跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:ac57:fc92:1c8d:566e) 您好!臺灣時間:2025/01/14 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡沛君
研究生(外文):Pei-Chun Tsai
論文名稱:台灣特徵人為活動細懸浮微粒PM2.5 體外毒性測試方法建立
論文名稱(外文):Cytotoxicity Assessment of PM2.5 Collected from Specific Anthropogenic Activities in Taiwan
指導教授:紀凱獻
指導教授(外文):Kai-Hsien Chi
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:環境與職業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:細懸浮微粒流式細胞儀烹調油煙細胞毒性戴奧辛umu試驗
外文關鍵詞:Find particulate matterFlow cytometryCooking smokeCytotoxicityPCDD/Fsumu test
相關次數:
  • 被引用被引用:4
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
空氣污染是存在於許多開發中國家之重要議題,而空氣細懸浮微粒PM2.5因其體積小之特性造成肺部及心血管等多種健康危害,在流行病學與細胞及動物毒理學領域已發表多篇研究文獻證實,使其在2013由世界衛生組織國際癌症研究機構(International Agency for Research on Cancer,IARC)在致癌物質分類中歸類為「Group 1」第一級致癌物。在台灣,機車密度登上全球之冠,而特色夜市文化亦榮登旅客在臺遊覽景點排名第一,然而這些在地文化發展的同時伴隨而來的是PM2.5排放量上升。本研究參考過去文獻之萃取方法針對台灣交通排放來源、夜市烹調油煙以及境外長程傳輸等污染源所採集之PM2.5進行化學分析以及毒性暴露物質萃取,分別有水溶性之超音波震盪萃取、金屬之微波消化萃取與有機之甲苯索式萃取,並進一步以化學成分含量比對以A549肺腺癌細胞以及Salmonella typhimurium所進行之毒性測試效應差異。
境外長程傳輸、本土交通排放源以及夜市烹調油煙之PM2.5樣品質量濃度分別為39.0 μg/m3、42.9 μg/m3、28.3 μg/m3,以交通排放源之環境濃度最高,採樣時間最短之夜市烹調油煙來源最低,根據細胞暴露之細胞存活率MTT試驗結果發現夜市烹調油煙樣品之金屬及有機成分萃取樣品產生之毒性在三個污染源中效應最強,而交通污染源之三種萃取樣品則無明顯毒性影響。為深入了解造成其毒性效應差異之原因,藉由數理統計發現在金屬元素Zn (r=-0.577, p=0.008)、Mo (r=0.480, p=0.032)、Cd (r=-0.565, p=0.009)、Sb (r=-0.526, p=0.017)以及V (r=-0.606, p=0.005)暴露濃度增加時,對金屬萃取物暴露之細胞具有顯著之影響,水溶性分析成分中則與水溶性萃取物暴露組之細胞存活率無顯著相關性。Reactive oxygen species (ROS)氧化壓力指標試驗中,以本土交通污染源之水溶性萃取物與金屬萃取物暴露結果之氧化壓力最強,分別為135%以及146%。Salmonella typhimurium TA1535/pSK1002及TA1535/NM2009菌株進行之umu基因毒性測試中針對有機萃取物質進行基因毒性之測試,發現在PM2.5濃度為5 μg以及20 μg之暴露下,烹調油煙樣品暴露組相對於其他兩組污染源樣品除了具有較高之基因毒性(Induction ratio=1.55),亦出現抑制細菌生長之情形,而其有機物質在經過CYP1A1代謝前比其代謝物誘導之毒性效應更強,且隨濃度上升而增加。但在本研究中所測試之污染源樣品在5 μg以及20 μg之暴露濃度下皆未達具有基因毒性之標準。
而針對各污染來源之毒性效應,在境外長程傳輸PM2.5樣品中,有機萃取成分在細胞存活率以及暴露濃度為20 μg之基因毒性試驗中皆出現毒性效應,基因毒性測試中其萃取物質經CYP1A1代謝前出現抑菌之效應。交通污染源之三種萃取樣品中,在細胞存活率、氧化壓力試驗以及umu基因毒性試驗中均無出現顯著之毒性效應。烹調油煙樣品之金屬以及有機萃取物之細胞存活率試驗以及氧化壓力試驗中,皆為三個污染源間不良效應最強之組別,而有機萃取物又在基因毒性試驗中效應最為突出。
整體而言,雖然在試驗中發現相對毒性效應,但其結果均不顯著,其影響因素可能為暴露濃度過低或暴露時間不足。本研究所使用之毒性暴露樣品萃取方法皆可萃取出目標萃取物質,但其中未知成分之含量仍不明確,因此在毒性暴露溶液之定性及定量應納入相關研究之探討依據。
Fine particulate matters (PM2.5) induce a lot of adverse health effects on the human body, especially the respiratory and cardiovascular system, based on the numerous of epidemiological and toxicological researches, PM2.5 was delimited to be a carcinogen and listed in “Group 1” by International Agency for Research on Cancer (IARC). In Taiwan, high densities of traffic activity (378 vehicle/km2 in 2017), and specific culture, such as Night Market is the most interested attraction for tourists.
In this research, PM2.5 samples were collected from long range transport event (LRT), traffic emission activity and cooking smoke fume of the night market. And tried to extract the ions, metals, and organic compounds on PM2.5, used an in vitro experiment to evaluate the cytotoxic potential of PM2.5 composition on human lung carcinoma cell line A549, and genotoxic potential on Salmonella typhimurium.
The PM2.5 mass concentration of three anthropogenic emission ambient are 39.0 μg/m3 on LRT, 42.9 μg/m3 in traffic emission area, and 28.3 μg/m3 in the night market with cooking smoke source. Based on the results of MTT assay for cell viability, metal and organic extracts from the cooking smoke source exposed on A549 cells cause the strongest effect. We used statistics analysis to evaluate the key factor for cell viability on the PM2.5 extracts. The results indicated that the metal elements, Zn (r=-0.577, p=0.008)、Mo (r=0.480, p=0.032)、Cd (r=-0.565, p=0.009)、Sb (r=-0.526, p=0.017), and V (r=-0.606, p=0.005) have a significant relationship with cell viability. The results of reactive oxygen species (ROS) detection of ion and metal extracts by traffic emission and LRT source samples show the highest effects in all the exposed groups. On umu test for genotoxicity for organic extracts, the organic extracts obtained from cooking smoke source cause the highest genotoxicity of the three anthropogenic emission, and the organic components in the extracts induced higher bacterial inhibition than the components which was metabolized by CYP1A1, and the situation getting stronger when the higher concentration (20 μg) exposed.
Overall the LRT organic extracts with the concentration of 20 μg cause cytotoxicity on cell viability and genotoxicity, and the bacterial inhibition by the chemical compositions were metabolized by CYP1A1. The extracts from traffic emission did not show any significant effect. The metal and organic extracts of cooking smoke source cause the strongest cytotoxicity on cell viability and ROS determination, and the organic extracts also induce the strongest effect on umu genotoxicity test.
Even if the extracts of different pollutant sources caused some effects on cell viability, ROS detection and umu genotoxicity test, all the effects did not achieve the threshold of toxic define, which may be attributed to less concentration or exposure time.
目錄
摘要-I
Abstract-III
目錄-Ⅴ
表目錄-VII
圖目錄-VIII
第一章 前言-1
1.1 研究緣起-1
1.2 研究目的-3
第二章 文獻回顧-4
2.1 細懸浮微粒特性及化學組成-4
2.2 細懸浮微粒及臺灣特徵人為活動-6
2.3 細懸浮微粒流行病學研究-9
2.4 細懸浮微粒毒性效應-10
2.4.1 細懸浮微粒動物毒性測試-11
2.4.2 細懸浮微粒胞毒性測試-12
2.5 細懸浮微粒體外毒性測試方法-13
2.5.1 懸浮微粒成分萃取方法-14
2.5.2 體外細胞毒性測試方法-14
第三章 研究方法-18
3.1 研究架構及流程-18
3.2 採樣地點及設備-19
3.2.1 採樣地點選擇-19
3.2.2 採樣設備及方法-20
3.3 樣品前處理及化學分析方法-23
3.3.1 水溶性離子分析-23
3.3.2 重金屬分析-24
3.3.3 有機成分析-27
3.4 體外毒性測試樣品萃取-28
3.4.1 水溶性離子 萃取-29
3.4.2 有機成分萃取-30
3.4.3 無機成分萃取-31
3.5 體外細胞毒性測試-32
3.5.1 細胞培養-32
3.5.2 細胞存活率分析-33
3.5.3 細胞氧化壓力測試-35
3.5.4 基因毒性試驗-36
3.6數據處理與統計分析-37
第四章 實驗結果與討論-38
4.1 樣品之化學成分析結果-38
4.1.1 水溶性離子成 分組-40
4.1.2 金屬元素組成-41
4.1.3 戴奧辛成分析-43
4.2 細胞存活率試驗-47
4.3 細胞氧化壓力測定-55
4.4 基因毒性測試-59
4.4.1 TA1535/pSK1002菌株試驗結果-59
4.4.2 TA1535/NM2009菌株試驗結果-64
4.5 PM2.5成分萃取及毒性測試方法建立 成分萃取及毒性測試方法建立-72
4.5.1 水溶性成分萃取-72
4.5.2 金屬成分萃取-72
4.5.3 有機成分萃取-73
4.5.4 細胞存活率測定方法-73
4.5.5 細胞氧化壓力測定-73
4.5.6 基因毒性測定-74
4.6 萃取方法應用之 PM2.5萃取物毒性效應-74
第五章 結論與建議-78
5.1 結論-78
5.2 建議-80
參考文獻-81

表目錄
表2-1 各污染排放源之指標元素-5
表2-2 1999-2016年全國機動車輛登記數及密度彙整-8
表3-1 樣品採集資訊-19
表3-2 水溶性離子偵測極限-24
表3-3 金屬元素分析之儀器偵測極限-26
表3-4 細胞萃取使用材料-29
表4-1 本研究中污染源PM2.5採樣地點之氣象資訊-39
表4-2 本研究中污染源PM2.5之樣品質量濃度-39
表4-3 不同污染源PM2.5之水溶性離子濃度-40
表4-4 不同污染來源PM2.5樣品之金屬元素成分組成-42
表4-5 戴奧辛之毒性當量因子-43
表4-6 不同污染來源PM2.5之戴奧辛毒性當量濃度-44
表4-7 暴露10 μg PM2.5之水溶性萃取液對A549細胞之氧化壓力影響,境外傳輸污染來源結果-56
表4-8 暴露10 μg PM2.5之水溶性萃取液對A549細胞之氧化壓力影響,本土交通污染來源結果-56
表4-9 暴露10 μg PM2.5之水溶性萃取液對A549細胞之氧化壓力影響,夜市烹調油煙污染來源結果-57
表4-10 暴露10μg PM2.5之金屬萃取液對A549細胞之氧化壓力影響-57
表4-11 暴露10μg PM2.5之有機萃取液對A549細胞之氧化壓力影響-57
表4-12 國人活動期間呼吸通氣量-77

圖目錄
圖2-1不同懸浮微粒粒徑對人體呼吸系統影響-6
圖2-2 BEAS-2B細胞暴露都市交通PM2.5及PM10上可萃取有機物之細胞存活率-13
圖2-3 DCFDA氧化壓力測定原理-15
圖2-4 umu試驗中SOS反應之作用原理-17
圖3-1 研究架構圖-18
圖3-2 採樣點富貴角測站、中山空品測站以及新北市夜市測站位置圖-20
圖3-3 BGI PQ200 - PM2.5採樣器-21
圖3-4 歐盟高流量採樣器Analitica-22
圖3-5 Sibata日規PM2.5採樣器-23
圖3-6 Bioruptor® Standard Cat. No. UCD-200 超音波震盪機-29
圖3-7將PTFE濾紙裁成小塊進行超音波震盪-30
圖3-8 樣品濾紙索氏萃取及降溫中之萃取液-31
圖3-9 A549細胞生長貼附之高密度及低密度情況-33
圖3-10 以DMSO溶於MTT處理過後之細胞成紫色-34
圖3-11 未經處理之A549細胞及MTT形成紫色結晶後之A549細胞-35
圖4-1 境外長程傳輸PM2.5樣品中戴奧辛之質量濃度分布-45
圖4-2 本土交通污染來源PM2.5樣品中戴奧辛之質量濃度分布-45
圖4-4 PM2.5樣品之水溶性萃取液暴露對A549細胞株誘導之細胞存活率變異-48
圖4-5 PM2.5樣品之金屬萃取液暴露對A549細胞株誘導之細胞存活率變異-49
圖4-6 PM2.5樣品之有機萃取液暴露對A549細胞株誘導之細胞存活率變異-50
圖4-7 Spearman相關係數檢定測得與細胞存活率顯著相關之金屬元素毒性效應分布-52
圖4-8 三個污染源PM2.5水溶性、金屬及有機萃取物質暴露之A549細胞存活率比較-54
圖4-9 境外長程傳輸、交通污染源、烹調油煙三種PM2.5來源之水溶性、金屬以及有機萃取物暴露下之自由基螢光值測定-58
圖4-10 以Salmonella typhimurium TA1535/pSK1002菌株進行umu試驗之境外長程傳輸來源暴露結果-60
圖4-11 以Salmonella typhimurium TA1535/pSK1002菌株進行umu試驗之交通污染源測試結果-62
圖4-12 以Salmonella typhimurium TA1535/pSK1002菌株進行umu試驗之烹調油煙來源測試結果-63
圖4-13 以Salmonella typhimurium TA1535/NM2009菌株進行umu試驗之境外長程傳輸來源樣品測試結果-65
圖4-14 以Salmonella typhimurium TA1535/NM2009菌株進行umu試驗之交通污染源樣品測試結果-66
圖4-15 以Salmonella typhimurium TA1535/NM2009菌株進行umu試驗之烹調油煙樣品測試結果-67
圖4-16 umu試驗之TA1535/pSK1002菌株存活率,各採樣點比較-69
圖4-17 umu試驗之NM2009菌株存活率,各採樣點比較-70
圖4-18 境外傳輸、交通污染源以及烹調油煙之樣品經CYP1A1代謝,暴露於TA1535/pSK1002菌株後細菌之β-galactosidase表達量Induction Ratio比較-71
圖4-19 境外傳輸、交通污染源以及烹調油煙之樣品經CYP1A1代謝,暴露於TA1535/NM2009菌株後細菌之β-galactosidase表達量Induction Ratio比較-71
ATCC. (2016). A549 (ATCC® CCL-185™). Retrieved from https://www.atcc.org/Products/All/CCL-185
B. Wang, N. Li, F. Deng, N. Buglak, G. Park, S. Su, . . . X. Guo. (2016). Human bronchial epithelial cell injuries induced by fine particulate matter from sandstorm and non-sandstorm periods: Association with particle constituents. J Environ Sci (China), 47, 201-210. doi:10.1016/j.jes.2015.12.015
BGI. The PQ200 and PQ200A Provide EPA Reference and Audit Method Data for PM10 and PM2.5
Biola-Clier, M., Beal, D., Caillat, S., Libert, S., Armand, L., Herlin-Boime, N., . . . Carriere, M. (2017). Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis, 32(1), 161-172. doi:10.1093/mutage/gew055
Cao, L., Zeng, J., Liu, K., Bao, L., & Li, Y. (2015). Characterization and Cytotoxicity of PM<0.2, PM0.2-2.5 and PM2.5-10 around MSWI in Shanghai, China. Int J Environ Res Public Health, 12(5), 5076-5089. doi:10.3390/ijerph120505076
Chen, R., Yin, P., Meng, X., Liu, C., Wang, L., Xu, X., . . . Zhou, M. (2017). Fine Particulate Air Pollution and Daily Mortality: A Nationwide Analysis in 272 Chinese Cities. Am J Respir Crit Care Med. doi:10.1164/rccm.201609-1862OC
Cheng, L., Lau, W. K., Fung, T. K., Lau, B. W., Chau, B. K., Liang, Y., . . . Lee, T. M. (2017). PM2.5 Exposure Suppresses Dendritic Maturation in Subgranular Zone in Aged Rats. Neurotox Res. doi:10.1007/s12640-017-9710-4
Chi, K. H., Li, Y. N., & Ngo, T. H. (submitted, 2017). Spatial and Temporal Variation of PM2.5 and Atmospheric PCDD/Fs in Northern Taiwan during Winter Monsoon and Local Pollution Episode. Aerosol and Air Quality Research.
Chi, K. H., Lin, C. Y., Yang, C. F., Wang, J. L., Lin, N. H., Sheu, G. R., & Lee, C. T. (2010). PCDD/F measurement at a high-altitude station in Central Taiwan: evaluation of long-range transport of PCDD/Fs during the Southeast Asia biomass burning event. Environ Sci Technol, 44(8), 2954-2960. doi:10.1021/es1000984
Coggon, D., Pannett, B., Osmond, C., & Acheson, E. D. (1986). A survey of cancer and occupation in young and middle aged men. II. Non-respiratory cancers. Br J Ind Med, 43(6), 381-386.
Cui, M., Chen, Y., Tian, C., Zhang, F., Yan, C., & Zheng, M. (2016). Chemical composition of PM2.5 from two tunnels with different vehicular fleet characteristics. Science of the Total Environment, 550, 123-132.
Deng, F., Guo, X., Liu, H., Fang, X., Yang, M., & Chen, W. (2007). Effects of dust storm PM2.5 on cell proliferation and cell cycle in human lung fibroblasts. Toxicol In Vitro, 21(4), 632-638. doi:10.1016/j.tiv.2006.12.013
Diagenode. Bioruptor® Standard Cat. No. UCD-200. In S. S. V. 1.1 (Ed.).
Dubrow, R., & Wegman, D. H. (1984). Cancer and occupation in Massachusetts: a death certificate study. Am J Ind Med, 6(3), 207-230.
Funasaka, K., Kitano, M., Nakama, A., Yoshikura, T., & Oda, Y. (2003). Detection of genotoxicity of atmospheric particles using a high-throughput microplate umu-test system. Acta Biochim Pol, 50(1), 291-296. doi:035001291
Go, R. E., Hwang, K. A., Kim, C. W., Byun, Y. S., Nam, K. H., & Choi, K. C. (2017). Effect of dioxin and 17beta-estradiol on the expression of cytochrome P450 1A1 gene via an estrogen receptor dependent pathway in cellular and xenografted models. Environ Toxicol. doi:10.1002/tox.22438
Goudie, A. S. (2014). Desert dust and human health disorders. Environ Int, 63, 101-113. doi:10.1016/j.envint.2013.10.011
Jaiprakash, & Habib, G. (2017). Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Sci Total Environ, 586, 900-916. doi:10.1016/j.scitotenv.2017.02.070
Jalava, P. I., Happo, M. S., Huttunen, K., Sillanpaa, M., Hillamo, R., Salonen, R. O., & Hirvonen, M. R. (2015). Chemical and microbial components of urban air PM cause seasonal variation of toxicological activity. Environ Toxicol Pharmacol, 40(2), 375-387. doi:10.1016/j.etap.2015.06.023
Kasurinen, S., Jalava, P. I., Happo, M. S., Sippula, O., Uski, O., Koponen, H., . . . Hirvonen, M. R. (2017). Particulate emissions from the combustion of birch, beech, and spruce logs cause different cytotoxic responses in A549 cells. Environ Toxicol, 32(5), 1487-1499. doi:10.1002/tox.22369
Kutz, F. W., Barnes, D. G., Bretthauer, E. W., Bottimore, D. P., & Greim, H. (1990). The international toxicity equivalency factor (I‐TEF) method for estimating risks associated with exposures to complex mixtures of dioxins and related compounds. Toxicological & Environmental Chemistry, 26(1-4), 99-109. doi:10.1080/02772249009357537
Landkocz, Y., Ledoux, F., Andre, V., Cazier, F., Genevray, P., Dewaele, D., . . . Billet, S. (2017). Fine and ultrafine atmospheric particulate matter at a multi-influenced urban site: Physicochemical characterization, mutagenicity and cytotoxicity. Environ Pollut, 221, 130-140. doi:10.1016/j.envpol.2016.11.054
Lemos, A. T., Lemos, C. T., Flores, A. N., Pantoja, E. O., Rocha, J. A., & Vargas, V. M. (2016). Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence. Chemosphere, 159, 610-618. doi:10.1016/j.chemosphere.2016.05.087
Li, Y., Chang, M., Ding, S., Wang, S., Ni, D., & Hu, H. (2017). Monitoring and source apportionment of trace elements in PM2.5: Implications for local air quality management. J Environ Manage, 196, 16-25. doi:10.1016/j.jenvman.2017.02.059
Liu, Y., Liao, W., Li, L., Huang, Y., & Xu, W. (2017). Vehicle emission trends in China's Guangdong Province from 1994 to 2014. Science of the Total Environment. doi:10.1016/j.scitotenv.2017.01.215
Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, P. K., Aboyans, P. V., . . . Adair, T. (2013). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lanent, 380(9859). doi:10.1016/S0140-6736(12)61728-0
Mary. (2016). 肺癌的分類|認識癌症 肺癌篇3. Retrieved from http://www.havemary.com/article.php?id=3365
Mu, J., Jin, F., Wang, J., Wang, Y., & Cong, Y. (2016). The effects of CYP1A inhibition on alkyl-phenanthrene metabolism and embryotoxicity in marine medaka (Oryzias melastigma). Environ Sci Pollut Res Int, 23(11), 11289-11297. doi:10.1007/s11356-016-6098-2
Murray, C. J. L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., . . . Lopez, A. D. (2013). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lanent, 380(9859). doi:10.1016/S0140-6736(12)61689-4
Oda, Y., Nakamura, S., Oki, I., Kato, T., & Shinagawa, H. (1985). Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res, 147(5), 219-229.
Oda, Y., Yamazaki, H., Watanabe, M., Nohmi, T., & Shimada, T. (1995). Development of high sensitive umu test system: rapid detection of genotoxicity of promutagenic aromatic amines by Salmonella typhimurium strain NM2009 possessing high O-acetyltransferase activity. Mutat Res, 334(2), 145-156.
Osornio-Vargas, Á. R., Bonner, J. C., Alfaro-Moreno, E., Martínez, L., García-Cuellar, C., Rosales, S. P.-d.-L., . . . Rosas, I. (2003). Proinflammatory and Cytotoxic Effects of Mexico City Air Pollution Particulate Matter in Vitro Are Dependent on Particle Size and Composition. Environmental Health Perspectives, 111(10), 1289-1293. doi:10.1289/ehp.5913
Pan, W. C., Wu, C. D., Chen, M. J., Huang, Y. T., Chen, C. J., Su, H. J., & Yang, H. I. (2016). Fine Particle Pollution, Alanine Transaminase, and Liver Cancer: A Taiwanese Prospective Cohort Study (REVEAL-HBV). J Natl Cancer Inst, 108(3). doi:10.1093/jnci/djv341
Perepechaeva, M. L., Seredina, T. A., Sidorova, Y. A., Pivovarova, E. N., Markel, A. L., Lyakhovich, V. V., & Grishanova, A. Y. (2017). Quercetin Attenuates Benzo(alpha)pyrene-induced CYP1A Expression. Biomed Environ Sci, 30(4), 308-313. doi:10.3967/bes2017.041
Reifferscheid, G., & Heil, J. (1996). Validation of the SOS/umu test using test results of 486 chemicals and comparison with the Ames test and carcinogenicity data. Mutat Res, 369(3-4), 129-145.
Schwarze, P. E., Ovrevik, J., Hetland, R. B., Becher, R., Cassee, F. R., Lag, M., . . . Refsnes, M. (2007). Importance of size and composition of particles for effects on cells in vitro. Inhal Toxicol, 19 Suppl 1, 17-22. doi:10.1080/08958370701490445
Shen, H., Tsai, C. M., Yuan, C. S., Jen, Y. H., & Ie, I. R. (2017). How incense and joss paper burning during the worship activities influences ambient mercury concentrations in indoor and outdoor environments of an Asian temple? Chemosphere, 167, 530-540. doi:10.1016/j.chemosphere.2016.09.159
Shimada, T., Oda, Y., Yamazaki, H., Mimura, M., & Guengerich, F. P. (1994). Gene and chromosome analysis Orlando: Academic Press.
Spann, K., Snape, N., Baturcam, E., & Fantino, E. (2016). The Impact of Early-Life Exposure to Air-borne Environmental Insults on the Function of the Airway Epithelium in Asthma. Ann Glob Health, 82(1), 28-40. doi:10.1016/j.aogh.2016.01.007
Tian, Z., Oda, Y., Zhang, Y., Yang, M., & Li, H. (2015). Use of a new enzyme extraction system to improve the sensitivity of SOS/umu test and application to environmental samples. Bull Environ Contam Toxicol, 94(3), 370-375. doi:10.1007/s00128-014-1445-9
Toolaram, A. P., Gutierrez, I. R., & Ahlf, W. (2012). Modification of the umu-assay (ISO 13829) accounting for cytotoxicity in genotoxicity assessment: a preliminary study. Mutat Res, 747(2), 190-196. doi:10.1016/j.mrgentox.2012.05.010
Torre, C. D., Buonocore, F., Frenzilli, G., Corsolini, S., Brunelli, A., Guidi, P., . . . Corsi, I. (2015). Influence of titanium dioxide nanoparticles on 2,3,7,8-tetrachlorodibenzo-p-dioxin bioconcentration and toxicity in the marine fish European sea bass (Dicentrarchus labrax). Environ Pollut, 196, 185-193. doi:10.1016/j.envpol.2014.09.020
Tsai, Y. I., Sopajaree, K., Kuo, S. C., & Yu, S. P. (2015). Potential PM2.5 impacts of festival-related burning and other inputs on air quality in an urban area of southern Taiwan. Sci Total Environ, 527-528, 65-79. doi:10.1016/j.scitotenv.2015.04.021
Uppstad, H., Ovrebo, S., Haugen, A., & Mollerup, S. (2010). Importance of CYP1A1 and CYP1B1 in bioactivation of benzo[a]pyrene in human lung cell lines. Toxicol Lett, 192(2), 221-228. doi:10.1016/j.toxlet.2009.10.025
Wang, X., Chen, M., Zhong, M., Hu, Z., Qiu, L., Rajagopalan, S., . . . Ying, Z. (2017). Exposure to Concentrated Ambient PM2.5 Shortens Lifespan and Induces Inflammation-Associated Signaling and Oxidative Stress in Drosophila. Toxicol Sci, 156(1), 199-207. doi:10.1093/toxsci/kfw240
Weichenthal, S. A., Lavigne, E., Evans, G. J., Godri Pollitt, K. J., & Burnett, R. T. (2016). Fine Particulate Matter and Emergency Room Visits for Respiratory Illness. Effect Modification by Oxidative Potential. Am J Respir Crit Care Med, 194(5), 577-586. doi:10.1164/rccm.201512-2434OC
Weinmayr, G., Romeo, E., De Sario, M., Weiland, S. K., & Forastiere, F. (2010). Short-term effects of PM10 and NO2 on respiratory health among children with asthma or asthma-like symptoms: a systematic review and meta-analysis. Environ Health Perspect, 118(4), 449-457. doi:10.1289/ehp.0900844
Weinstein, J. R., Asteria-Penaloza, R., Diaz-Artiga, A., Davila, G., Hammond, S. K., Ryde, I. T., . . . Thompson, L. M. (2017). Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds among recently pregnant rural Guatemalan women cooking and heating with solid fuels. Int J Hyg Environ Health. doi:10.1016/j.ijheh.2017.03.002
Yan, X. D., Wang, Q. M., Tie, C., Jin, H. T., Han, Y. X., Zhang, J. L., . . . Jiang, J. D. (2017). Polydatin protects the respiratory system from PM2.5 exposure. Sci Rep, 7, 40030. doi:10.1038/srep40030
Yang, J., Jia, J., Wang, Y., & You, W. (2005). Treatment of cooking oil fume by low temperature catalysis. Applied Catalysis B: Environmental, 58(1-2), 123-131. doi:10.1016/j.apcatb.2004.11.021
Yang, J. Y., Kim, J. Y., Jang, J. Y., Lee, G. W., Kim, S. H., Shin, D. C., & Lim, Y. W. (2013). Exposure and toxicity assessment of ultrafine particles from nearby traffic in urban air in seoul, Korea. Environ Health Toxicol, 28, e2013007. doi:10.5620/eht.2013.28.e2013007
Zhang, S., Li, G., Tian, L., Guo, Q., & Pan, X. (2016). Short-term exposure to air pollution and morbidity of COPD and asthma in East Asian area: A systematic review and meta-analysis. Environ Res, 148, 15-23. doi:10.1016/j.envres.2016.03.008
Zheng, X. Y., Ding, H., Jiang, L. N., Chen, S. W., Zheng, J. P., Qiu, M., . . . Guan, W. J. (2015). Association between Air Pollutants and Asthma Emergency Room Visits and Hospital Admissions in Time Series Studies: A Systematic Review and Meta-Analysis. PLoS One, 10(9), e0138146. doi:10.1371/journal.pone.0138146
Zhu, L., & Wang, J. (2003). Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere.
于家城, & 臺大醫院醫學研究部. (2016). 自由基的測定(二) 共 同 研 究 室 電 子 報, 第三十五期 NOV.10.2016. Retrieved from http://ntuh.mc.ntu.edu.tw/cmrd/epaper-35th.htm
內政部統計處. (2017). 人口數. 最新統計指標. Retrieved from http://www.moi.gov.tw/stat/chart.aspx?ChartID=S0101
交通部觀光局. (2012). 100年觀光外匯收入首度突破百億美元 日客消費增幅居冠,陸客滿意度最高 非陸客來臺重遊率幾近半數. 觀光局新聞稿. Retrieved from http://admin.taiwan.net.tw/news/news_d.aspx?no=249&d=3730&tag=2
行政院環保署. (2017a). 細懸浮微粒管制. 空氣品質改善維護資訊網. Retrieved from https://air.epa.gov.tw/Public/suspended_particles.aspx
行政院環保署. (2017b). 機動車輛登記數及密度. 環境資源資料庫. Retrieved from http://erdb.epa.gov.tw/DataRepository/ReportAndStatistics/StatSceMotors.aspx?topic1=%E5%A4%A7%E6%B0%A3&topic2=%E7%92%B0%E4%BF%9D%E7%B5%B1%E8%A8%88&subject=%E6%A9%9F%E5%8B%95%E8%BB%8A%E8%BC%9B
呂蓓君 (Producer). (2015). 台灣機車密度全最高 每1.54人就有一輛. TVBS News. Retrieved from http://news.tvbs.com.tw/local/573418
周崇光, 林煜棋, 林順信, 練建國, 陳馥韻, 黃譯樘, . . . 黃昭豪. (2014). 「懸浮微粒污染源特徵指標技術之建置與評析」研究案. Retrieved from
林志忠. (2007). 交通源大氣奈米、超細、細及粗微粒組成特性之研究. 國立屏東科技大學. Retrieved from http://handle.ncl.edu.tw/11296/ndltd/75080992501097943507
林悅. (2017). PM2.5 增加慢性阻塞性肺病惡化及死亡 [Press release]. Retrieved from http://health.ettoday.net/news/885031
高子航. (2010). 機車不機車從媒體文本與車隊文化看台灣社會中的機車. 國立臺灣師範大學. Retrieved from http://handle.ncl.edu.tw/11296/ndltd/36466075683446697060
游雅婷. (2016). 北臺灣地區移動污染源細懸浮微粒空間濃度與族群健康風險評估. 中原大學. Retrieved from http://handle.ncl.edu.tw/11296/ndltd/46048496108717010180
趙淑如, 黃志彬, & 袁如馨. (2011). 太陽能光電廠廢水急毒性及遺傳毒性分析研究. 國立交通大學.
劉亦庭. (2016). 臺灣大氣及煙道排氣中細懸浮微粒戴奧辛與其他化學元素之組成特徵來源解析及健康風險探討. 國立陽明大學.
潘詩諭. (2016). 大氣細懸浮微粒高流量採樣方法建立及有害空氣污染物傳輸事件來源解析應用 國立陽明大學.
環境檢驗所. (2012). 空氣中懸浮微粒(PM2.5)檢測方法-手動採樣法 (Vol. NIEA A205.11C ).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊