跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 07:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳穎逸
研究生(外文):Ying-Yi Chen
論文名稱:地下捷運車站懸浮微粒特性研究
論文名稱(外文):Study on characteristics of suspended particulate in subway station
指導教授:毛義方毛義方引用關係陳美蓮陳美蓮引用關係
指導教授(外文):I-Fang MaoMei-Lien Chen
學位類別:博士
校院名稱:國立陽明大學
系所名稱:環境與職業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:113
中文關鍵詞:懸浮微粒室內空氣品質地鐵捷運車站
外文關鍵詞:Suspended particlesindoor air qualitysubwayMRT station
相關次數:
  • 被引用被引用:2
  • 點閱點閱:728
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:1
捷運系統是都會地區主要大眾交通工具之一,大城市每天百萬次的旅運量中,在捷運車站中可能面臨到室內空氣污染物的暴露。許多研究文獻指出地下捷運車站中的懸浮微粒濃度有時高出戶外空氣好幾倍,而且其組成也與戶外懸浮微粒的成份不同。本研究目的在於了解捷運車站之空氣污染物質分佈情形及懸浮微粒之成份特性及來源分析,並評估捷運隧道清洗對於捷運車站懸浮微粒之去除效果。
研究方法包括使用直讀式儀器進行不同特性之捷運車站室內空氣污染物之測定,並比較各空氣污染物濃度與室內空氣品質標準,找出可能具有較高風險之污染物質,初步研究發現懸浮微粒為捷運車站主要影響之物質。後續再選定捷運車站之隧道、月台及出入口進行懸浮微粒之成份分析,最後再進行捷運隧道全斷面清洗試驗,評估清洗前後對捷運車站內懸浮微粒之去除成效。
本研究選定台北捷運前10大旅運量之車站進行室內空氣污染量測,量測項目包含濕度、溫度、一氧化碳、二氧化碳、甲醛、總揮發性有機化合物、臭氧、懸浮微粒PM10、PM2.5、細菌和真菌。結果顯示一氧化碳,二氧化碳及甲醛濃度是符合台灣環保署公告的室內空氣品質標準。但大多數的車站PM10及PM2.5濃度超過標準值。在暖季時部分車站之總揮發性有機化合物及細菌濃度也高於標準值。
後續選擇懸浮微粒濃度較高的車站B進行懸浮微粒之成份分析,為了解懸浮微粒來源,選擇車站B之隧道、月台及地面出入口進行懸浮微粒PM10及PM2.5之採樣,分析不同地點之濃度及成份。發現PM10及PM2.5的濃度由隧道、月台層至出入口遞減,而在出入口濃度仍較大氣周界環境空氣濃度高。地下車站的懸浮微粒的金屬成份主要以Fe、Ba、Cu、Mn、Mg、Al、Cr、Zn、Ni、Pb等元素,經與捷運設備軌道、鋼輪、導電軌及集電靴成份比對,其金屬組成比例十分類似,在捷運系統中的PM10、PM2.5懸浮微粒之Mn/Fe比值約為0.012~0.020間,可作為捷運系統懸浮成份特性之判斷。
另外選擇車站K評估以水柱清洗隧道降低捷運車站之懸浮微粒濃度成效,在清洗後第一天PM10、PM2.5濃度會較清洗前一天PM10與PM2.5之平均濃度 (營運時間)高出144.9%、152.9%、最大濃度高出133.4%、140.1%。但在清洗後第2天起PM10及PM2.5的濃度開始有顯著的下降,比起清洗前一天PM10與PM2.5之平均濃度約下降81.2%、79.3%、最大濃度下降67.2%、67.0%。而長時間觀察下,捷運地下車站懸浮微粒濃度減少成效部分PM10的成效較好,最佳改善效果可降低至清洗前濃度45.9%且可持續約3.5月個月左右。PM2.5的改善成效較差,僅降低至清洗前濃度71.3%且僅持續約2個月左右。
MRT station is one of the major public transports in the big city, and millions of passengers used MRT every day. Passengers may expose indoor air pollutants. Many studies have shown that the concentration of PM in the MRT station is higher than outdoor air, and its composition is different from outdoor. The aim of this study was to understand the distribution of air pollutants in the MRT station and analysis composition of PM. Furthermore, the MRT tunnel washing was evaluated for the removal of PM.
Using real time equipment measured the indoor air quality of the station. The components of PM were analyzed at the tunnel, platform and exit on MRT station. Finally, tunnel washing performance was evaluated within an MRT tunnel.
This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs),ozone (O3), airborne particulate matter (PM10 and PM2.5), bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA). However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.
Then this study, both PM10 and PM2.5 concentrations in Taipei Rapid Transit System (TRTS) decreased sequentially from the tunnels to the platforms to the entrances/exists, of which PM concentrations were still higher than those in ambient. The mainly metal components of the suspended particulates in TRTS were composed of Fe, Ba, Cu, Mn, Mg, Al, Cr, Zn, Ni and Pb. The Mn/Fe ratios in PM10 and PM2.5 were similar to the material specifications and composition of tracks, steel wheels and collector shoes as well as were from 0.012 to 0.020.
The monitoring results showed an increase in PM10 and PM2.5 concentrations after tunnel washing. The average concentrations of PM10 and PM2.5 during operation hours on the first day after tunnel washing increased by 144.9% and 152.9%, respectively, higher than those on the day before tunnel washing. The maximum increased concentrations were by 133.4% and 140.1% for PM10 and PM2.5, respectively. However, the average concentrations of PM10 and PM2.5 during operation hours on the second day after tunnel washing decreased by 81.2% and 79.3%, respectively, compared with those on the day before tunnel washing. The maximum decreased concentrations were by 67.2% and 67.0% for PM10 and PM2.5, respectively. In the long-term observation, the tunnel washing for PM10 was reduced by 45.9% than original concentrationand about 3.5 months as well as for PM2.5 was reduced by 71.3% about 2 months.
致謝 I
摘要 II
Abstract IV
目 錄 VI
圖目錄 VIII
表目錄 X
第一章 前言 1
1.1 研究背景 1
1.2研究目的 4
1.3研究假說 5
1.4研究架構 6
第二章 文獻探討 8
2.1臺北捷運系統設備特性、組成研究探討 8
2.2國際捷運或地鐵懸浮微粒濃度分佈及組成文獻研究 12
2.3懸浮微粒之毒理學研究 16
2.4懸浮微粒之流行病學研究 18
2.5捷運或地鐵車站與周界懸浮微粒濃度及成分比較 20
2.6捷運車站懸浮微粒來源研究 23
2.7捷運車站懸浮微粒控制相關技術 24
第三章 材料與方法 31
3.1室內空氣品質量測與分析方法 31
3.1.1量測儀器說明 32
3.1.2採樣地點之描述 33
3.1.3量測時間及車站 34
3.1.4量測分析之品保品管 35
3.2捷運地下車站懸浮微粒成份分析 36
3.2.1量測儀器說明 37
3.2.2採樣地點之描述 37
3.2.3量測時間及車站 39
3.2.4量測分析之品保品管 40
3.3全斷面隧道清洗對縣浮微粒降低成效評估 41
3.3.1量測儀器說明 42
3.3.2採樣地點之描述 43
3.3.3量測時間及車站 44
3.3.4量測分析之品保品管 45
3.4統計分析 45
第四章 結果與討論 47
4.1捷運車站空氣污染物量測與分析結果與比較 47
4.2捷運車站懸浮微粒量測與分析結果與比較 65
4.3隧道清洗作業對懸浮微粒降低成效評估 77
第五章 結論 86
第六章 建議 89
參考文獻 92
附錄-儀器分析之品保/品管記錄表 108
1. Aarnio, P., Yli-Tuomi, T., Kousa, A., Mäkelä, T., Hirsikko, A., Hämeri, K., Päisänen, M., Hillamo, R., Koskentalo, T. and Jantunen. M. (2005). The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos.Environ. 39: 5059–5066.
2. Adams, H.S., Nieuwenhuijsen, M.J. and Colvile R.N. (2001). Determinants of fine particle (PM 2.5) personal exposure levels in transport microenvironments, London, UK. Atmos.Environ. 35: 4557-4566.
3. Allen, A.G., Nemitz, E., Shi, J.P., Harrison, J.P. and Greenwood, J.C. (2001). Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos. Environ. 35: 4581–4591.
4. Amato, F., Alastuey, A., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Severi, M., Becagli, S., Gianelle, V.L., Colombi, C., Alves, C., Custódio, D., Nunes, T., Cerqueira, M., Pio, C., Eleftheriadis, K., Diapouli, E., Reche, C., Minguillón, M.C., Manousakas, M.I., Maggos, T., Vratolis, S., Harrison, R.M. and Querol X. (2016) AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities. Atmos. Chem. Phys., 16: 3289–3309
5. Antonini, J.M., Lewis, A.B., Roberts, J.R. and Whaley, D.A. (2003). Pulmonary effects of welding fumes: review of worker and experimental animal studies. Am. J. Ind. Med. 43: 350-360.
6. Apte, M.G., Fisk, W.J. and Daisey, J.M. (2000). Associations between indoor CO2 concentrations and sick building syndrome symptoms in U.S. office buildings: an analysis of the 1994-1996 BASE study data. Indoor Air. 10: 246-57.
7. Awad, H.A. (2002) Environmental study in subway metro stations in Cairo, Egypt. J. Occup. Health. 44:112-118
8. Bergvall, C. and Westerholm, R., (2006). Determination of dibenzopyrenes in standard reference materials (SRM) 1649a, 1650, and 2975 using ultrasonically assisted extraction and LC–GC–MS. Anal.Bioanal.Chem. 384: 438-447
9. Bigert, C., Klerdal, K., Hammar, N. and Gustavsson, P. (2007). Myocardial infarction in Swedish subway drivers. Scand. J. Work Environ. Health. 33: 267-271.
10. Bigert, C., Alderling, M., Svartengren, M., Plato, N., de Faire, U. and Gustavsson, P. (2008). Blood markers of inflammation and coagulation and exposure to airborne particles in employees in the Stockholm underground. Occup. Environ. Med. 65: 655-658.
11. Boffetta, P., Dosemeci, M., Gridley, G., Bath, H., Moradi, T. and Silverman, D. (2001). Occupational exposure to diesel engine emissions and risk of cancer in Swedish men and women. Cancer Causes Control. 12: 365-374.
12. Bosetti, C., McLaughlin, J.K., Tarone, R.E., Pira, E. and La Vecchia, C. (2008). Formaldehyde and cancer risk: a quantitative review of cohort studies through 2006. Ann. Oncol. 19:29-43.
13. Boudia, N., Halley, R., Kennedy, G., Lambert, J., Gareau, L. and Zayed, J. (2006). Manganese concentrations in the air of the Montreal (Canada) subway in relation to surface automobile traffic density. Sci. Total Environ. 366: 143–147.
14. Braniš, M. (2006). The contribution of ambient sources to particulate pollution in spaces and trains of the Prague underground transport system. Atmos. Environ. 40: 348–356.
15. Buerki, P.R., Gaelli, B.C. and Nyffeler, U.P. (1989). Size resolved trace metal characterization of aerosols emitted by four important source types in Switzerland. Atmos. Environ. 23: 1659–1668.
16. Chan, L.Y., Lau, W.L., Lee, S.C. and Chan, C.Y. (2002a). Commuter exposure to particulate matter in public transportation modes in Hong Kong. Atmos. Environ. 36: 3363–3373.
17. Chan, L.Y., Lau, W.L., Zou, S.C., Cao, Z.X. and Lai, S.C. (2002b). Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China. Atmos. Environ. 36: 5831–5840.
18. Chen, M.L., Mao, I.F. and Lin, I.K. (1999). The PM2.5 and PM10 particles in urban areas of Taiwan. Sci. Total Environ.226: 227-235.
19. Chang, C.C., Chiu, H.F., and Yang, C.Y. (2013). Fine particulate air pollution and outpatient department visits for headache in Taipei, Taiwan. J. Toxicol Environ. Health A. 78: 506-515
20. Cheng, Y.H., Lin, Y.L. and Liu, C.C. (2008). Levels of PM10 and PM2.5 in Taipei rapid transit system. Atmos. Environ. 42: 7242–7249.
21. Chillrud, S.N., Epstein, D., Ross, J.M., Sax, S.N., Pederson, D., Spengler, J.D. and Kinney, P.L. (2004). Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City's subway system. Environ. Sci. Technol. 38: 732–737.
22. Colombi, C., Angius, S., Gianelle, V. and Lazzarini, M. (2013). Particulate matter concentrations, physical characteristics and elemental composition in the Milan underground transport system. Atmos. Environ. 70: 166–178.
23. Doherty, M.J., Healy, M., Richardson, S.G. and Fisher, N.C. (2004). Total body iron overload in welder's siderosis. Occup. Environ. Med. 61: 82-85.
24. Duhayon, S., Hoet, P., Van Maele-Fabry G. and Lison, D. (2008). Carcinogenic potential of formaldehyde in occupational settings: a critical assessment and possible impact on occupational exposure levels. Int. Arch. Occup. Environ. Health. 81:695-710.
25. Eleftheriadis, K., Ochsenkuhn, K.M., Lymperopoulou, T., Karanasiou, A., Razos, P., and Ochsenkuhn-Petropoulou, M. (2014) Influence of local and regional sources on the observed spatial and temporal variability of size resolved atmospheric aerosol mass concentrations and water-soluble species in the Athens metropolitan area. Atmos. Env. 97: 252-261.
26. Eom, H.J., Jung, H.J., Sobanska, S., Chung, S.G., Son, Y.S., Kim, J.C., Sunwoo, Y. and Ro, C.U. (2013). Iron speciation of airborne subway particles by the combined use of energy dispersive electron probe X-ray microanalysis and Raman microspectrometry. Anal. Chem. 85: 10424–10431.
27. Espinosa, A.J.F., Rodriguez, M.T.F., De la Rosa, J.B. and Sanchez, J.C.J. (2001). Size distribution of metals in urban aerosols in Seville (Spain). Atmos. Environ. 35: 2595–2601.
28. Feng, X. and Wang, S. (2012) Influence of different weather events on concentrations of particulate matter with different sizes in Lanzhou, China. J. Environ. Sci. (China) 24: 665–674.
29. Fromme, H., Oddoy, A., Piloty, M., Krause, M. and Lahrz, T. (1998). Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and a subway train. Sci. Total Environ. 217: 165–173.
30. Furuya, K., Kudo, Y., Okinagua, K., Yamuki, M., Takahashi, K., Araki, Y. and Hisamatsu, Y. (2001). Seasonal variation and their characterization of suspended particulate matter in the air of subway stations. J. Trace Microprobe Tech. 19: 469–485.
31. Garshick, E., Laden, F., Hart, J.E., Rosner, B., Smith, T.J., Dockery, D.W. and Speizer, F.E. (2004). Lung cancer in railroad workers exposed to diesel exhaust. Environ. Health Perspect. 112:1539-1543.
32. Garshick, E., Laden, F., Hart, J.E., Rosner, B., Davis, M.E., Eisen, E.A. and Smith, T.J., (2008). Lung cancer and vehicle exhaust in trucking industry workers. Environ. Health Perspect. 116:1327-1332.
33. Gramsch, E., Reyes, F., Vásquez, Y., Oyola, P. and Rubio, M.A. (2016). Prevalence of freshly generated particles during pollution episodes in Santiago de Chile. Aerosol Air Qual. Res. 16: 2172–2185.
34. Grana, M., Toschi, N., Vicentini, L., Pietroiusti, A. and Magrini, A. (2017). Exposure to ultrafine particles in different transport modes in the city of Rome. Environ. Pollut. 228:201-210.
35. Grass, R.N., Limbach, L.K., Athanassiou, E.K. and Stark, W.J. (2010). Exposure of aerosols and nanoparticle dispersions to in vitro cell cultures: a review on the dose relevance of size, mass, surface and concentration. J. Aerosol Sci. 41: 1123–1142.
36. Gómez-Perales, J.E., Colvile, R.N., Fernández-Bremauntz, A.A., Gutiérrez-Avedoy, V., Páramo-Figueroa, V.H., Blanco-Jiménez, S., Bueno-López, E., Bernabé-Cabanillas, R., Mandujano, F., Hidalgo-Navarro, M. and Nieuwenhuijsen, M.J. (2007). Bus, minibus, metro inter-comparison of commuters’ exposure to air pollution in Mexico City. Atmos. Environ. 41: 890–901.
37. Guo, L. Hu, Y., Hu, Q., Lin, J., Li, C., Chen, J., Li, L., Fu, H. (2014). Characteristics and chemical compositions of particulate matter collected at the selected metro stations of Shanghai, China. Sci Total Environ. 496:443-452.
38. Guo, L.C., Zhang, Y., Lin, H., Zeng, W., Liu, T., Xiao, J., Rutherford, S., You, J. and Ma, W. (2016). The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut. 215: 195–202.
39. Gustavsson, P., Bigert, C. and Pollan, M. (2008). Incidence of lung cancer among subway drivers in Stockholm. Am. J. Ind. Med. 51: 545–547.
40. Ho, K.F., Lee, S.C., Chow, J.C. and Watson, J.G. (2003). Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmos. Environ. 37: 31–39.
41. Hu, M., Liu, S., Wu, Z.J., Zhang, J., Zhao, Y.L., Wehner, B. and Wiedensolher, A. (2006). Effects of high temperature, high relative humidity and rain process on particle size distributions in the summer of Beijing. Huan Jing Ke Xue 27: 2293–2298.
42. Hung, A., Yang, H.S. and Su, D.F. (2008). Quality management of trackwork rail welding. Rapid Transit Sys. Technol. 39: 133–152 (in Chinese).
43. Huang, H.B., Lai, C.H., Chen, G.W., Lin, Y.Y., Jaakkola, J.J., Liou, S.H. and Wang, S.L. (2012). Traffic-related air pollution and DNA damage: a longitudinal study in Taiwanese traffic conductors. PLoS One. 7:e37412.
44. Johansson, C. and Johansson, P.Ǻ. (2003). Particulate matter in the underground of Stockholm. Atmos. Environ. 37: 3–9.
45. Jung, C.C., Liang, H.H., Lee, H.L., Hsu, N.Y. and Su, H.J. (2014). Allostatic load model associated with indoor environmental quality and sick building syndrome among office workers. PLoS One. 9:e95791.
46. Jung, H.J., Kim, B., Ryu, J., Maskey, S., Kim, J.C., Sohn, J. and Ro, C.U. (2010). Source identification of particulate matter collected at underground subway stations in Seoul, Korea using quantitative single-particle analysis. Atmos. Environ. 44: 2287–2293.
47. Jung, M.H., Kim, H.R., Park, Y.J., Park, D.S., Chung, K.H. and Oh, S.M. (2012). Genotoxic effects and oxidative stress induced by organic extracts of particulate matter (PM10) collected from a subway tunnel in Seoul, Korea. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 749: 39–47.
48. Kam, W., Cheung, K., Daher, N. and Sioutas, C. (2011). Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles metro. Atmos. Environ. 45: 1506–1516.
49. Kam, W., Delfino, R.J., Schauer, J.J., Sioutas, C. (2013). A comparative assessment of PM2.5 exposures in light-rail, subway, freeway, and surface street environments in Los Angeles and estimated lung cancer risk. Environ Sci Process Impacts.15: 234-243.
50. Kamani, H.,Hoseini, M.,Seyedsalehi, M.,Mahdavi, Y.,Jaafari, J.,Safari, G.H. (2014). Concentration and characterization of airborne particles in Tehran's subway system. Environ Sci Pollut Res Int. 21:7319-28.
51. Kang, S., Hwang, H., Park, Y., Kim, H. and Ro, C.U. (2008). Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis. Environ. Sci. Technol. 42: 9051–9057.
52. Karanasiou, A.A., Sitaras, I.E., Siskos, P.A. and Eleftheriadis, K. (2007). Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmos. Environ. 41: 2368–2381.
53. Karlsson, H.L., Nilsson, L. and Möller, L. (2005). Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chem. Res. Toxicol. 18: 19–23.
54. Karlsson, H.L., Ljungman, A.G., Lindbom, J. and Möller, L. (2006). Comparison of genotoxic and inflammatory effects of particles generated by wood combustion, a road simulator and collected from street and subway. Toxicol. Lett. 165: 203–211.
55. Karlsson, H.L., Holgersson, A. and Möller, L. (2008). Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem. Res. Toxicol. 21: 726–731.
56. Kim, K.Y., Kim, Y.S., Roh, Y.M., Lee, C.M. and Kim, C.N. (2008). Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul metropolitan subway stations. J. Hazard. Mater. 154: 440–443.
57. Kim, M.J., Braatz, R.D., Kim, J.T., Yoo, C.K. (2015). Indoor air quality control for improving passenger health in subway platforms using an outdoor air quality dependent ventilation system. Building and Environment.92:407-417.
58. Kim, Y., Kim, M., Lim, J., Kim, J.T. and Yoo, C. (2010). Predictive monitoring and diagnosis of periodic air pollution in a subway station. J. Hazard. Mater. 183: 448–459.
59. Knibbs, L.D. and de Dear, R.J. (2010). Exposure to ultrafine particles and PM2.5 in four Sydney transport modes. Atmos. Environ. 44: 3224–3227.
60. Kwon, S.B., Jeong, W., Park, D., Kim, K.T. and Cho, K.H. (2015). A multivariate study for characterizing particulate matter (PM10, PM2.5, and PM1) in Seoul metropolitan subway stations, Korea. J. Hazard. Mater. 297:295-303.
61. Kwon, S.B., Namgung, H.G., Jeong, W., Park, D. and Eom, J.K. (2016). Transient variation of aerosol size distribution in an underground subway station. Environ. Monit. Assess. 188:362.
62. Laden, F., Hart, J.E., Smith, T.J., Davis, M.E, and Garshick, E. (2007). Cause-specific mortality in the unionized U.S. trucking industry. Environ. Health Perspect. 115: 1192-1196.
63. Lai, C.H., Jaakkola, J.J., Chuang, C.Y., Liou, S.H., Lung, S.C., Loh, C.H., Yu, D.S. and Strickland, P.T. (2013). Exposure to cooking oil fumes and oxidative damages: a longitudinal study in Chinese military cooks. J. Expo. Sci. Environ. Epidemiol. 23: 94-100.
64. Lang, J., Zhang, Y., Zhou, Y., Cheng, S., Chen, D., Guo, X., Chen, S., Li, X., Xing, X. and Wang, H. (2017). Trends of PM2.5 and chemical composition in Beijing, 2000–2015. Aerosol Air Qual. Res. 17: 412–425.
65. Lee, S.C., Liu, H.B., Kim, M.J., Kim, J.T. and Yoo, C.K. (2014). Online monitoring and interpretation of periodic diurnal and seasonal variations of indoor air pollutants in a subway station using parallel factor analysis (PARAFAC). Energy and Buildings. 68:87-98z`
66. Li, T.T., Bai, Y.H., Liu, Z.R., Liu, J.F., Zhang, G.S. and Li, J.L. (2006). Air quality in passenger cars of the ground railway transit system in Beijing, China. Sci. Total Environ. 367: 89–95.
67. Lin, C., Wu, Y.L., Lai, C.H., Watson, J.G. and Chow, J.C. (2008). Air quality measurements from the southern particulate matter supersite in Taiwan. Aerosol Air Qual. Res. 8: 233–264.
68. Loxham, M., Cooper, M.J., Gerlofs-Nijland, M.E., Cassee, F.R., Davies, D.E., Palmer, M.R. and Teagle, D.A.H. (2013). Physicochemical characterization of airborne particulate matter at a mainline underground railway station. Environ. Sci. Technol. 47: 3614–3622.
69. Lu, C.Y., Ma, Y.C., Lin, J.M., Chuang, C.Y. and Sung, F.C. (2007). Oxidative DNA damage estimated by urinary 8-hydroxydeoxyguanosine and indoor air pollution among non-smoking office employees. Environ. Res. 103:331-337.
70. Lu, C.Y., Ma, Y.C., Lin, J.M., Li, C.Y., Lin, R.S. and Sung, F.C. (2007). Oxidative stress associated with indoor air pollution and sick building syndrome-related symptoms among office workers in Taiwan. Inhal. Toxicol. 19: 57-65.
71. Lu, C.Y., Lin, J.M., Chen, Y.Y. and Chen, Y.C. (2015). Building-related symptoms among office employees associated with indoor carbon dioxide and total volatile organic compounds. Int. J. Environ. Res. Public Health. 12: 5833-5845.
72. Lundbäck, M., Mills, N.L., Lucking, A., Barath, S., Donaldson, K., Newby, D.E., Sandström, T., Blomberg, A. (2009). Experimental exposure to diesel exhaust increases arterial stiffness in man. Part. Fibre. Toxicol. 6:7 1-6.
73. Ma, C.J., Matuyama, S., Sera, K. and Kim, S.D. (2012). Physicochemical properties of indoor particulate matter collected on subway platforms in Japan. Asian J. Atmos. Environ. 6:73-82.
74. Martins, V., Moreno, T., Mendes, L., Eleftheriadis, K., Diapouli, E., Alves, C.A., Duarte, M., de Miguel, E., Capdevila, M., Querol, X. and Minguillón, M.C. (2016). Factors controlling air quality in different European subway systems. Environ. Res. 146:35-46.
75. Martins, V., Moreno, T., Minguillón, M.C., Amato, F., de Miguel, E., Capdevila, M., and Querol, X. (2015) Exposure to airborne particulate matter in the subway system. Sci. Total Environ. 511: 711-722.
76. Martins, V., Moreno, T., Minguillón, M.C., van Drooge, B.L., Reche, C., Amato, F., de Miguel, E., Capdevila, M., Centelles, S. and Querol, X. (2016). Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain. Environ. Pollut. 208: 125–136.
77. Moreno, T., Pérez, N., Reche, C., Martins, V., de Miguel, E., Capdevila, M., Centelles, S., Minguillón, M.C., Amato, F., Alastuey, A., Querol, X. and Gibbons, W. (2014). Subway platform air quality: assessing the influences of tunnel ventilation, train piston effect and station design. Atmos. Environ. 92: 461–468.
78. Moreno, T., Martins, V., Querol, X., Jones, T., BéruBé, K., Minguillón, M.C., Amato, F., Capdevila, M., de Miguel, E., Centelles, S. and Gibbons, W. (2015) A new look at inhalable metalliferous airborne particles on rail subway platforms. Sci. Total Environ. 505:367-375.
79. Moreno, T., Reche, C., Minguillón, M.C., Capdevila, M., de Miguel E. and Querol, X. (2017). The effect of ventilation protocols on airborne particulate matter in subway systems. Sci. Total Environ. 584-585:1317-1323.
80. Mugica-Álvarez, V., Figueroa-Lara, J., Romero-Romo, M., Sepúlveda-Sánchez, J. and López-Moreno, T. (2012). Concentrations and properties of airborne particles in the Mexico City subway system. Atmos. Environ. 49: 284–293.
81. Murruni, L.G., Solanes, V., Debray, M., Kreiner, A.J., Davidson, J., Davidson, M., Vázquez, M., Ozafrán, M., (2009). Concentrations and elemental composition of particulate matter in the Buenos Aires underground system. Atmos. Environ. 43: 4577–4583.
82. Nielsen, G.D., Larsen, S.T. and Wolkoff, P. (2016). Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch. Toxicol. 91: 35–61.
83. Nieuwenhuijsen, M.J., Gómez-Perales, E. and Colvile, R.N. (2007). Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems. Atmos. Environ. 41: 7995–8006.
84. Norbäck, D., Hashim, J.H., Markowicz, P., Cai, G.H,, Hashim, Z., Ali, F. and Larsson, L. (2016). Endotoxin, ergosterol, muramic acid and fungal DNA in dust from schools in Johor Bahru, Malaysia--associations with rhinitis and sick building syndrome (SBS) in junior high school students. Sci. Total Environ. 545-546: 95-103.
85. Qiu, Z., Song, J., Xu, X., Luo, Y., Zhao, R., Zhou, W., Xiang, B, and Hao, Y. (2017). Commuter exposure to particulate matter for different transportation modes in Xi'an, China. Atmos. Pollut. Res. 8: 940-948.
86. Querol, X., Moreno, T., Karanasiou, A., Reche, C., Alastuey, A., Viana, M., Font, O., Gil, J., de Miguel, E. and Capdevila, M. (2012). Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Chem. Phys. 12: 5055–5076.
87. Palmer, K.T., Poole, J., Ayres, J.G., Mann, J., Burge, P.S. and Coggon, D. (2003). Exposure to metal fume and infectious pneumonia. Am. J. Epidemiol. 157: 227-33.
88. Pandya, R.J., Solomon, G., Kinner, A. and Balmes, J.R. (2002). Diesel exhaust and asthma: hypotheses and molecular mechanisms of action. Environ. Health Perspect. 110: 103-12.
89. Park, D.U. and Ha, K.C. (2008). Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platforms of subway train in Seoul, Korea. Environ. Int. 34: 629-634.
90. Park, S., Kim, M., Kim, M., Namgung, H.G., Kim, K.T., Cho, K.H. and Kwon, S.B. (2017). Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN). J. Hazard. Mater. 341:75-82.
91. Pfeifer, G.D., Harrison, R.M. and Lynam, D.R. (1999). Personal exposures to airborne metals in London taxi drivers and office workers in 1995 and 1996. Sci. Total Environ. 235: 253-260.
92. Rattigan, O.V., Civerolo, K.L., Felton, H.D., Schwab, J.J. and Demerjian, K.L. (2016). Long term trends in New York: PM2.5 mass and particle components. Aerosol Air Qual. Res. 16: 1191–1120.
93. Raut, J.C., Chazette, P. and Fortain, A. (2009). Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris. Atmos. Environ. 43: 860–868.
94. Perrino, C., Marcovecchio, F., Tofful, L., and Canepari, S. (2015) Particulate matter concentration and chemical composition in the metro system of Rome, Italy. Environ. Sci. Pollut. Res. Int. 22:9204-9214.
95. Ris, C. (2007). U.S. EPA health assessment for diesel engine exhaust: a review. Inhal. Toxicol. 19: 229-239.
96. Ripanucci, G., Grana, M., Vicentini, L., Magrini, A. and Bergamaschi, A. (2006). Dust in the underground railway tunnels of an Italian town. J. Occup. Environ. Hyg. 3: 16–25.
97. Rodrıguez, S., Querol, X., Alastuey, A., Viana, M.M. Alarcon, M., Mantilla, E. and Ruiz, C.R. (2004). Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in eastern Spain. Sci. Total Environ. 328: 95-113.
98. Rossner, P. J., Svecova, V., Milcova, A., Lnenickova, Z., Solansky, I., Santella, R.M. and Sram, R.J. (2007). Oxidative and nitrosative stress markers in bus drivers. Mutat. Res. 617: 23-32.
99. Sahlberg, B., Gunnbjörnsdottir, M., Soon, A., Jogi, R., Gislason, T., Wieslander, G. and Janson, C., Norback D. (2013). Airborne molds and bacteria, microbial volatile organic compounds (MVOC), plasticizers and formaldehyde in dwellings in three north European cities in relation to sick building syndrome (SBS). Sci. Total Environ. 444:433-440.
100. Salma, I., Weidinger, T. and Maenhaut, W. (2007). Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos. Environ. 41: 8391–8405.
101. Salma, I., Pósfai, M., Kovács, K., Kuzmann, E., Homonnay, Z. and Posta, J. (2009). Properties and sources of individual particles and some chemical species in the aerosol of a metropolitan underground railway station. Atmos. Environ. 43: 3460–3466.
102. Seaton, A., Cherrie, J., Dennekamp, M., Donaldson, K., Hurley, J.F., Tran, C.L. (2005). The London underground: dust and hazards to health. Occup. Environ. Med. 62: 355–362.
103. Sitzmann, B., Kendall, M., Watt, J. and Williams, I. (1999). Characterisation of airborne particles in London by computer-controlled scanning electron microscopy. Sci. Total Environ. 241: 63–73.
104. Spagnolo, A.M., Ottria, G., Perdelli, F., and Cristina M.L. (2015). Chemical characterisation of the coarse and fine particulate matter in the environment of an underground railway system: cytotoxic effects and oxidative stress—a preliminary study
105. Srivastava, A., Gupta, S. and Jain, V. K. (2008). Source apportionment of total suspended particulate matter in coarse and fine size ranges over Delhi. Aerosol Air Qual. Res. 8: 188–200.
106. Straus, D.C., Cooley, J.D., Wong, W.C. and Jumper, C.A. (2003). Studies on the role of fungi in sick building syndrome. Arch. Environ. Health. 58: 475-8.
107. Stayne, L., Dankovic, D., Smith, R. and Steenland, K. (1998). Predicted lung cancer risk among miners exposed to diesel exhaust particles. Am. J. Ind. Med. 34: 207-19.
108. Sundh, J., Olofsson, U., Olander, L. and Jansson, A. (2009). Wear rate testing in relation to airborne particles generated in a wheel-rail contact. Lubr. Sci. 21: 135–150.
109. Sysalova, J. and Szakova, J. (2006). Mobility assessment and validation of toxic elements in tunnel dust samples—subway and road using sequential chemical extraction and ICP-OES/GF AAS measurements. Environ. Res. 101: 287–293.
110. Wang, B.Q., Liu, J.F., Ren Z.H. and Chen, R.H. (2016) Concentrations, properties, and health risk of PM2.5 in the Tianjin city subway system. Environ. Sci. Pollut. Res. 23:22647–22657
111. Wang, W.C. and Chen, K.S. (2008). Modeling and analysis of source contribution of PM10 during severe pollution events in southern Taiwan. Aerosol Air Qual. Res. 8: 319–338.
112. Wang, X. and Gao, H.O. (2011). Exposure to fine particle mass and number concentrations in urban transportation environments of New York City. Transp. Res. D 16: 384–391.
113. Yang, H.Y., Tseng, Y.L., Chuang, H.L., Li, T.C. and Yuan, C.S. (2017). Chemical fingerprint and source identification of atmospheric fine particles sampled at three environments at the tip of southern Taiwan. Aerosol Air Qual. Res. 17: 529–542.
114. Yue, D., Zhong, L., Zhang, T., Shen, J., Zhou, Y., Zeng, L., Dong, H. and Ye, S. (2015). Pollution properties of water-soluble secondary inorganic ions in atmospheric PM2.5 in the Pearl river delta region. Aerosol Air Qual. Res. 15: 1737–1747.
115. Zhang, R., Shen, Z., Zou, H., Wang, W., Han, Y. and Zhou, J. (2008). Study of elemental mass size distributions of aerosol in Lijiang a background, site in southwest China. Aerosol Air Qual. Res. 8: 339–347.
116. Zhang, X., Li, F., Zhang, L., Zhao, Z. and Norback, D. (2014). A longitudinal study of sick building syndrome (SBS) among pupils in relation to SO2, NO2, O3 and PM10 in schools in China. PLoS One. 9: e112933.
117. 黃智清,2010,〈室內空氣品質CO、CO2及O3監測儀器及直讀儀器相對準確度測試查核〉,國立臺北科技大學環境工程與管理研究所碩士學位論文。
118. 蔡佩憲,2007,〈台北都會區不同交通流量地區大氣懸浮微粒及重金屬濃度研究〉,國立陽明大學環境與職業衛生研究所碩士學位論文。
119. 歐東昇,2008,〈台北市北投溫泉區大氣懸浮微粒及有害重金屬濃度研究〉,國立陽明大學環境與職業衛生研究所碩士學位論文。
120. 蘇慧貞,2010,《室內空氣品質標準檢討及自主管理診斷機制建立與推動》,行政院環境保護署,EPA-98-FA11-03-D151。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊