跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:時權
研究生(外文):Chuan Shih
論文名稱:垃圾焚化爐附近居民生物檢體金屬濃度與其氧化性傷害及腎損傷之相關性
論文名稱(外文):Metals in biological specimens associated with oxidative stress and renal damage among residents living near a waste incinerator
指導教授:郭憲文郭憲文引用關係
指導教授(外文):Hsien-Wen Kuo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:環境與職業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:154
中文關鍵詞:焚化爐金屬尿液指甲NAG8-isoprostane
外文關鍵詞:IncineratormetalurinenailNAG8-isoprostane
相關次數:
  • 被引用被引用:1
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
背景與目的
垃圾焚化爐在燃燒的過程中易排放金屬汙染物,造成附近居民健康的影響。本研究目的在探討某焚化爐附近居民金屬的生物偵測、氧化性壓力與腎損傷之相關性。
材料與方法
本研究為橫斷性研究,並依民眾居住焚化爐距離遠近,將國小學童及其家長分為暴露組與非暴露組。使用問卷收集基本人口學變項,並以ICP-MS分析受測者尿液及指甲九種金屬濃度 (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn)。總共收集學童及家長有效問卷份數共215份,尿液樣本共233件,指甲樣本共129件。以NAG (N-Acetyl-β-D-glucosaminidase)當作評估腎損傷指標,利用ELISA分析氧化壓力指標8-isoprostane之濃度。統計方法使用SAS9.4版進行分析。
結果
暴露組學童在尿液中鎘、鋅與硒金屬濃度顯著高於對照組學童,但在對照組學童之鉻、汞金屬濃度則有顯著性偏高。暴露組家長在尿中鎘、硒及鋅濃度有顯著高於對照組的家長,在尿中鉻及汞則反之。對照組學童與家長在指甲鎘元素濃度則有顯著性偏高。以線性複迴歸分析控制其它變項後,學童尿液金屬濃度與8-isoprostane及NAG的相關性均高於指甲金屬,且均呈現正相關。家長部分尿液及指甲重金屬濃度與其NAG有顯著正相關。此外,利用羅吉斯複迴歸分析得知暴露組學童在NAG及8-isoprostane勝算比分別為4.269 (95% CI:2.144 – 8.922) 及14.154 (95% CI:5.698 – 35.162) 均高於對照組。
結論
研究結果得知住在焚化爐附近學童其生物檢體中金屬濃度偏高,且與氧化壓力指標與腎功能指標均呈現正相關,有可能與其暴露焚化爐排放金屬濃度有關。因此,環保機關應加強管制焚化爐排放金屬汙染量,及早發現汙染物散播途徑,有效降低焚化爐附近居民暴露重金屬汙染之健康危害。
Background and purpose
Metals are frequently emitted from waste incinerator and cause adverse health effects for residents living nearby incinerator. The aim of this study was to investigate the metals in biological specimens associated with oxidative stress and renal damage among residents nearby a waste incinerator.
Material and Methods
Our study design is cross-sectional study. According to the distance from their residence to the waste incinerator, all participants from elementary school students and their parents were divided into exposure group and non-exposure group. Questionnaire and biological specimens were collected from each participants. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze levels of nine metals in urine and fingernail, including 9 metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se and Zn). We collected 215 valid questionnaires, 233 urine samples and 129 nail samples from adults and schoolchildren. Urinary NAG (N-Acetyl-β-D-glucosaminidase) was used as biomarker of renal damage and urinary 8-isoprostane was acted as oxidative stress. Statistical methods were analyzed using SAS version 9.4.
Results
Significant elevated levels of Cd, Se and Zn in urine, NAG and 8-isoprostanewere found among students in exposure groups. However, there are significant elevated levels of Cr and Hg in urine and Cd in nail in control group (p value<0.05) Among their parents, urinary Cr level, and nail Cd and Pb levels in control group had higher than those of exposure group. Using multiple linear regression and adjusted for other potential confounders, urinary metal levels among students significantly and positively correlated with NAG and 8-isoprostane, but not found in nail. Moreover, some urinary and nail metals also had significant correlation with NAG in parent. Multiple logistic regression was used to find ORs with 4.269 for NAG and 14.154 for isoprostane among students in the exposure group compared to in the control group.
Conclusion and Suggestion
Our study indicated that schoolchildren living near a waste incinerator had elevated level of metals in biological specimens, which may cause oxidative stress and renal damage. It possibly correlated with emission of metals from the incinerator. Therefore, environmental protection agency should continuously control their emission of pollutants and elaborate their dispersion pathway to minimize the risk of expose to metals from incinerator.
目錄
中文摘要 I
Abstract III
目錄 V
表目錄 VIII
附表目錄 X
附圖目錄 XII
附件目錄 XIII
第一章、前言 1
第一節、研究背景與動機 1
第二節、研究目的 2
第二章、文獻探討 3
第一節、焚化爐可能排放之金屬元素 3
砷 (Arsenic, As) 3
鎘 (Cadmium, Cd) 3
鉻 (Chromium, Cr) 4
銅 (Copper, Cu) 4
汞 (Mercury, Hg) 4
鎳 (Nickel, Ni) 5
鉛 (Lead, Pb) 5
硒 (Selenium, Se) 6
鋅 (Zinc, Zn) 6
第二節、金屬生物指標之選擇 6
第三節、尿液金屬相關研究 7
第四節、指甲金屬相關研究 9
第五節、腎損傷指標之選擇 10
白蛋白 (Albumin) 11
N-乙醯-β-氨基葡萄糖?? (N-Acetyl-β-D-glucosaminidase, NAG) 12
第六節、氧化壓力指標之選擇 13
第七節、職業性與非職業性金屬暴露與氧化性傷害及腎臟損傷 16
第三章、研究方法與材料 18
第一節、研究架構 18
第二節、研究方法與對象 19
研究對象及地點 19
風向測定 21
第三節、藥品與設備 22
藥品 22
設備 22
第四節、生物檢體採樣方法與分析 23
尿液樣本 23
指甲樣本 25
儀器分析條件 26
分析方法之品保/品管 (Quality assurance/Quality control) 26
第五節NAG分析之測定 27
尿中NAG分析流程 27
分析條件 28
分析方法之再現性 28
第六節、8-isoprostane分析 29
96格孔盤配置 30
檢量線 31
分光光度計設定條件 31
第七節、資料整理與統計分析 32
第四章、研究結果 33
第一節、問卷基本資料 33
第二節、暴露組與對照組生物檢體金屬之濃度與腎臟損傷及氧化壓力指標之單變項分析 34
第三節、影響學童及家長NAG及8-isoprostane濃度之迴歸分析 37
第五章、討論 40
第一節、研究對象及方法之代表性 40
研究對象選取 40
尿液及指甲樣本 40
問卷調查 41
第二節、焚化爐附近空氣金屬濃度與檢體金屬之濃度 43
焚化爐附近空氣金屬濃度 43
檢體金屬濃度之探討 45
比較國內外民眾尿中金屬濃度 48
比較國內外民眾指甲金屬濃度 49
第三節、學童及家長生物檢體中金屬、8-isoprostane及NAG濃度之探討 53
國內外研究8-isoprostane濃度之比較 55
第四節、研究限制與未來研究方向 57
一、研究限制 57
二、未來研究方向 58
第六章、結論 59

表目錄
表一、暴露組與對照組學童基本資料比較 72
表二、暴露組與對照組學童自覺健康與住家型態之比較 73
表三、暴露組與對照組家長基本資料比較 74
表四、暴露組與對照組呼吸道疾病之比較 75
表五、暴露組與對照組學童尿中與指甲重金屬濃度之比較 76
表六、暴露組與對照組家長尿中與指甲重金屬濃度之比較 77
表七、暴露組與對照組學童及家長腎功能指標及氧化性傷害指標之比較 78
表八、學童尿中濃度之相關性 79
表九、學童指甲重金屬濃度之相關性 80
表十、家長尿中重金屬濃度之相關性 81
表十一、家長指甲重金屬濃度之相關性 82
表十二、學童及家長在兩組間尿液與指甲重金屬濃度之相關性 83
表十三、學童及家長腎臟功能指標及氧化壓力與尿液與指甲重金屬間的相關性 84
表十四、尿液樣本中氧化壓力指標與腎臟功能指標間的相關性 85
表十五、影響學童及家長NAG及8-isoprostane濃度之線性複迴歸分析 86
表十六、線性複迴歸模型分析學童重金屬濃度影響腎功能 (NAG) 與氧化壓力指標 (8-isoprostane) 87
表十七、線性複迴歸模型分析家長重金屬濃度影響腎功能 (NAG) 與氧化壓力指標 (8-isoprostane) 88
表十八、羅吉斯複迴歸模型分析學童及家長重金屬濃度影響腎功能 (NAG) 與氧化壓力指標 (8-isoprostane) 89
表十九、羅吉斯複迴歸模型分析學童重金屬濃度影響腎功能 (NAG) 與氧化壓力指標 (8-isoprostane) 90
表二十、羅吉斯複迴模型分析家長重金屬濃度影響腎功能 (NAG) 與氧化壓力指標 (8-isoprostane) 91
表二十一、羅吉斯複迴歸模型分析學童及家長危險因子影響自覺健康狀況 92
表二十二、羅吉斯複迴歸模型分析學童危險因子影響呼吸道症狀 93


附表目錄
附表一、暴露組及對照組研究對象收集樣本數之結果 94
附表二、ICP-MS分析條件 95
附表三、尿液及指甲檢量線與定量極限 96
附表四、重金屬排放管制相關法規 97
附表五、台中市某焚化廠102-106年煙道採樣資料 98
附表六、2016年台中文山及大里測站細懸浮微粒濃度比較 99
附表七、八個採樣點及煙道採樣之十六種金屬平均濃度 100
附表八、此研究與世界其它研究重金屬濃度之比較 101
附表九、暴露組A國小懸浮微粒金屬元素濃度 102
附表十、暴露組A國小歷年呼吸道症狀比例 103
附表十一、對照組C國小歷年呼吸道症狀比例 104
附表十二、以皮爾森 (Pearson) 相關分析尿液樣本間相關,並校正教育程度、年齡、國籍及農場工作年資 105
附表十三、以皮爾森 (Pearson) 相關分析指甲樣本間相關,並校正教育程度、年齡、國籍及農場工作年資 106
附表十四、國內外文獻分析尿中砷濃度 107
附表十五、國內外文獻分析尿中鎘濃度 108
附表十六、國內外文獻分析尿中鉻濃度 109
附表十七、國內外文獻分析尿中銅濃度 110
附表十八、國內外文獻分析尿中汞濃度 111
附表十九、國內外文獻分析尿中鎳濃度 112
附表二十、國內外文獻分析尿中鉛濃度 113
附表二十一、國內外文獻分析尿中硒濃度 114
附表二十二、國內外文獻分析尿中鋅濃度 115
附表二十三、國內外文獻分析指甲砷濃度 116
附表二十四、國內外文獻分析指甲鎘濃度 117
附表二十五、國內外文獻分析指甲鉻濃度 118
附表二十六、國內外文獻分析指甲銅濃度 119
附表二十七、國內外文獻分析指甲汞濃度 120
附表二十八、國內外文獻分析指甲鎳濃度 121
附表二十九、國內外文獻分析指甲鉛濃度 122
附表三十、國內外文獻分析指甲硒濃度 123
附表三十一、國內外文獻分析指甲鋅濃度 124
附表三十二、國內外文獻分析NAG濃度之比較 125
附表三十三、國內外文獻分析8-isoprostane濃度之比較 126

附圖目錄
附圖一、採樣點及焚化爐煙道金屬濃度測量結果 127
附圖二、焚化爐與各國小之地理位置圖 128
附圖三、2016年3、6、8及10月A國小風花圖 129
附圖四、歷年尿液重金屬濃度趨勢分析 130


附件目錄
附件一、台中垃圾處理場附近學童健康問卷調查表 137
附件二、暴露組居民對臺中市文山焚化爐的風險認知問卷調查表 142
附件三、對照組居民對臺中市文山焚化爐的風險認知問卷調查表 148
附件四、自覺呼吸道症狀嚴重程度分級 153
參考文獻
[1] 翁久惠. (1994). 嫌惡性設施對生活環境品質影響之研究-以台北市內湖, 木柵, 士林三個垃圾焚化廠為例.
[2] 中華民國行政院環境保護署焚化廠營運管理資訊系統. from https://swims.epa.gov.tw/swims/swims_net/Summary/Summary_WEPB2401_Data.aspx
[3] Hu, C. W., Chao, M. R., Wu, K. Y., Chang-Chien, G. P., Lee, W. J., Chang, L. W., & Lee, W. S. (2003). Characterization of multiple airborne particulate metals in the surroundings of a municipal waste incinerator in Taiwan. Atmospheric Environment, 37(20), 2845-2852.
[4] Agramunt, M. C., Domingo, A., Domingo, J. L., & Corbella, J. (2003). Monitoring internal exposure to metals and organic substances in workers at a hazardous waste incinerator after 3 years of operation. Toxicology Letters, 146(1), 83-91.
[5] Llobet, J., Falco, G., Casas, C., Teixido, A., & Domingo, J. (2003). Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. Journal of Agricultural and Food Chemistry, 51(3), 838-842.
[6] International Agency for Research on Cancer (IARC). (1980). Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man: Some Metals and Metallic Compounds. 23, 39–141.
[7] Agency, U. S. E. P. (2001). Drinking Water Requirements for States and Public Water Systems. from https://www.epa.gov/dwreginfo/chemical-contaminant-rules
[8] Smith, A. H., Hopenhayn-Rich, C., Bates, M. N., Goeden, H. M., Hertz-Picciotto, I., Duggan, H. M., Smith, M. T. (1992). Cancer risks from arsenic in drinking water. Environmental Health Perspectives, 97, 259-267.
[9] Bates, M. N., Smith, A. H., & Cantor, K. P. (1995). Case-control study of bladder cancer and arsenic in drinking water. American Journal of Epidemiology, 141(6), 523-530.
[10] Chen, C., Chen, C., Wu, M., & Kuo, T. (1992). Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. British Journal of Cancer, 66(5), 888.
[11] Feldstein, A. L. (1983). Arsenic and respiratory cancer in humans: follow-up of copper smelter employees in Montana. Journal of the National Cancer Institute, 70(4), 601-609.
[12] Lee-Feldstein, A. (1986). Cumulative exposure to arsenic and its relationship to respiratory cancer among copper smelter employees. Journal of Occupational And Environmental Medicine, 28(4), 296-302.
[13] Tseng, W.P. (1977). Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environmental Health Perspectives, 19, 109.
[14] Robberecht, H., Van Cauwenbergh, R., Bosscher, D., Cornelis, R., & Deelstra, H. (2002). Daily dietary total arsenic intake in Belgium using duplicate portion sampling and elemental content of various foodstuffs. European Food Research and Technology, 214(1), 27-32.
[15] Borak, J., & Hosgood, H. D. (2007). Seafood arsenic: implications for human risk assessment. Regulatory Toxicology and Pharmacology, 47(2), 204-212.
[16] Heitland, P., & Köster, H. D. (2006). Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clinica Chimica Acta, 365(1), 310-318.
[17] Calderon, J., Navarro, M., Jimenez-Capdeville, M., Santos-Diaz, M., Golden, A., Rodriguez-Leyva, I., Dıaz-Barriga, F. (2001). Exposure to arsenic and lead and neuropsychological development in Mexican children. Environmental Research, 85(2), 69-76.
[18] Tsai, S. Y., Chou, H. Y., The, H. W., Chen, C. M., & Chen, C. J. (2003). The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology, 24(4), 747-753.
[19] Wasserman, G. A., Liu, X., Parvez, F., Ahsan, H., Factor-Litvak, P., van Geen, A., Hussain, I. (2004). Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh. Environmental Health Perspectives, 1329-1333.
[20] Wright, R. O., Amarasiriwardena, C., Woolf, A. D., Jim, R., & Bellinger, D. C. (2006). Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology, 27(2), 210-216.
[21] Bernard, A. (2004). Renal dysfunction induced by cadmium: biomarkers of critical effects. Biometals, 17(5), 519-523.
[22] Barbier, O., Jacquillet, G., Tauc, M., Cougnon, M., & Poujeol, P. (2005). Effect of heavy metals on, and handling by, the kidney. Nephron Physiology, 99(4), p105-p110.
[23] Seidal, K., Jörgensen, N., Elinder, C.-G., Sjögren, B., & Vahter, M. (1993). Fatal cadmium-induced pneumonitis. Scandinavian Journal of Work, Environment & Health, 429-431.
[24] Kazantzis, G. (2004). Cadmium, osteoporosis and calcium metabolism. Biometals, 17(5), 493-498.
[25] Bernhoft, R. A. (2013). Cadmium toxicity and treatment. The Scientific World Journal, 2013.
[26] Kjellström, T. (1991). Mechanism and epidemiology of bone effects of cadmium. IARC Scientific Publications(118), 301-310.
[27] Zheng, L., Wu, K., Li, Y., Qi, Z., Han, D., Zhang, B., Chen, S. (2008). Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environmental Research, 108(1), 15-20.
[28] Gibb, H. J., Lees, P. S., Pinsky, P. F., & Rooney, B. C. (2000). Lung cancer among workers in chromium chemical production. American Journal of Industrial Medicine, 38(2), 115-126.
[29] Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167-182.
[30] International Agency for Research on Cancer (IARC) (1987). IARC Monograpghs on the Evaluation of Carcinogenic Risks to Humans-Supplement 7. 61.
[31] Cookson, M. R., & Shaw, P. J. (1999). Oxidative stress and motor neurone disease. Brain Pathology, 9(1), 165-186.
[32] Strausak, D., Mercer, J. F., Dieter, H. H., Stremmel, W., & Multhaup, G. (2001). Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Research Bulletin, 55(2), 175-185.
[33] Grandjean, P., Weihe, P., White, R. F., & Debes, F. (1998). Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environmental Research, 77(2), 165-172.
[34] Grandjean, P., Weihe, P., & Nielsen, J. B. (1994). Methylmercury: significance of intrauterine and postnatal exposures. Clinical Chemistry, 40(7), 1395-1400.
[35] Counter, S. A., & Buchanan, L. H. (2004). Mercury exposure in children: a review. Toxicology and Applied Pharmacology, 198(2), 209-230.
[36] Zahir, F., Rizwi, S. J., Haq, S. K., & Khan, R. H. (2005). Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 20(2), 351-360.
[37] Grandjean, P., & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. The Lancet, 368(9553), 2167-2178.
[38] Agency, U. S. E. P. (1986). Guidelines for Carcinogen Risk Assessment. from https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=277
[39] Olivieri, G., Novakovic, M., Savaskan, E., Meier, F., Baysang, G., Brockhaus, M., & Müller-Spahn, F. (2002). The effects of β-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and β-amyloid secretion. Neuroscience, 113(4), 849-855.
[40] Pang, Y., Peng, R. D., Jones, M. R., Francesconi, K. A., Goessler, W., Howard, B. V., Navas-Acien, A. (2016). Metal mixtures in urban and rural populations in the US: The Multi-Ethnic Study of Atherosclerosis and the Strong Heart Study. Environmental Research, 147, 356-364.
[41] Doll, R. (1958). Cancer of the lung and nose in nickel workers. British Journal of Industrial Medicine, 15(4), 217-223.
[42] Pedersen, E., Høgetveit, A. C., & Andersen, A. (1973). Cancer of respiratory organs among workers at a nickel refinery in Norway. International Journal of Cancer, 12(1), 32-41.
[43] Sorahan, T., & Esmen, N. (2004). Lung cancer mortality in UK nickel-cadmium battery workers, 1947–2000. Occupational and Environmental Medicine, 61(2), 108-116.
[44] Agency for Toxic Substances and Disease Registry. Toxic Substances Portal - Nickel. from https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=244&tid=44
[45] Mantere, P., Hänninen, H., Hernberg, S., & Luukkonen, R. (1984). A prospective follow-up study on psychological effects in workers exposed to low levels of lead. Scandinavian Journal of Work, Environment & Health, 43-50.
[46] Hänninen, H., Aitio, A., Kovala, T., Luukkonen, R., Matikainen, E., Mannelin, T., Riihimäki, V. (1998). Occupational exposure to lead and neuropsychological dysfunction. Occupational and Environmental Medicine, 55(3), 202-209.
[47] Lidsky, T. I., & Schneider, J. S. (2003). Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain, 126(1), 5-19.
[48] International Agency for Research on Cancer (IARC) (1987). IARC Monograpghs on the Evaluation of Carcinogenic Risks to Humans-Supplement 7. 230-232.
[49] Jakubowski, M. (2011). Low-level environmental lead exposure and intellectual impairment in children—the current concepts of risk assessment. International Journal of Occupational Medicine and Environmental Health, 24(1), 1-7.
[50] Gennart, J.-P., Bernard, A., & Lauwerys, R. (1992). Assessment of thyroid, testes, kidney and autonomic nervous system function in lead-exposed workers. International Archives of Occupational and Environmental Health, 64(1), 49-57.
[51] Foster, L., & Sumar, S. (1997). Selenium in health and disease: a review. Critical Reviews. Food Science & Nutrition, 37(3), 211-228.
[52] Peretz, A., Neve, J., Duchateau, J., & Famaey, J.-P. (1992). Adjuvant treatment of recent onset rheumatoid arthritis by selenium supplementation: preliminary observations. Rheumatology, 31(4), 281-282.
[53] Knekt, P., Heliövaara, M., Aho, K., Alfthan, G., Marniemi, J., & Aromaa, A. (2000). Serum selenium, serum alpha-tocopherol, and the risk of rheumatoid arthritis. Epidemiology, 11(4), 402-405.
[54] Yu, M. W., Horng, S., Hsu, K. H., Chiang, Y. C., Liaw, Y. F., & Chen, C. J. (1999). Plasma selenium levels and risk of hepatocellular carcinoma among men with chronic hepatitis virus infection. American Journal of Epidemiology, 150(4), 367-374.
[55] Yoshizawa, K., Willett, W. C., Morris, S. J., Stampfer, M. J., Spiegelman, D., Rimm, E. B., & Giovannucci, E. (1998). Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer. Journal of the National Cancer Institute, 90(16), 1219-1224.
[56] International Agency for Research on Cancer (IARC) (1987). IARC Monograpghs on the Evaluation of Carcinogenic Risks to Humans-Supplement 7. International Agency for Research on Cancer, 71.
[57] Aggett, P. (1983). Acrodermatitis enteropathica. Journal of Inherited Metabolic Disease, 6, 39-43.
[58] Fessatou, S., Fagerhol, M. K., Roth, J., Stamoulakatou, A., Kitra, V., Hadarean, M., Papassotiriou, I. (2005). Severe anemia and neutropenia associated with hyperzincemia and hypercalprotectinemia. Journal of Pediatric Hematology/Oncology, 27(9), 477-480.
[59] Smith, J. C., Zeller, J. A., Brown, E. D., & Ong, S. (1976). Elevated plasmz zinc: a heritable anomaly. Science, 193(4252), 496-498.
[60] Saito, Y., Saito, K., Hirano, Y., Ikeya, K., Suzuki, H., Shishikura, K., Iwasa, A. (2002). Hyperzincemia with systemic inflammation: a heritable disorder of calprotectin metabolism with rheumatic manifestations? The Journal of Pediatrics, 140(2), 267-269.
[61] Sampson, B., Kovar, I. Z., Rauscher, A., Fairweather-Tait, S., Beattie, J., Mcardle, H. J., Green, C. (1997). A case of hyperzincemia with functional zinc depletion: a new disorder? Pediatric Research, 42(2), 219-225.
[62] Vogelmeier, C., Bencze, K., & Fruhmann, G. (1987). Pulmonary involvement in zinc fume fever. CHEST Journal, 92(5), 946-948.
[63] Laker, M. (1982). On determining trace element levels in man: the uses of blood and hair. The Lancet, 320(8292), 260-262.
[64] Hopps, H. C. (1977). The biologic bases for using hair and nail for analyses of trace elements. Science of the Total Environment, 7(1), 71-89.
[65] Maugh, T. H. (1978). Hair: a diagnostic tool to complement blood serum and urine. Science, 202(4374), 1271-1273.
[66] Petering, H. G., Yeager, D. W., & Witherup, S. O. (1971). Trace metal content of hair. Archives of Environmental Health: An International Journal, 23(3), 202-207.
[67] Olguín, A., Jauge, P., Cebrián, M. E., & Albores, A. (1983). Arsenic levels in blood, urine, hair and nails from a chronically exposed human population. Paper presented at the Proc. West Pharmacol. Soc.
[68] Jenkins, D. W. (1979). Toxic trace metals in mammalian hair and nails (Vol. 1): Environmental Monitoring and Support Laboratory, Office of Research and Development, US Environmental Protection Agency.
[69] Yoshinaga, J., Imai, H., Nakazawa, M., Suzuki, T., & Morita, M. (1990). Lack of significantly positive correlations between elemental concentrations in hair and in organs. Science of the Total Environment, 99(1-2), 125-135.
[70] Nowak, B., & Kozłowski, H. (1998). Heavy metals in human hair and teeth. Biological Trace Element Research, 62(3), 213-228.
[71] Van Dael, P., Davidsson, L., Muñoz-Box, R., Fay, L. B., & Barclay, D. (2001). Selenium absorption and retention from a selenite-or selenate-fortified milk-based formula in men measured by a stable-isotope technique. British Journal of Nutrition, 85(02), 157-163.
[72] Longnecker, M. P., Stampfer, M. J., Morris, J. S., Spate, V., Baskett, C., Mason, M., & Willett, W. C. (1993). A 1-y trial of the effect of high-selenium bread on selenium concentrations in blood and toenails. The American Journal of Clinical Nutrition, 57(3), 408-413.
[73] Goullé, J., Saussereau, E., Mahieu, L., Bouige, D., Groenwont, S., Guerbet, M., & Lacroix, C. (2009). Application of inductively coupled plasma mass spectrometry multielement analysis in fingernail and toenail as a biomarker of metal exposure. Journal of Analytical Toxicology, 33(2), 92-98.
[74] Ranzi, A., Fustinoni, S., Erspamer, L., Campo, L., Gatti, M. G., Bechtold, P., Bertazzi, P. A. (2013). Biomonitoring of the general population living near a modern solid waste incinerator: a pilot study in Modena, Italy. Environment International, 61, 88-97.
[75] Shao, W., Liu, Q., He, X., Liu, H., Gu, A., & Jiang, Z. (2017). Association between level of urinary trace heavy metals and obesity among children aged 6–19 years: NHANES 1999–2011. Environmental Science and Pollution Research, 24(12), 11573-11581.
[76] Zubero, M. B., Aurrekoetxea, J. J., Ibarluzea, J. M., Arenaza, M. J., Rodríguez, C., & Sáenz, J. R. (2010). Heavy metal levels (Pb, Cd, Cr and Hg) in the adult general population near an urban solid waste incinerator. Science of the Total Environment, 408(20), 4468-4474.
[77] 林燕柔. (2012). 燃煤火力發電廠周遭地區成人尿中砷及汞濃度之研究. 臺灣大學職業醫學與工業衛生研究所學位論文, 1-91.
[78] Barbosa Jr, F., Tanus-Santos, J. E., Gerlach, R. F., & Parsons, P. J. (2005). A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environmental Health Perspectives, 1669-1674.
[79] Park, J. S., Xun, P., Li, J., Morris, S. J., Jacobs, D. R., Liu, K., & He, K. (2016). Longitudinal association between toenail zinc levels and the incidence of diabetes among American young adults: The CARDIA Trace Element Study. Scientific Reports, 16, 6:23155. doi: 10.1038/srep23155.
[80] Loh, M. M., Sugeng, A., Lothrop, N., Klimecki, W., Cox, M., Wilkinson, S. T., Beamer, P. I. (2016). Multimedia exposures to arsenic and lead for children near an inactive mine tailings and smelter site. Environmental Research, 146, 331-339.
[81] Were, F. H., Njue, W., Murungi, J., & Wanjau, R. (2008). Use of human nails as bio-indicators of heavy metals environmental exposure among school age children in Kenya. Science of the Total Environment, 393(2), 376-384.
[82] Parizanganeh, A., Zamani, A., Bijnavand, V., & Taghilou, B. (2014). Human nail usage as a Bio-indicator in contamination monitoring of heavy metals in Dizajabaad, Zanjan province-Iran. Journal of Environmental Health Science and Engineering, 12(1), 147. doi: 10.1186/s40201-014-0147-x. eCollection.
[83] 賴文恩, & 楊得政. (2010). 基層醫療中, 成人慢性腎臟病的防治. 光田醫學雜誌, 5(9), 1-11.
[84] Owen Jr, W. F., Lew, N. L., Liu, Y., Lowrie, E. G., & Lazarus, J. M. (1993). The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. New England Journal of Medicine, 329(14), 1001-1006.
[85] McIntyre, N. J., & Taal, M. W. (2008). How to measure proteinuria? Current Opinion in Nephrology and Hypertension, 17(6), 600-603.
[86] 黃清意, 賴世偉, & 林正介. (2006). 蛋白尿與微量白蛋白尿. 基層醫學, 21(6), 163-169.
[87] Hambach, R., Lison, D., D’Haese, P., Weyler, J., De Graef, E., De Schryver, A., Van Sprundel, M. (2013). Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers. Toxicology Letters, 222(2), 233-238.
[88] Skálová, S. (2005). The diagnostic role of urinary N-acetyl-beta-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Medica, 48(2), 75-80.
[89] Price, R. (1992). The role of NAG (N-acetyl-bD-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Age, 20, 29.
[90] Kunin, C. M., Chesney, R. W., Craig, W. A., England, A. C., & DeAngelis, C. (1978). Enzymuria as a marker of renal injury and disease: Studies of N-acetyl-βglucosaminidase in the general population and in patients with renal disease. Pediatrics, 62(5), 751-760.
[91] Wellwood, J., Ellis, B., Price, R., Hammond, K., Thompson, A., & Jones, N. (1975). Urinary N-acetyl-beta-D-glucosaminidase activities in patients with renal disease. British Medical Journal, 3(5980), 408-411.
[92] Kaneko, K., Chiba, M., Hashizume, M., Kunii, O., Sasaki, S., Shimoda, T., . . . Dauletbaev, D. (2003). Renal tubular dysfunction in children living in the Aral Sea Region. Archives of Disease in Childhood, 88(11), 966-968.
[93] Goknar, N., Oktem, F., Ozgen, I. T., Torun, E., Kuçukkoc, M., Demir, A. D., & Cesur, Y. (2015). Determination of early urinary renal injury markers in obese children. Pediatric Nephrology, 30(1), 139-144.
[94] Mousa, A. A., El-Eshmawy, M. M., El-Adawy, E. H., Arafa, L. F., El Badrawy, A., & Saleh, O. M. (2012). Renal Resistive Index and Urinary N-acetyl-Beta-glucosaminidase as Predictors of Early Renal Involvement in Patients WithEssential Hypertension. World Journal of Nephrology and Urology, 1(1), 36-41.
[95] Mishra, O. P., Jain, P., Srivastava, P., & Prasad, R. (2012). Urinary N-acetyl-beta-D glucosaminidase (NAG) level in idiopathic nephrotic syndrome. Pediatric Nephrology, 27(4), 589-596.
[96] Aitio, A., Bernard, A., Fowler, B. A., & Nordberg, G. F. (2007). Biological Monitoring and Biomarkers.
[97] Bland, J. S. (1995). Oxidants and antioxidants in clinical medicine: past, present and future potential. Journal of Nutritional & Environmental Medicine, 5(3), 255-280.
[98] Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18(2), 321-336.
[99] Wang, J. P., Maddalena, R., Zheng, B., Zai, C., Liu, F., & Ng, J. C. (2009). Arsenicosis status and urinary malondialdehyde (MDA) in people exposed to arsenic contaminated-coal in China. Environment International, 35(3), 502-506.
[100] Devi, S. S., Biswas, A. R., Biswas, R. A., Vinayagamoorthy, N., Krishnamurthi, K., Shinde, V. M., Chakrabarti, T. (2007). Heavy metal status and oxidative stress in diesel engine tuning workers of central Indian population. Journal Of Occupational and Environmental Medicine, 49(11), 1228-1234.
[101] Hinokio, Y., Suzuki, S., Hirai, M., Suzuki, C., Suzuki, M., & Toyota, T. (2002). Urinary excretion of 8-oxo-7, 8-dihydro-2′-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia, 45(6), 877-882.
[102] Chiou, C. C., Chang, P. Y., Chan, E. C., Wu, T. L., Tsao, K. C., & Wu, J. T. (2003). Urinary 8-hydroxydeoxyguanosine and its analogs as DNA marker of oxidative stress: development of an ELISA and measurement in both bladder and prostate cancers. Clinica Chimica Acta, 334(1), 87-94.
[103] Lengger, C., Schöch, G., & Topp, H. (2000). A high-performance liquid chromatographic method for the determination of 8-oxo-7, 8-dihydro-2′-deoxyguanosine in urine from man and rat. Analytical Biochemistry, 287(1), 65-72.
[104] Weimann, A., Belling, D., & Poulsen, H. E. (2002). Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography–electrospray tandem mass spectrometry. Nucleic Acids Research, 30(2), e7-e7.
[105] Lu, S., Ren, L., Fang, J., Ji, J., Liu, G., Zhang, J., Fan, R. (2016). Trace elements are associated with urinary 8-hydroxy-2′-deoxyguanosine level: a case study of college students in Guangzhou, China. Environmental Science and Pollution Research, 23(9), 8484-8491.
[106] Gopaul, N., Änggård, E., Mallet, A., Betteridge, D., Wolff, S., & Nourooz-Zadeh, J. (1995). Plasma 8-epi-PGF2α levels are elevated in individuals with non-insulin dependent diabetes mellitus. Federation of European Biochemical Societies Letters, 368(2), 225-229.
[107] Keaney, J. F., Larson, M. G., Vasan, R. S., Wilson, P. W., Lipinska, I., Corey, D., Benjamin, E. J. (2003). Obesity and systemic oxidative stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(3), 434-439.
[108] Davì, G., Guagnano, M. T., Ciabattoni, G., Basili, S., Falco, A., Marinopiccoli, M., Patrono, C. (2002). Platelet activation in obese women: role of inflammation and oxidant stress. Journal of the American Medical Association, 288(16), 2008-2014.
[109] Bono, R., Tassinari, R., Bellisario, V., Gilli, G., Pazzi, M., Pirro, V., . . . Piccioni, P. (2015). Urban air and tobacco smoke as conditions that increase the risk of oxidative stress and respiratory response in youth. Environmental Research, 137, 141-146.
[110] Cracowski, J.-L., Durand, T., & Bessard, G. (2002). Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology and clinical implications. Trends in Pharmacological Sciences, 23(8), 360-366.
[111] Roberts, L. J., & Morrow, J. D. (2000). Measurement of F 2-isoprostanes as an index of oxidative stress in vivo. Free Radical Biology and Medicine, 28(4), 505-513.
[112] Pelclova, D., Zdimal, V., Kacer, P., Komarc, M., Fenclova, Z., Vlckova, S., Navratil, T. (2016). Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Reviews on Environmental Health. 32(1-2), 193-200.
[113] Kim, Y. D., Yim, D. H., Eom, S. Y., Moon, S. I., Park, C. H., Kim, G.-B., Kim, H. (2015). Temporal changes in urinary levels of cadmium, N-acetyl-β-d-glucosaminidase and β 2-microglobulin in individuals in a cadmium-contaminated area. Environmental Toxicology and Pharmacology, 39(1), 35-41.
[114] Kim, Y. D., Eom, S. Y., Yim, D. H., Kim, I. S., Won, H. K., Park, C. H., Park, J.-D. (2016). Environmental exposure to arsenic, lead, and cadmium in people living near Janghang copper smelter in Korea. Journal of Korean Medical Science, 31(4), 489-496.
[115] Barr, D. B., Wilder, L. C., Caudill, S. P., Gonzalez, A. J., Needham, L. L., & Pirkle, J. L. (2005). Urinary creatinine concentrations in the US population: implications for urinary biologic monitoring measurements. Environmental Health Perspectives, 192-200.
[116] Peters, K., Gammelgaard, B., & Menné, T. (1991). Nickel concentrations in fingernails as a measure of occupational exposure to nickel. Contact Dermatitis, 25(4), 237-241.
[117] Wang, Y. X., Feng, W., Zeng, Q., Sun, Y., Wang, P., You, L., Lu, W. Q. (2016). Variability of Metal Levels in Spot, First Morning, and 24-Hour Urine Samples over a 3-Month Period in Healthy Adult Chinese Men. Environmental Health Perspect, 124(4), 468-476. doi: 10.1289/ehp.1409551
[118] Rubin, L. H., Witkiewitz, K., Andre, J. S., & Reilly, S. (2007). Methods for handling missing data in the behavioral neurosciences: Don’t throw the baby rat out with the bath water. Journal of Undergraduate Neuroscience Education, 5(2), A71.
[119] Choi, Y. J., Nam, C. M., & Kwak, M. J. (2004). Multiple imputation technique applied to appropriateness ratings in cataract surgery. Yonsei Medical Journal, 45(5), 829-837.
[120] Hasselriis, F., & Licata, A. (1996). Analysis of heavy metal emission data from municipal waste combustion. Journal of Hazardous Materials, 47(1-3), 77-102.
[121] Ko, M., & Jervis, R. (1992). Atmospheric toxic metal contributions from hospital incinerators. Journal of Radioanalytical and Nuclear Chemistry, 161(1), 159-170.
[122] Greenberg, R. R., Zoller, W. H., & Gordon, G. E. (1978). Composition and size distributions of particles released in refuse incineration. Environmental Science & Technology, 12(5), 566-573.
[123] Rigo, C., Zamengo, L., Rampazzo, G., & Argese, E. (2009). Characterization of a former dump site in the Lagoon of Venice contaminated by municipal solid waste incinerator bottom ash, and estimation of possible environmental risk. Chemosphere, 77(4), 510-517.
[124] Kuiper, N., Rowell, C., Nriagu, J., & Shomar, B. (2014). What do the trace metal contents of urine and toenail samples from Qatar׳ s farm workers bioindicate? Environmental Research, 131, 86-94.
[125] Ohno, T., Sakamoto, M., Kurosawa, T., Dakeishi, M., Iwata, T., & Murata, K. (2007). Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function. Environmental Research, 103(2), 191-197.
[126] Raghunath, R., Tripathi, R., Kumar, A. V., Sathe, A., Khandekar, R., & Nambi, K. (1999). Assessment of Pb, Cd, Cu, and Zn exposures of 6-to 10-year-old children in Mumbai. Environmental Research, 80(3), 215-221.
[127] Meza-Figueroa, D., De la O-Villanueva, M., & De la Parra, M. L. (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmospheric Environment, 41(2), 276-288.
[128] Buchet, J., Roels, H., Bernard Jr, A., & Lauwerys, R. (1980). Assessment of Renal Function of Workers Exposed to Inorganic Lead, Cadmium or Mercury Vapor. Journal of Occupational and Environmental Medicine, 22(11), 741-750.
[129] Sabath, E., & Robles-Osorio, M. L. (2012). Renal health and the environment: heavy metal nephrotoxicity. Nefrologia, 32(3), 279-286.
[130] Johri, N., Jacquillet, G., & Unwin, R. (2010). Heavy metal poisoning: the effects of cadmium on the kidney. Biometals, 23(5), 783-792.
[131] Fowler, B. A. (1993). Mechanisms of kidney cell injury from metals. Environmental Health Perspectives, 100, 57-63.
[132] Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 42(1), 35-56.
[133] 許家綺. (2015). 中部某垃圾焚化爐周圍居民尿液與指甲重金屬濃度與其氧化性傷害及腎臟損傷之相關性. (碩士), 國立陽明大學, 台北市.
[134] Schwedhelm, E., & Böger, R. H. (2003). Application of gas chromatography-mass spectrometry for analysis of isoprostanes: their role in cardiovascular disease. Clinical Chemistry and Laboratory Medicine, 41(12), 1552-1561.
[135] Maritim, A., Sanders, a., & Watkins, r. J. (2003). Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology, 17(1), 24-38.
[136] Lerman, L. O., Nath, K. A., Rodriguez-Porcel, M., Krier, J. D., Schwartz, R. S., Napoli, C., & Romero, J. C. (2001). Increased Oxidative Stress in Experimental Renovascular Hypertension. Hypertension, 37(2), 541-546.
[137] 林珈棋. (2011). 血氧飽和度指標與脂質氧化壓力之相關研究. (碩士), 國防醫學院, 台北市.
[138] Parvez, F., Wasserman, G. A., Factor-Litvak, P., Liu, X., Slavkovich, V., Siddique, A. B., Levy, D. (2011). Arsenic exposure and motor function among children in Bangladesh. Environmental Health Perspectives, 119(11), 1665-1670.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top