跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 18:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳信宏
研究生(外文):Hsin-Hung Chen
論文名稱:腎衰竭相關分子機轉系列研究: 從急性缺血性腎衰竭之修復機轉到慢性腎衰竭誘發之高血壓分子致病機轉
論文名稱(外文):Serial studies of molecular mechanisms of kidney injury: From the mechanisms of acute ischemic kidney injury recovery to the molecular pathogenesis of chronic kidney disease-induced hypertension
指導教授:曾清俊曾清俊引用關係
指導教授(外文):Ching-Jiunn Tseng
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:100
中文關鍵詞:腎臟急性腎損傷慢性腎病變第一型血紅素氧化酶腎神經去除γ-氨基丁酸
外文關鍵詞:KidneyAcute kidney injuryChronic kidney diseaseHeme oxygenase-1Renal denervationGABA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
大多數的腎臟疾病會攻擊腎元。這種損傷可能使腎臟無法清除廢物,例如急性腎損傷。急性腎損傷存活者中慢性腎臟病的進展通常發生在最初的急性腎損傷的數個月後。有很多流行病學證明高血壓和增加心血管發病率和死亡率都與慢性腎臟病相關聯。位於腦幹背側的孤立束核是由動脈和心肺壓力感受器的傳入纖維產生的第一中樞突觸的部位,被發現在中樞神經系統中是一個重要的血壓調控中心。近期研究發現,第一型血紅素氧化酶可以抵抗組織受損,包括急性腎損傷。因此,首先我們調查第一型血紅素氧化酶在急性腎損傷中參與的細胞保護作用可能的信號通路;並進一步利用5/6腎切除大鼠創建慢性腎臟病模型來研究孤立束核參與的分子機制是否導致慢性腎臟病誘發的高血壓,並進一步發展成第4型心腎症候群。我們研究發現,高鐵血紅素預處理顯著改善腎功能和再灌注後的腎小管損傷,並在72小時增強腎小管恢復。給予高鐵血紅素誘導小鼠腎中的第一型血紅素氧化酶活化和ERK1 / 2磷酸化,以及通過鋅原卟啉IX(ZnPP)阻斷了ERK1 / 2和第一型血紅素氧化酶激活。蛋白質印跡和免疫熒光研究進一步證實了高鐵血紅素預處理刺激第一型血紅素氧化酶誘導腎小管增殖,並且PD98059治療減弱了這種效應。我們的研究探討如何減少慢性腎臟病的惡化。結果發現腎神經去除通過降低交感神經活動改善慢性腎臟病的血壓,並顯著恢復的壓力感受器反應。除此之外,我們利用蛋白質體學和生物信息分析來確定孤立束核中什麼分子機制導致慢性腎臟病誘發高血壓。研究發現,γ-氨基丁酸B受體的表達在慢性腎臟病的孤束核中增加;γ-氨基丁酸在腦脊液中減少,在血清中升高。然而,腎神經去除恢復了慢性腎臟病之孤束核的谷氨酸脫羧酶活性,類似於中樞治療巴氯芬和口服給予加巴噴丁,所觀察到的降血壓反應。綜合上述,我們證明第一型血紅素氧化酶預處理在缺血性急性腎損傷的初始階段,是透過活化ERK1 / 2的增殖反應促進腎小管恢復,而不是透過減少腎損傷。 在急性腎損傷發展成慢性腎臟病的情況下,腎神經去除可以改善γ-氨基丁酸功能來降低血壓,並進一步降低慢性腎臟病的惡化。
Most kidney diseases attack the nephrons. This damage may leave kidneys unable to remove wastes such as acute kidney injury (AKI). The progression of chronic kidney disease (CKD) in these AKI survivors typically occurs months after the initial AKI insult. There is much epidemiological demonstrated that hypertension and increased cardiovascular morbidity and mortality all linking with CKD. The nucleus tractus solitarii (NTS) is the site where afferent fibers arising from the arterial and cardiopulmonary baroreceptors make the first central synapses. Recent studies indicate that Heme oxygenase (HO)-1 can resist against tissues damage, including kidney injury. Therefore, we first investigated the possible signaling pathways that are involved in the cytoprotective effects of HO-1 in AKI, and next utilized the CKD model to investigate that the molecular mechanisms were involved in the NTS lead CKD-induced hypertension and further the development of cardiorenal syndrome type 4 by 5/6 nephrectomized rats. Our study showed that hemin pretreatment significantly ameliorated renal function and tubular damage after reperfusion and enhanced tubular recovery at 72 hours. Hemin administration induced HO-1 activation and ERK1/2 phosphorylation in mouse kidneys and the blockade of ERK1/2 and HO-1 activation by zinc-protoporphyrin IX (ZnPP). Western blot and immunofluorescence studies further demonstrated that hemin pretreatment stimulated an HO-1-induced tubular proliferation, and PD98059 treatment attenuated this effect. Next, our study investigated how to reduce the deterioration of CKD. We discovered that renal denervation (RD) improved the blood pressure (BP) by lowering sympathetic nerve activity (SNA) and markedly recovered the baroreflex response in CKD. In addition, we utilized proteomics and bioinformatics analysis to determine what the molecular mechanisms lead to CKD-induced hypertension in the NTS. We investigated that GABAB receptor expression was increased in the NTS of CKD; the central GABA levels were reduced in the CSF, and the peripheral GABA levels were increased in the Serum. However, RD recovered glutamic acid decarboxylase activity in the NTS in CKD, similar to that observed with central treatment with baclofen, and the systemic administration of gabapentin reduced the BP. Taken together, we demonstrated that HO-1 preconditioning improves tubular recovery through a proliferative response induced by activated ERK1/2, rather than through reducing kidney injury in the initial phase of ischemic AKI. In case AKI progresses to CKD, RD can improve GABA function to decrease BP, and further reduce the deterioration of CKD.
Contents ..........................................I
English Abstract ………………………………………………………………..........V
Chinese Abstract ……………………………………………………...........VII
List of Abbreviations ……………………………………………………………......IX
List of Tables …………………………………………………………………...........XI
List of Figures ………………………………………………..…………………........XII
Introduction ……………………………………………………………………............1
Kidney and kidney injury …………………………………………….........1
Renoprotective effects of HO-1 in kidney injury …….2
HO-1 and signal transduction ………………………………….……………..…3
Acute kidney injury to chronic kidney disease …….….4
Chronic renocardiac syndrome in CKD ………………….….……………5
Renal denervation blood pressure control in CKD …….5
Renal afferent nerves converge into the nucleus tractus solitarii ………..6
Hypothesis and Specific aims ………………………………………..…..……7
Materials and Methods ……..……………………………………………..…....…8
Animal care and experiments ……………………………………………..…...8
Ischemia-reperfusion injury procedures ………………………………8
5/6 nephrectomy procedures ………………………………………………….....9
Renal ischemia-reperfusion model ………………………………...…..10
Histopathological examination ………………………………………...…..11
Western Blot Analysis ………………………………………………………........12
Immunohistochemistry analysis …………………………………………..…..13
EdU labeling in the mouse model ………………………………………..….13
Echocardiography analysis ………………………………………………..…....13
General characteristics of blood …………………………………………….14
Blood pressure measurement ………………………………………….…......14
Sympathetic nerve recordings and the baroreflex response analysis ………………………………………………………………….…........................15
Proteomics analysis using two-dimensional electrophoresis ...................................................15
In-gel digestion ……………………………………………………….….........……16
LC-MS/MS analysis …………………………………………………………...........17
Mass data analysis ……………………………………………...……….……......17
Real-Time PCR analysis …………………………………………………..…......18
Assay of cerebrospinal fluid and serum GABA and glutamate levels ………………………………………………………………………..….....................19
GAD activity assay …………………..………………………………………........19
Statistical analysis ……………………………………….…………….……......19
Result …………………………………………………………………..……..............…21
Hemin preconditioning could protect kidney injury from renal IRI ………………………………………………………………………….….....................21
Hemin preconditioning induces HO-1 expression in the kidney cortex …..…………………………………………………………………..….......................22
HO-1 induces ERK1/2 activation in the kidney cortex …………….…..............................................…...22
HO-1 enhances early kidney function recovery by activating ERK 1/2 ..……………………………………………………………….…………….....................22
HO-1 enhances kidney function recovery by promoting early renal tubular epithelium proliferation through ERK1/2 activation …………...…............................................…..…..23
CKD induced hypertension and cardiovascular disorders by 5/6 nephrectomy ……………………………………………………………….........................….24
RD reduces the BP by improving the SNA, and restores the baroreflex response in CKD ………………………………………………………….…...........24
RD reverses the increased GABAB receptor expression and normalizes the GABA levels in CKD …………………………………………………..…….............…26
RD improves GAD activity and reverses the GABA dysfunction in CKD with hypertension ……………………………………………………………..…............27
RD improves chronic renocardiac syndrome (CRS type 4) in CKD …….28
Discussion ……………………………………………………………………..............30
The reason of Ho-1 cytoprotective properties are recovery, not protection ………………………………………………………..……..…….....................…30
HO-1 activates ERK1/2 and then leads to the protective effect in AKI …………………………………………………………………………….....................…31
ERK1/2 activation leads to tubular epithelial cell proliferation ………...............................................…33
AKI recovery may lead to the development of CKD and how to improve the prognosis of CKD ……………………………………………...…………….........33
RD through GABA system reduces sympathetic hyperactivity, and impaired baroreflex responses lead to the hypotensive response ……………….............................................34
Control central nervous system by GABA system ……………….........................................……….35
RD treats psychotic disorders from clinical perspective …………….............................................…36
The advantages and disadvantages of RD ………………………..…................................................……37
Conclusion ……………………………………………………………..….................................................…39
Future Perspectives …………………...……………………………….….......40
References ……………………………………………………………...….........…42
Tables …………………………………………………..……………………...............53
Figures and Figure Legends ……………..……………………………….....58
Appendices ………………………………………………………….……..…..….........81
Publications …………………………………………………………..….……..........99
1. Leigh Erin Connealy MD. 10 Tips to Protect Your Kidneys 2014. Available from:https://www.newportnaturalhealth.com/2014/08/10-tips-to-protect-your-kidneys/.
2. Dhaun N, Webb DJ. The road from AKI to CKD: the role of endothelin. Kidney Int. 2013;84(4):637-8.
3. Goncalves GM, Cenedeze MA, Feitoza CQ, Wang PM, Bertocchi AP, Damiao MJ, Pinheiro HS, Antunes Teixeira VP, dos Reis MA, Pacheco-Silva A, Camara NO. The role of heme oxygenase 1 in rapamycin-induced renal dysfunction after ischemia and reperfusion injury. Kidney Int. 2006;70(10):1742-9.
4. Wang S, Wei Q, Dong G, Dong Z. ERK-mediated suppression of cilia in cisplatin-induced tubular cell apoptosis and acute kidney injury. Biochimica et biophysica acta. 2013;1832(10):1582-90.
5. Ollinger R, Kogler P, Biebl M, Sieb M, Sucher R, Bosmuller C, Troppmair J, Mark W, Weiss H, Margreiter R. Protein levels of heme oxygenase-1 during reperfusion in human kidney transplants with delayed graft function. Clin Transplant. 2008;22(4):418-23.
6. Duann P, Lianos EA. GEC-targeted HO-1 expression reduces proteinuria in glomerular immune injury. Am J Physiol Renal Physiol. 2009;297(3):F629-38.
7. Nath KA, Balla G, Vercellotti GM, Balla J, Jacob HS, Levitt MD, Rosenberg ME. Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Invest. 1992;90(1):267-70.
8. O'Hare AM, Choi AI, Bertenthal D, Bacchetti P, Garg AX, Kaufman JS, Walter LC, Mehta KM, Steinman MA, Allon M, McClellan WM, Landefeld CS. Age affects outcomes in chronic kidney disease. J Am Soc Nephrol. 2007;18(10):2758-65.
9. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296-305.
10. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144(1):21-8.
11. Conger JD, Falk SA, Yuan BH, Schrier RW. Atrial natriuretic peptide and dopamine in a rat model of ischemic acute renal failure. Kidney Int. 1989;35(5):1126-32.
12. Siegel NJ, Gaudio KM, Katz LA, Reilly HF, Ardito TA, Hendler FG, Kashgarian M. Beneficial effect of thyroxin on recovery from toxic acute renal failure. Kidney Int. 1984;25(6):906-11.
13. Chiao H, Kohda Y, McLeroy P, Craig L, Housini I, Star RA. Alpha-melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats. J Clin Invest. 1997;99(6):1165-72.
14. Vargas AV, Krishnamurthi V, Masih R, Robinson AV, Schulak JA. Prostaglandin E1 attenuation of ischemic renal reperfusion injury in the rat. J Am Coll Surg. 1995;180(6):713-7.
15. Wagener FA, da Silva JL, Farley T, de Witte T, Kappas A, Abraham NG. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression. J Pharmacol Exp Ther. 1999;291(1):416-23.
16. Vogt BA, Shanley TP, Croatt A, Alam J, Johnson KJ, Nath KA. Glomerular inflammation induces resistance to tubular injury in the rat. A novel form of acquired, heme oxygenase-dependent resistance to renal injury. J Clin Invest. 1996;98(9):2139-45.
17. Agarwal A, Balla J, Alam J, Croatt AJ, Nath KA. Induction of heme oxygenase in toxic renal injury: a protective role in cisplatin nephrotoxicity in the rat. Kidney Int. 1995;48(4):1298-307.
18. Koya D, Hayashi K, Kitada M, Kashiwagi A, Kikkawa R, Haneda M. Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J Am Soc Nephrol. 2003;14(8 Suppl 3):S250-3.
19. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. JClinInvest. 1999;103(1):129-35.
20. Ohta K, Yachie A, Fujimoto K, Kaneda H, Wada T, Toma T, Seno A, Kasahara Y, Yokoyama H, Seki H, Koizumi S. Tubular injury as a cardinal pathologic feature in human heme oxygenase-1 deficiency. Am J Kidney Dis. 2000;35(5):863-70.
21. Poss KD, Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(20):10925-30.
22. Blydt-Hansen TD, Katori M, Lassman C, Ke B, Coito AJ, Iyer S, Buelow R, Ettenger R, Busuttil RW, Kupiec-Weglinski JW. Gene transfer-induced local heme oxygenase-1 overexpression protects rat kidney transplants from ischemia/reperfusion injury. J Am Soc Nephrol. 2003;14(3):745-54.
23. Bolisetty S, Traylor AM, Kim J, Joseph R, Ricart K, Landar A, Agarwal A. Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury. J Am Soc Nephrol. 2010;21(10):1702-12.
24. Shokeir AA, Hussein AM, Barakat N, Abdelaziz A, Elgarba M, Awadalla A. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf-2-dependent genes by ischaemic pre-conditioning and post-conditioning: new adaptive endogenous protective responses against renal ischaemia/reperfusion injury. Acta physiologica. 2013.
25. Maines MD. The heme oxygenase system: a regulator of second messenger gases. AnnuRevPharmacolToxicol. 1997;37:517-54.
26. Pachori AS, Melo LG, Zhang L, Solomon SD, Dzau VJ. Chronic recurrent myocardial ischemic injury is significantly attenuated by pre-emptive adeno-associated virus heme oxygenase-1 gene delivery. J Am Coll Cardiol. 2006;47(3):635-43.
27. Ke B, Shen XD, Ji H, Kamo N, Gao F, Freitas MC, Busuttil RW, Kupiec-Weglinski JW. HO-1-STAT3 axis in mouse liver ischemia/reperfusion injury: regulation of TLR4 innate responses through PI3K/PTEN signaling. J Hepatol. 2012;56(2):359-66.
28. Kohmoto J, Nakao A, Stolz DB, Kaizu T, Tsung A, Ikeda A, Shimizu H, Takahashi T, Tomiyama K, Sugimoto R, Choi AM, Billiar TR, Murase N, McCurry KR. Carbon monoxide protects rat lung transplants from ischemia-reperfusion injury via a mechanism involving p38 MAPK pathway. Am J Transplant. 2007;7(10):2279-90.
29. Kaizu T, Ikeda A, Nakao A, Tsung A, Toyokawa H, Ueki S, Geller DA, Murase N. Protection of transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via MEK/ERK1/2 pathway downregulation. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G236-44.
30. Pachori AS, Smith A, McDonald P, Zhang L, Dzau VJ, Melo LG. Heme-oxygenase-1-induced protection against hypoxia/reoxygenation is dependent on biliverdin reductase and its interaction with PI3K/Akt pathway. J Mol Cell Cardiol. 2007;43(5):580-92.
31. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442-8.
32. Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 2012;82(5):516-24.
33. Rifkin DE, Coca SG, Kalantar-Zadeh K. Does AKI truly lead to CKD? J Am Soc Nephrol. 2012;23(6):979-84.
34. Rao MV, Qiu Y, Wang C, Bakris G. Hypertension and CKD: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES), 1999-2004. Am J Kidney Dis. 2008;51(4 Suppl 2):S30-7.
35. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, McCullough PA, Kasiske BL, Kelepouris E, Klag MJ, Parfrey P, Pfeffer M, Raij L, Spinosa DJ, Wilson PW. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the american heart association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation. 2003;108(17):2154-69.
36. Anand S, Shivashankar R, Ali MK, Kondal D, Binukumar B, Montez-Rath ME, Ajay VS, Pradeepa R, Deepa M, Gupta R, Mohan V, Narayan KM, Tandon N, Chertow GM, Prabhakaran D, Investigators C. Prevalence of chronic kidney disease in two major Indian cities and projections for associated cardiovascular disease. Kidney Int. 2015;88(1):178-85.
37. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., Jones DW, Materson BJ, Oparil S, Wright JT, Jr., Roccella EJ. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560-72.
38. Udani S, Lazich I, Bakris GL. Epidemiology of hypertensive kidney disease. Nat Rev Nephrol. 2011;7(1):11-21.
39. Rahman M, Pressel S, Davis BR, Nwachuku C, Wright JT, Jr., Whelton PK, Barzilay J, Batuman V, Eckfeldt JH, Farber MA, Franklin S, Henriquez M, Kopyt N, Louis GT, Saklayen M, Stanford C, Walworth C, Ward H, Wiegmann T, Group ACR. Cardiovascular outcomes in high-risk hypertensive patients stratified by baseline glomerular filtration rate. Ann Intern Med. 2006;144(3):172-80.
40. Martin FL, McKie PM, Cataliotti A, Sangaralingham SJ, Korinek J, Huntley BK, Oehler EA, Harders GE, Ichiki T, Mangiafico S, Nath KA, Redfield MM, Chen HH, Burnett JC, Jr. Experimental mild renal insufficiency mediates early cardiac apoptosis, fibrosis, and diastolic dysfunction: a kidney-heart connection. Am J Physiol Regul Integr Comp Physiol. 2012;302(2):R292-9.
41. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527-39.
42. Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G, Bonanno G, Rapisarda F, Fatuzzo P, Seminara G, Cataliotti A, Stancanelli B, Malatino LS. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation. 2002;105(11):1354-9.
43. Veelken R, Schmieder RE. Renal denervation--implications for chronic kidney disease. Nat Rev Nephrol. 2014;10(6):305-13.
44. Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, Sobotka PA, Bohm M, Cremers B, Esler MD, Schlaich MP. Renal denervation in moderate to severe CKD. J Am Soc Nephrol. 2012;23(7):1250-7.
45. Ye S, Ozgur B, Campese VM. Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure. Kidney Int. 1997;51(3):722-7.
46. Weiss ML, Chowdhury SI. The renal afferent pathways in the rat: a pseudorabies virus study. Brain Res. 1998;812(1-2):227-41.
47. Yeh TC, Liu CP, Cheng WH, Chen BR, Lu PJ, Cheng PW, Ho WY, Sun GC, Liou JC, Tseng CJ. Caffeine intake improves fructose-induced hypertension and insulin resistance by enhancing central insulin signaling. Hypertension. 2014;63(3):535-41.
48. Sved AF, Imaizumi T, Talman WT, Reis DJ. Vasopressin contributes to hypertension caused by nucleus tractus solitarius lesions. Hypertension. 1985;7(2):262-7.
49. Durgam VR, Vitela M, Mifflin SW. Enhanced gamma-aminobutyric acid-B receptor agonist responses and mRNA within the nucleus of the solitary tract in hypertension. Hypertension. 1999;33(1 Pt 2):530-6.
50. Smogorzewski MJ. Central nervous dysfunction in uremia. Am J Kidney Dis. 2001;38(4 Suppl 1):S122-8.
51. Vitela M, Mifflin SW. gamma-Aminobutyric acid(B) receptor-mediated responses in the nucleus tractus solitarius are altered in acute and chronic hypertension. Hypertension. 2001;37(2 Pt 2):619-22.
52. Zhang W, Mifflin S. Chronic hypertension enhances presynaptic inhibition by baclofen in the nucleus of the solitary tract. Hypertension. 2010;55(2):481-6.
53. Bakris GL, Ritz E. The message for World Kidney Day 2009: hypertension and kidney disease: a marriage that should be prevented. Kidney Int. 2009;75(5):449-52.
54. Hahn S, Kuemmerle NB, Chan W, Hisano S, Saborio P, Krieg RJ, Jr., Chan JC. Glomerulosclerosis in the remnant kidney rat is modulated by dietary alpha-tocopherol. J Am Soc Nephrol. 1998;9(11):2089-95.
55. Li ZZ, Jiang H, Chen D, Liu Q, Geng J, Guo JQ, Sun RH, Zhu GQ, Shan QJ. Renal sympathetic denervation improves cardiac dysfunction in rats with chronic pressure overload. Physiol Res. 2015;64(5):653-62.
56. Shekhar A, Johnson PL, Sajdyk TJ, Fitz SD, Keim SR, Kelley PE, Gehlert DR, DiMicco JA. Angiotensin-II is a putative neurotransmitter in lactate-induced panic-like responses in rats with disruption of GABAergic inhibition in the dorsomedial hypothalamus. J Neurosci. 2006;26(36):9205-15.
57. Guo C, Wei Q, Su Y, Dong Z. SUMOylation occurs in acute kidney injury and plays a cytoprotective role. Biochimica et biophysica acta. 2015;1852(3):482-9.
58. Cheng WH, Lu PJ, Ho WY, Tung CS, Cheng PW, Hsiao M, Tseng CJ. Angiotensin II inhibits neuronal nitric oxide synthase activation through the ERK1/2-RSK signaling pathway to modulate central control of blood pressure. Circ Res. 2010;106(4):788-95.
59. Ho WY, Lu PJ, Hsiao M, Hwang HR, Tseng YC, Yen MH, Tseng CJ. Adenosine modulates cardiovascular functions through activation of extracellular signal-regulated kinases 1 and 2 and endothelial nitric oxide synthase in the nucleus tractus solitarii of rats. Circulation. 2008;117(6):773-80.
60. Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(7):2415-20.
61. Lu WH, Hsieh KS, Lu PJ, Wu YS, Ho WY, Lai CC, Wang JS, Ger LP, Hsiao M, Tseng CJ. Hexamethonium reverses the lethal cardiopulmonary damages in a rat model of brainstem lesions mimicking fatal enterovirus 71 encephalitis. Critical care medicine. 2013;41(5):1276-85.
62. Cheng WH, Ho WY, Chang CF, Lu PJ, Cheng PW, Yeh TC, Hong LZ, Sun GC, Hsiao M, Tseng CJ. Simvastatin induces a central hypotensive effect via Ras-mediated signalling to cause eNOS up-regulation. Br J Pharmacol. 2013;170(4):847-58.
63. Lo WC, Jan CR, Chiang HT, Tseng CJ. Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats. Hypertension. 2000;35(6):1253-7.
64. Jung IL, Kim IG. Polyamines and glutamate decarboxylase-based acid resistance in Escherichia coli. J Biol Chem. 2003;278(25):22846-52.
65. Hogema BM, Gupta M, Senephansiri H, Burlingame TG, Taylor M, Jakobs C, Schutgens RB, Froestl W, Snead OC, Diaz-Arrastia R, Bottiglieri T, Grompe M, Gibson KM. Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase. Nat Genet. 2001;29(2):212-6.
66. Pontier SM, Lahaie N, Ginham R, St-Gelais F, Bonin H, Bell DJ, Flynn H, Trudeau LE, McIlhinney J, White JH, Bouvier M. Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy. EMBO J. 2006;25(12):2698-709.
67. Nath KA. Heme oxygenase-1 and acute kidney injury. Current opinion in nephrology and hypertension. 2014;23(1):17-24.
68. Kim J, Zarjou A, Traylor AM, Bolisetty S, Jaimes EA, Hull TD, George JF, Mikhail FM, Agarwal A. In vivo regulation of the heme oxygenase-1 gene in humanized transgenic mice. Kidney Int. 2012;82(3):278-91.
69. Ferenbach DA, Kluth DC, Hughes J. Hemeoxygenase-1 and renal ischaemia-reperfusion injury. Nephron Experimental nephrology. 2010;115(3):e33-7.
70. Nath KA. Heme oxygenase-1: a provenance for cytoprotective pathways in the kidney and other tissues. Kidney Int. 2006;70(3):432-43.
71. Nath KA, Haggard JJ, Croatt AJ, Grande JP, Poss KD, Alam J. The indispensability of heme oxygenase-1 in protecting against acute heme protein-induced toxicity in vivo. The American journal of pathology. 2000;156(5):1527-35.
72. Shimizu H, Takahashi T, Suzuki T, Yamasaki A, Fujiwara T, Odaka Y, Hirakawa M, Fujita H, Akagi R. Protective effect of heme oxygenase induction in ischemic acute renal failure. Critical care medicine. 2000;28(3):809-17.
73. Kwon YS, Foley JD, Russell P, McAnulty JF, Murphy CJ. Prevention of cold ischemia/rewarming-induced ERK 1/2, p38 kinase and HO-1 activation by trophic factor supplementation of UW solution. Cryobiology. 2008;57(1):72-4.
74. Murali NS, Ackerman AW, Croatt AJ, Cheng J, Grande JP, Sutor SL, Bram RJ, Bren GD, Badley AD, Alam J, Nath KA. Renal upregulation of HO-1 reduces albumin-driven MCP-1 production: implications for chronic kidney disease. Am J Physiol Renal Physiol. 2007;292(2):F837-44.
75. di Mari JF, Davis R, Safirstein RL. MAPK activation determines renal epithelial cell survival during oxidative injury. The American journal of physiology. 1999;277(2 Pt 2):F195-203.
76. Arany I, Megyesi JK, Kaneto H, Tanaka S, Safirstein RL. Activation of ERK or inhibition of JNK ameliorates H(2)O(2) cytotoxicity in mouse renal proximal tubule cells. Kidney Int. 2004;65(4):1231-9.
77. Vaidya VS, Shankar K, Lock EA, Dixon D, Mehendale HM. Molecular mechanisms of renal tissue repair in survival from acute renal tubule necrosis: role of ERK1/2 pathway. Toxicologic pathology. 2003;31(6):604-18.
78. Masaki T, Foti R, Hill PA, Ikezumi Y, Atkins RC, Nikolic-Paterson DJ. Activation of the ERK pathway precedes tubular proliferation in the obstructed rat kidney. Kidney Int. 2003;63(4):1256-64.
79. Pat B, Yang T, Kong C, Watters D, Johnson DW, Gobe G. Activation of ERK in renal fibrosis after unilateral ureteral obstruction: modulation by antioxidants. Kidney Int. 2005;67(3):931-43.
80. Jang HS, Han SJ, Kim JI, Lee S, Lipschutz JH, Park KM. Activation of ERK accelerates repair of renal tubular epithelial cells, whereas it inhibits progression of fibrosis following ischemia/reperfusion injury. Biochimica et biophysica acta. 2013;1832(12):1998-2008.
81. Kim JH, Yang JI, Jung MH, Hwa JS, Kang KR, Park DJ, Roh GS, Cho GJ, Choi WS, Chang SH. Heme oxygenase-1 protects rat kidney from ureteral obstruction via an antiapoptotic pathway. J Am Soc Nephrol. 2006;17(5):1373-81.
82. Inguaggiato P, Gonzalez-Michaca L, Croatt AJ, Haggard JJ, Alam J, Nath KA. Cellular overexpression of heme oxygenase-1 up-regulates p21 and confers resistance to apoptosis. Kidney Int. 2001;60(6):2181-91.
83. Kumar D, Bhaskaran M, Alagappan L, Tori D, Yadav I, Konkimalla S, Magoon S, Singhal PC. Heme oxygenase-1 modulates mesangial cell proliferation by p21 Waf1 upregulation. Ren Fail. 2010;32(2):254-8.
84. Bokemeyer D, Guglielmi KE, McGinty A, Sorokin A, Lianos EA, Dunn MJ. Activation of extracellular signal-regulated kinase in proliferative glomerulonephritis in rats. J Clin Invest. 1997;100(3):582-8.
85. Bonventre J. Mechanisms of acute kidney injury and repair. In: Jorres A RC, Kellum JA, editor. Management of Acute Kidney Problems. Berlin, Heidelberg: Springier; 2010. p. 13-20.
86. Chuasuwan A, Kellum JA. Cardio-renal syndrome type 3: epidemiology, pathophysiology, and treatment. Semin Nephrol. 2012;32(1):31-9.
87. Krum H, Sobotka P, Mahfoud F, Bohm M, Esler M, Schlaich M. Device-based antihypertensive therapy: therapeutic modulation of the autonomic nervous system. Circulation. 2011;123(2):209-15.
88. Faber JE, Brody MJ. Afferent renal nerve-dependent hypertension following acute renal artery stenosis in the conscious rat. Circ Res. 1985;57(5):676-88.
89. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, Peters T, Sweep FC, Haller H, Pichlmaier AM, Luft FC, Jordan J. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619-26.
90. Symplicity HTNI. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57(5):911-7.
91. Perry TL, Yong VW, Kish SJ, Ito M, Foulks JG, Godolphin WJ, Sweeney VP. Neurochemical abnormalities in brains of renal failure patients treated by repeated hemodialysis. J Neurochem. 1985;45(4):1043-8.
92. Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Nutr. 2004;92(3):411-7.
93. Hayakawa K, Kimura M, Yamori Y. Role of the renal nerves in gamma-aminobutyric acid-induced antihypertensive effect in spontaneously hypertensive rats. Eur J Pharmacol. 2005;524(1-3):120-5.
94. Kim YB, Kim YS, Kim WB, Shen FY, Lee SW, Chung HJ, Kim JS, Han HC, Colwell CS, Kim YI. GABAergic excitation of vasopressin neurons: possible mechanism underlying sodium-dependent hypertension. Circ Res. 2013;113(12):1296-307.
95. Schaefer F, Vogel M, Kerkhoff G, Woitzik J, Daschner M, Mehls O. Experimental uremia affects hypothalamic amino acid neurotransmitter milieu. J Am Soc Nephrol. 2001;12(6):1218-27.
96. Chen CY, Bonham AC. Glutamate suppresses GABA release via presynaptic metabotropic glutamate receptors at baroreceptor neurones in rats. J Physiol. 2005;562(Pt 2):535-51.
97. Bohm M, Linz D, Ukena C, Esler M, Mahfoud F. Renal denervation for the treatment of cardiovascular high risk-hypertension or beyond? Circ Res. 2014;115(3):400-9.
98. Correll CU, Robinson DG, Schooler NR, Brunette MF, Mueser KT, Rosenheck RA, Marcy P, Addington J, Estroff SE, Robinson J, Penn DL, Azrin S, Goldstein A, Severe J, Heinssen R, Kane JM. Cardiometabolic risk in patients with first-episode schizophrenia spectrum disorders: baseline results from the RAISE-ETP study. JAMA Psychiatry. 2014;71(12):1350-63.
99. Micozkadioglu H, Ozdemir FN, Kut A, Sezer S, Saatci U, Haberal M. Gabapentin versus levodopa for the treatment of Restless Legs Syndrome in hemodialysis patients: an open-label study. Ren Fail. 2004;26(4):393-7.
100. Sakkas GK, Giannaki CD, Karatzaferi C, Maridaki M, Koutedakis Y, Hadjigeorgiou GM, Stefanidis I. Current trends in the management of uremic restless legs syndrome: a systematic review on aspects related to quality of life, cardiovascular mortality and survival. Sleep Med Rev. 2015;21:39-49.
101. Converse RL, Jr., Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912-8.
102. Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, Hoppe UC, Vonend O, Rump LC, Sobotka PA, Krum H, Esler M, Bohm M. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123(18):1940-6.
103. Linz D, Hohl M, Nickel A, Mahfoud F, Wagner M, Ewen S, Schotten U, Maack C, Wirth K, Bohm M. Effect of renal denervation on neurohumoral activation triggering atrial fibrillation in obstructive sleep apnea. Hypertension. 2013;62(4):767-74.
104. Schirmer SH, Sayed MM, Reil JC, Ukena C, Linz D, Kindermann M, Laufs U, Mahfoud F, Bohm M. Improvements in left ventricular hypertrophy and diastolic function following renal denervation: effects beyond blood pressure and heart rate reduction. J Am Coll Cardiol. 2014;63(18):1916-23.
105. Mahfoud F, Urban D, Teller D, Linz D, Stawowy P, Hassel JH, Fries P, Dreysse S, Wellnhofer E, Schneider G, Buecker A, Schneeweis C, Doltra A, Schlaich MP, Esler MD, Fleck E, Bohm M, Kelle S. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J. 2014;35(33):2224-31b.
106. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, Shirokova N, Karaskov A, Mittal S, Steinberg JS. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60(13):1163-70.
107. Polhemus DJ, Gao J, Scarborough A, Trivedi RK, McDonough KH, Goodchild TT, Smart F, Kapusta DR, Lefer DJ. Radiofrequency Renal Denervation Protects the Ischemic Heart via Inhibition of GRK2 and Increased Nitric Oxide Signaling. Circ Res. 2016.
108. Bhatt DL, Kandzari DE, O'Neill WW, D'Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL, Investigators SH-. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393-401.
109. Fadl Elmula FE, Hoffmann P, Fossum E, Brekke M, Gjonnaess E, Hjornholm U, Kjaer VN, Rostrup M, Kjeldsen SE, Os I, Stenehjem AE, Hoieggen A. Renal sympathetic denervation in patients with treatment-resistant hypertension after witnessed intake of medication before qualifying ambulatory blood pressure. Hypertension. 2013;62(3):526-32.
110. Girchev R, Markova P. Renal nerves participation in the effects of nitric oxide and ET(A)/ET(B) receptor inhibition in spontaneously hypertensive rats. Physiol Res. 2007;56(1):25-35.
111. Lekawanvijit S, Krum H. Cardiorenal syndrome: acute kidney injury secondary to cardiovascular disease and role of protein-bound uraemic toxins. J Physiol. 2014;592(Pt 18):3969-83.
112. Cerasola G, Nardi E, Palermo A, Mule G, Cottone S. Epidemiology and pathophysiology of left ventricular abnormalities in chronic kidney disease: a review. J Nephrol. 2011;24(1):1-10.
113. Macdougall IC, Bircher AJ, Eckardt KU, Obrador GT, Pollock CA, Stenvinkel P, Swinkels DW, Wanner C, Weiss G, Chertow GM, Conference P. Iron management in chronic kidney disease: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int. 2016;89(1):28-39.
114. Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23(10):1631-4.
115. Chertow GM, Beddhu S, Lewis JB, Toto RD, Cheung AK. Managing hypertension in patients with CKD: A marathon, not a SPRINT. J Am Soc Nephrol. 2016;27(1):40-3.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊