of high-selenium bread on selenium concentrations in blood and toenails. The American Journal of Clinical Nutrition, 57(3), 408-413.
[73] Goullé, J., Saussereau, E., Mahieu, L., Bouige, D., Groenwont, S., Guerbet, M., & Lacroix, C. (2009). Application of inductively coupled plasma mass spectrometry multielement analysis in fingernail and toenail as a biomarker of metal exposure. Journal of Analytical Toxicology, 33(2), 92-98.
[74] Ranzi, A., Fustinoni, S., Erspamer, L., Campo, L., Gatti, M. G., Bechtold, P., Bertazzi, P. A. (2013). Biomonitoring of the general population living near a modern solid waste incinerator: a pilot study in Modena, Italy. Environment International, 61, 88-97.
[75] Shao, W., Liu, Q., He, X., Liu, H., Gu, A., & Jiang, Z. (2017). Association between level of urinary trace heavy metals and obesity among children aged 6–19 years: NHANES 1999–2011. Environmental Science and Pollution Research, 24(12), 11573-11581.
[76] Zubero, M. B., Aurrekoetxea, J. J., Ibarluzea, J. M., Arenaza, M. J., Rodríguez, C., & Sáenz, J. R. (2010). Heavy metal levels (Pb, Cd, Cr and Hg) in the adult general population near an urban solid waste incinerator. Science of the Total Environment, 408(20), 4468-4474.
[77] 林燕柔. (2012). 燃煤火力發電廠周遭地區成人尿中砷及汞濃度之研究. 臺灣大學職業醫學與工業衛生研究所學位論文, 1-91.
[78] Barbosa Jr, F., Tanus-Santos, J. E., Gerlach, R. F., & Parsons, P. J. (2005). A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environmental Health Perspectives, 1669-1674.
[79] Park, J. S., Xun, P., Li, J., Morris, S. J., Jacobs, D. R., Liu, K., & He, K. (2016). Longitudinal association between toenail zinc levels and the incidence of diabetes among American young adults: The CARDIA Trace Element Study. Scientific Reports, 16, 6:23155. doi: 10.1038/srep23155.
[80] Loh, M. M., Sugeng, A., Lothrop, N., Klimecki, W., Cox, M., Wilkinson, S. T., Beamer, P. I. (2016). Multimedia exposures to arsenic and lead for children near an inactive mine tailings and smelter site. Environmental Research, 146, 331-339.
[81] Were, F. H., Njue, W., Murungi, J., & Wanjau, R. (2008). Use of human nails as bio-indicators of heavy metals environmental exposure among school age children in Kenya. Science of the Total Environment, 393(2), 376-384.
[82] Parizanganeh, A., Zamani, A., Bijnavand, V., & Taghilou, B. (2014). Human nail usage as a Bio-indicator in contamination monitoring of heavy metals in Dizajabaad, Zanjan province-Iran. Journal of Environmental Health Science and Engineering, 12(1), 147. doi: 10.1186/s40201-014-0147-x. eCollection.
[83] 賴文恩, & 楊得政. (2010). 基層醫療中, 成人慢性腎臟病的防治. 光田醫學雜誌, 5(9), 1-11.[84] Owen Jr, W. F., Lew, N. L., Liu, Y., Lowrie, E. G., & Lazarus, J. M. (1993). The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. New England Journal of Medicine, 329(14), 1001-1006.
[85] McIntyre, N. J., & Taal, M. W. (2008). How to measure proteinuria? Current Opinion in Nephrology and Hypertension, 17(6), 600-603.
[86] 黃清意, 賴世偉, & 林正介. (2006). 蛋白尿與微量白蛋白尿. 基層醫學, 21(6), 163-169.[87] Hambach, R., Lison, D., D’Haese, P., Weyler, J., De Graef, E., De Schryver, A., Van Sprundel, M. (2013). Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers. Toxicology Letters, 222(2), 233-238.
[88] Skálová, S. (2005). The diagnostic role of urinary N-acetyl-beta-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Medica, 48(2), 75-80.
[89] Price, R. (1992). The role of NAG (N-acetyl-bD-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Age, 20, 29.
[90] Kunin, C. M., Chesney, R. W., Craig, W. A., England, A. C., & DeAngelis, C. (1978). Enzymuria as a marker of renal injury and disease: Studies of N-acetyl-βglucosaminidase in the general population and in patients with renal disease. Pediatrics, 62(5), 751-760.
[91] Wellwood, J., Ellis, B., Price, R., Hammond, K., Thompson, A., & Jones, N. (1975). Urinary N-acetyl-beta-D-glucosaminidase activities in patients with renal disease. British Medical Journal, 3(5980), 408-411.
[92] Kaneko, K., Chiba, M., Hashizume, M., Kunii, O., Sasaki, S., Shimoda, T., . . . Dauletbaev, D. (2003). Renal tubular dysfunction in children living in the Aral Sea Region. Archives of Disease in Childhood, 88(11), 966-968.
[93] Goknar, N., Oktem, F., Ozgen, I. T., Torun, E., Kuçukkoc, M., Demir, A. D., & Cesur, Y. (2015). Determination of early urinary renal injury markers in obese children. Pediatric Nephrology, 30(1), 139-144.
[94] Mousa, A. A., El-Eshmawy, M. M., El-Adawy, E. H., Arafa, L. F., El Badrawy, A., & Saleh, O. M. (2012). Renal Resistive Index and Urinary N-acetyl-Beta-glucosaminidase as Predictors of Early Renal Involvement in Patients WithEssential Hypertension. World Journal of Nephrology and Urology, 1(1), 36-41.
[95] Mishra, O. P., Jain, P., Srivastava, P., & Prasad, R. (2012). Urinary N-acetyl-beta-D glucosaminidase (NAG) level in idiopathic nephrotic syndrome. Pediatric Nephrology, 27(4), 589-596.
[96] Aitio, A., Bernard, A., Fowler, B. A., & Nordberg, G. F. (2007). Biological Monitoring and Biomarkers.
[97] Bland, J. S. (1995). Oxidants and antioxidants in clinical medicine: past, present and future potential. Journal of Nutritional & Environmental Medicine, 5(3), 255-280.
[98] Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18(2), 321-336.
[99] Wang, J. P., Maddalena, R., Zheng, B., Zai, C., Liu, F., & Ng, J. C. (2009). Arsenicosis status and urinary malondialdehyde (MDA) in people exposed to arsenic contaminated-coal in China. Environment International, 35(3), 502-506.
[100] Devi, S. S., Biswas, A. R., Biswas, R. A., Vinayagamoorthy, N., Krishnamurthi, K., Shinde, V. M., Chakrabarti, T. (2007). Heavy metal status and oxidative stress in diesel engine tuning workers of central Indian population. Journal Of Occupational and Environmental Medicine, 49(11), 1228-1234.
[101] Hinokio, Y., Suzuki, S., Hirai, M., Suzuki, C., Suzuki, M., & Toyota, T. (2002). Urinary excretion of 8-oxo-7, 8-dihydro-2′-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia, 45(6), 877-882.
[102] Chiou, C. C., Chang, P. Y., Chan, E. C., Wu, T. L., Tsao, K. C., & Wu, J. T. (2003). Urinary 8-hydroxydeoxyguanosine and its analogs as DNA marker of oxidative stress: development of an ELISA and measurement in both bladder and prostate cancers. Clinica Chimica Acta, 334(1), 87-94.
[103] Lengger, C., Schöch, G., & Topp, H. (2000). A high-performance liquid chromatographic method for the determination of 8-oxo-7, 8-dihydro-2′-deoxyguanosine in urine from man and rat. Analytical Biochemistry, 287(1), 65-72.
[104] Weimann, A., Belling, D., & Poulsen, H. E. (2002). Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography–electrospray tandem mass spectrometry. Nucleic Acids Research, 30(2), e7-e7.
[105] Lu, S., Ren, L., Fang, J., Ji, J., Liu, G., Zhang, J., Fan, R. (2016). Trace elements are associated with urinary 8-hydroxy-2′-deoxyguanosine level: a case study of college students in Guangzhou, China. Environmental Science and Pollution Research, 23(9), 8484-8491.
[106] Gopaul, N., Änggård, E., Mallet, A., Betteridge, D., Wolff, S., & Nourooz-Zadeh, J. (1995). Plasma 8-epi-PGF2α levels are elevated in individuals with non-insulin dependent diabetes mellitus. Federation of European Biochemical Societies Letters, 368(2), 225-229.
[107] Keaney, J. F., Larson, M. G., Vasan, R. S., Wilson, P. W., Lipinska, I., Corey, D., Benjamin, E. J. (2003). Obesity and systemic oxidative stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(3), 434-439.
[108] Davì, G., Guagnano, M. T., Ciabattoni, G., Basili, S., Falco, A., Marinopiccoli, M., Patrono, C. (2002). Platelet activation in obese women: role of inflammation and oxidant stress. Journal of the American Medical Association, 288(16), 2008-2014.
[109] Bono, R., Tassinari, R., Bellisario, V., Gilli, G., Pazzi, M., Pirro, V., . . . Piccioni, P. (2015). Urban air and tobacco smoke as conditions that increase the risk of oxidative stress and respiratory response in youth. Environmental Research, 137, 141-146.
[110] Cracowski, J.-L., Durand, T., & Bessard, G. (2002). Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology and clinical implications. Trends in Pharmacological Sciences, 23(8), 360-366.
[111] Roberts, L. J., & Morrow, J. D. (2000). Measurement of F 2-isoprostanes as an index of oxidative stress in vivo. Free Radical Biology and Medicine, 28(4), 505-513.
[112] Pelclova, D., Zdimal, V., Kacer, P., Komarc, M., Fenclova, Z., Vlckova, S., Navratil, T. (2016). Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Reviews on Environmental Health. 32(1-2), 193-200.
[113] Kim, Y. D., Yim, D. H., Eom, S. Y., Moon, S. I., Park, C. H., Kim, G.-B., Kim, H. (2015). Temporal changes in urinary levels of cadmium, N-acetyl-β-d-glucosaminidase and β 2-microglobulin in individuals in a cadmium-contaminated area. Environmental Toxicology and Pharmacology, 39(1), 35-41.
[114] Kim, Y. D., Eom, S. Y., Yim, D. H., Kim, I. S., Won, H. K., Park, C. H., Park, J.-D. (2016). Environmental exposure to arsenic, lead, and cadmium in people living near Janghang copper smelter in Korea. Journal of Korean Medical Science, 31(4), 489-496.
[115] Barr, D. B., Wilder, L. C., Caudill, S. P., Gonzalez, A. J., Needham, L. L., & Pirkle, J. L. (2005). Urinary creatinine concentrations in the US population: implications for urinary biologic monitoring measurements. Environmental Health Perspectives, 192-200.
[116] Peters, K., Gammelgaard, B., & Menné, T. (1991). Nickel concentrations in fingernails as a measure of occupational exposure to nickel. Contact Dermatitis, 25(4), 237-241.
[117] Wang, Y. X., Feng, W., Zeng, Q., Sun, Y., Wang, P., You, L., Lu, W. Q. (2016). Variability of Metal Levels in Spot, First Morning, and 24-Hour Urine Samples over a 3-Month Period in Healthy Adult Chinese Men. Environmental Health Perspect, 124(4), 468-476. doi: 10.1289/ehp.1409551
[118] Rubin, L. H., Witkiewitz, K., Andre, J. S., & Reilly, S. (2007). Methods for handling missing data in the behavioral neurosciences: Don’t throw the baby rat out with the bath water. Journal of Undergraduate Neuroscience Education, 5(2), A71.
[119] Choi, Y. J., Nam, C. M., & Kwak, M. J. (2004). Multiple imputation technique applied to appropriateness ratings in cataract surgery. Yonsei Medical Journal, 45(5), 829-837.
[120] Hasselriis, F., & Licata, A. (1996). Analysis of heavy metal emission data from municipal waste combustion. Journal of Hazardous Materials, 47(1-3), 77-102.
[121] Ko, M., & Jervis, R. (1992). Atmospheric toxic metal contributions from hospital incinerators. Journal of Radioanalytical and Nuclear Chemistry, 161(1), 159-170.
[122] Greenberg, R. R., Zoller, W. H., & Gordon, G. E. (1978). Composition and size distributions of particles released in refuse incineration. Environmental Science & Technology, 12(5), 566-573.
[123] Rigo, C., Zamengo, L., Rampazzo, G., & Argese, E. (2009). Characterization of a former dump site in the Lagoon of Venice contaminated by municipal solid waste incinerator bottom ash, and estimation of possible environmental risk. Chemosphere, 77(4), 510-517.
[124] Kuiper, N., Rowell, C., Nriagu, J., & Shomar, B. (2014). What do the trace metal contents of urine and toenail samples from Qatar׳ s farm workers bioindicate? Environmental Research, 131, 86-94.
[125] Ohno, T., Sakamoto, M., Kurosawa, T., Dakeishi, M., Iwata, T., & Murata, K. (2007). Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function. Environmental Research, 103(2), 191-197.
[126] Raghunath, R., Tripathi, R., Kumar, A. V., Sathe, A., Khandekar, R., & Nambi, K. (1999). Assessment of Pb, Cd, Cu, and Zn exposures of 6-to 10-year-old children in Mumbai. Environmental Research, 80(3), 215-221.
[127] Meza-Figueroa, D., De la O-Villanueva, M., & De la Parra, M. L. (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmospheric Environment, 41(2), 276-288.
[128] Buchet, J., Roels, H., Bernard Jr, A., & Lauwerys, R. (1980). Assessment of Renal Function of Workers Exposed to Inorganic Lead, Cadmium or Mercury Vapor. Journal of Occupational and Environmental Medicine, 22(11), 741-750.
[129] Sabath, E., & Robles-Osorio, M. L. (2012). Renal health and the environment: heavy metal nephrotoxicity. Nefrologia, 32(3), 279-286.
[130] Johri, N., Jacquillet, G., & Unwin, R. (2010). Heavy metal poisoning: the effects of cadmium on the kidney. Biometals, 23(5), 783-792.
[131] Fowler, B. A. (1993). Mechanisms of kidney cell injury from metals. Environmental Health Perspectives, 100, 57-63.
[132] Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 42(1), 35-56.
[133] 許家綺. (2015). 中部某垃圾焚化爐周圍居民尿液與指甲重金屬濃度與其氧化性傷害及腎臟損傷之相關性. (碩士), 國立陽明大學, 台北市.[134] Schwedhelm, E., & Böger, R. H. (2003). Application of gas chromatography-mass spectrometry for analysis of isoprostanes: their role in cardiovascular disease. Clinical Chemistry and Laboratory Medicine, 41(12), 1552-1561.
[135] Maritim, A., Sanders, a., & Watkins, r. J. (2003). Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology, 17(1), 24-38.
[136] Lerman, L. O., Nath, K. A., Rodriguez-Porcel, M., Krier, J. D., Schwartz, R. S., Napoli, C., & Romero, J. C. (2001). Increased Oxidative Stress in Experimental Renovascular Hypertension. Hypertension, 37(2), 541-546.
[137] 林珈棋. (2011). 血氧飽和度指標與脂質氧化壓力之相關研究. (碩士), 國防醫學院, 台北市.[138] Parvez, F., Wasserman, G. A., Factor-Litvak, P., Liu, X., Slavkovich, V., Siddique, A. B., Levy, D. (2011). Arsenic exposure and motor function among children in Bangladesh. Environmental Health Perspectives, 119(11), 1665-1670.