跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝皓雯
研究生(外文):Hao-Wen Hsieh
論文名稱:透過精準醫療為導向的大數據資料研究策略進行老藥新用之藥物開發
論文名稱(外文):Guiding drug repurposing for precision medicine via novel big data approaches
指導教授:黃奇英
指導教授(外文):Chi-Ying Huang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:105
中文關鍵詞:大數據資料庫藥物開發老藥新用微陣列藥物註解
外文關鍵詞:Big dataDatabaseDrug repurposingMicroarrayDrug annotation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:760
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究目的主要為藉由建立生物資訊資料庫的藥物註解檔案,來發展一套能系統性地篩選有效藥物及治療目標的模式。藉由微陣列檢測系統,獲得在藥物處理之下細胞特定的基因表現變化圖譜,將其與數種國外大規模藥物篩選資料庫進行比對,能讓我們分析其結果並將其應用於藥物開發及相關的研究計畫。因此,透過整合性的平台來結合高通量篩選科技及電腦資訊模式,可以幫助我們預測藥物可能的作用機轉,並以老藥新用的模式加速藥物開發的進行。此篇研究涵蓋三個研究主題,分別為(1)找到了一個抗生素為癌症幹細胞抑制劑,並藉由在非小細胞肺癌細胞當中觀察到E-cadherin表現上升及Slug表現下降有抑制EMT的情形,(2)植物藥justicidin A可抑制核內NF-ĸB的表現,並抑制NF-ĸB與DNA的結合能力,為一NF-ĸB 抑制劑,(3)發現法布瑞氏症的酵素替代治療可能藉由抑制JAK、toll-like receptor (TLR)、interferon (IFN) 和interleukin (IL) 相關途徑而對免疫及發炎產生影響。總結,此篇的研究結果針對藥物開發提供了不同的見解,也發展了新的藥物開發途徑。
In this study, a novel algorithm has been developed by creating the comprehensive drug annotations for bioinformatics database to identify drug-target relationships in silico. By utilizing the microarray to obtain specific gene expression signatures, we can make inference on the connection between input signatures and internal reference profiles from the database. Thus, the integrated platform of high-throughput technologies and computational models enables us to predict molecular actions of small molecules and apply the concept of drug repurposing to accelerate drug discovery. Further, this thesis covers 3 different studies, including (1) identifying an antibiotic as a cancer stem cell (CSC) inhibitor with the ability to inhibit epithelial-to-mesenchymal transition (EMT) processes by enhancing E-cadherin expression and reducing Slug expression in NSCLC cells, (2) investigating the nature lignan justicidin A as a NF-ĸB suppressor which can suppress both the nuclear NF-ĸB expression and NF-ĸB DNA-binding activity, and (3) evaluating the effect of enzyme replacement therapy for Fabry disease in the inflammatory and immune responses possibly through JAK, toll-like receptor (TLR), interferon (IFN), and interleukin (IL)-related signaling pathways. In conclusion, the integrated platform of this study yields numerous insights and paves the way for new drug investigations.
Content

致謝 i
Abstract ii
中文摘要 iii
Content iv
Lists of Abbreviations vii
Introduction 1
Precision medicine 1
Drug screening database 2
Connectivity Map (Cmap) 3
Library of Integrated Network-based Cellular Signatures (LINCS) 5
Cancer Therapeutics Response Portal (CTRP) 5
Genomics of Drug Sensitivity in Cancer (GDSC) 6
Drug repurposing 6
Clinical examples for drug repurposing 8
Innovative strategies for drug repurposing 9
NIH NCATS program 10

Objectives 11
Aim 1: To employ microarray technology to identify specific gene signatures. 12
Aim 2: To establish new LINCS drug annotations and make the connection among different datasets. 12
Aim 3: To integrate and identify different groups of compound signatures into research projects. 13

Materials and Methods 13
Microarray-based gene profiling analysis 13
Drug screening via Connectivity map and LINCS 14
Drug annotations from different data repositories 15
Elucidate potential pathways through CPDB analysis 15

Results 16
Comprehensive drug annotations for LINCS database 16
Utilizing bioinformatics approach for predicting innovative autophagy inducers 16
To investigate the specific gene signatures to research projects 17

Part 1. Identifying thiostrepton as an inhibitor of cancer stem cell growth. 17
To identify potential CSC inhibitor via bioinformatics analysis 17
The CSC and anti-CSC signatures 18
GSE18150 as anti-CSC signature 18
GSE18931 as CSC signature 19
GSE17215 as anti-CSC and EMT signature 20

Part 2. Rapid identification of justicidin A as a NF- κB suppressor. 20
Nature lignin Justicidin A 20
Microarray analysis for JA in HT-29 and Hep 3B 21
15-delta prostaglandin J2 was predicted to act as JA 21

Part 3. Evaluation the effects of standard treatment of Fabry disease in inflammatory and immune responses. 22
Fabry disease and enzyme replacement therapy 22
Samples from Fabry disease patients and mice 23
Analysis for microarray and Gb3 24
Predicted pathways and compounds from PBMC of Fabry disease patients 25
Predicted pathways and compounds from mice models 26

Discussion 27

References 35

List of Figures 42
Figure 1. To facilitate novel drug discovery by using microarray technologies via integrating different big data resources. 42
Figure 2. Overview for drug repurposing. 44
Figure 3. Schematic illustration of new drug development via bioinformatics analysis. 45
Figure 4. The comprehensive drug annotations for LINCS database. 46
Figure 5. Cancer stem cell gene signatures. 47

List of Tables 48
Table 1. Current target therapy for cancer treatment based on the concept of precision medicine. 48
Table 2. The list of comprehensive drug annotations for LINCS database. 49
Table 3. The list of autophagy regulators from bioinformatics analysis. 97
Table 4. Top 30 compounds were selected for identifying the conceivable mechanism of JA from Cmap. 100
Table 5. The bioinformatics analysis for Fabry disease from patient’s and mice’s samples. 101

Supplementary 103
Supplementary Figure 1. GSEA plots of 81 gene expression profiles of thiostrepton among the 11,641 L1000 gene expression profiles. 103
Supplementary Figure 2. JA decreased the binding ability of NF-kB to DNA in a time- and dose-dependent manner. 104

Publication 105
References

1. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793-5.
2. Servant N, Romejon J, Gestraud P, La Rosa P, Lucotte G, Lair S, et al. Bioinformatics for precision medicine in oncology: principles and application to the SHIVA clinical trial. Front Genet. 2014;5:152.
3. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929-35.
4. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603-7.
5. Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol. 2016;12(2):109-16.
6. Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, et al. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov. 2015;5(11):1210-23.
7. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(Database issue):D955-61.
8. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell. 2016;166(3):740-54.
9. Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, et al. Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell. 2016;30(2):363.
10. International Cancer Genome C, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, et al. International network of cancer genome projects. Nature. 2010;464(7291):993-8.
11. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991-5.
12. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44(D1):D1202-13.
13. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668-72.
14. Gong L, Owen RP, Gor W, Altman RB, Klein TE. PharmGKB: an integrated resource of pharmacogenomic data and knowledge. Curr Protoc Bioinformatics. 2008;Chapter 14:Unit14 7.
15. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40(Database issue):D1100-7.
16. Kim RS, Goossens N, Hoshida Y. Use of big data in drug development for precision medicine. Expert Rev Precis Med Drug Dev. 2016;1(3):245-53.
17. Iorio F, Rittman T, Ge H, Menden M, Saez-Rodriguez J. Transcriptional data: a new gateway to drug repositioning? Drug Discov Today. 2013;18(7-8):350-7.
18. Lamb J. The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer. 2007;7(1):54-60.
19. Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U. Treatment of obesity with celastrol. Cell. 2015;161(5):999-1011.
20. Karras A, De Lentdecker P, Delahousse M, Debauchez M, Tricot L, Pastural M, et al. Combined heart and kidney transplantation in a patient with Fabry disease in the enzyme replacement therapy era. Am J Transplant. 2008;8(6):1345-8.
21. Gupta SC, Sung B, Prasad S, Webb LJ, Aggarwal BB. Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol Sci. 2013;34(9):508-17.
22. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673-83.
23. Oprea TI, Mestres J. Drug repurposing: far beyond new targets for old drugs. AAPS J. 2012;14(4):759-63.
24. Cavalla D. APT drug R&D: the right active ingredient in the right presentation for the right therapeutic use. Nat Rev Drug Discov. 2009;8(11):849-53.
25. Sweeney DD, Chancellor MB. Treatment of stress urinary incontinence with duloxetine hydrochloride. Rev Urol. 2005;7(2):81-6.
26. Li YY, Jones SJ. Drug repositioning for personalized medicine. Genome Med. 2012;4(3):27.
27. Smith RB. Repositioned drugs: integrating intellectual property and regulatory strategies. Drug Discovery Today: Therapeutic Strategies. 2011;8(3–4):131-7.
28. Bertolini F, Sukhatme VP, Bouche G. Drug repurposing in oncology--patient and health systems opportunities. Nat Rev Clin Oncol. 2015;12(12):732-42.
29. Metz DC, Vakily M, Dixit T, Mulford D. Review article: dual delayed release formulation of dexlansoprazole MR, a novel approach to overcome the limitations of conventional single release proton pump inhibitor therapy. Aliment Pharmacol Ther. 2009;29(9):928-37.
30. Sukhai MA, Spagnuolo PA, Weir S, Kasper J, Patton L, Schimmer AD. New sources of drugs for hematologic malignancies. Blood. 2011;117(25):6747-55.
31. Kaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA, Jeng AT, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77(6):953-71.
32. Wawer MJ, Li K, Gustafsdottir SM, Ljosa V, Bodycombe NE, Marton MA, et al. Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proc Natl Acad Sci U S A. 2014;111(30):10911-6.
33. Cheng L, Li L. Systematic Quality Control Analysis of LINCS Data. CPT Pharmacometrics Syst Pharmacol. 2016;5(11):588-98.
34. Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 2013;41(Database issue):D793-800.
35. Morselli E, Galluzzi L, Kepp O, Vicencio JM, Criollo A, Maiuri MC, et al. Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta. 2009;1793(9):1524-32.
36. Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG, et al. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One. 2009;4(9):e7124.
37. Jaboin JJ, Hwang M, Lu B. Autophagy in lung cancer. Methods Enzymol. 2009;453:287-304.
38. Fleming A, Noda T, Yoshimori T, Rubinsztein DC. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol. 2011;7(1):9-17.
39. Fuquan Zhang JKC. Targeting Oncogene-Induced Autophagy: A New Approach in Cancer Therapy? Journal of Cancer Research. 2013.
40. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-60.
41. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780-3.
42. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645-59.
43. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313-9.
44. Leung EL, Fiscus RR, Tung JW, Tin VP, Cheng LC, Sihoe AD, et al. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PloS one. 2010;5(11):e14062.
45. Pirozzi G, Tirino V, Camerlingo R, Franco R, La Rocca A, Liguori E, et al. Epithelial to mesenchymal transition by TGFbeta-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. PloS one. 2011;6(6):e21548.
46. Yeh CT, Wu AT, Chang PM, Chen KY, Yang CN, Yang SC, et al. Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med. 2012;186(11):1180-8.
47. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50.
48. Suva ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC, et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 2009;69(24):9211-8.
49. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 2010;140(1):62-73.
50. Day SH, Lin YC, Tsai ML, Tsao LT, Ko HH, Chung MI, et al. Potent cytotoxic lignans from Justicia procumbens and their effects on nitric oxide and tumor necrosis factor-alpha production in mouse macrophages. J Nat Prod. 2002;65(3):379-81.
51. Lee JC, Lee CH, Su CL, Huang CW, Liu HS, Lin CN, et al. Justicidin A decreases the level of cytosolic Ku70 leading to apoptosis in human colorectal cancer cells. Carcinogenesis. 2005;26(10):1716-30.
52. Won SJ, Yen CH, Liu HS, Wu SY, Lan SH, Jiang-Shieh YF, et al. Justicidin A-induced autophagy flux enhances apoptosis of human colorectal cancer cells via class III PI3K and Atg5 pathway. J Cell Physiol. 2015;230(4):930-46.
53. Su CL, Huang LL, Huang LM, Lee JC, Lin CN, Won SJ. Caspase-8 acts as a key upstream executor of mitochondria during justicidin A-induced apoptosis in human hepatoma cells. FEBS Lett. 2006;580(13):3185-91.
54. Cheng HW, Liang YH, Kuo YL, Chuu CP, Lin CY, Lee MH, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753.
55. Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang CH, et al. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci U S A. 2000;97(9):4844-9.
56. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-7.
57. Domanski D, Zegrocka-Stendel O, Perzanowska A, Dutkiewicz M, Kowalewska M, Grabowska I, et al. Molecular Mechanism for Cellular Response to beta-Escin and Its Therapeutic Implications. PLoS One. 2016;11(10):e0164365.
58. Weidemann F, Niemann M, Breunig F, Herrmann S, Beer M, Stork S, et al. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation. 2009;119(4):524-9.
59. Lin HY, Chong KW, Hsu JH, Yu HC, Shih CC, Huang CH, et al. High incidence of the cardiac variant of Fabry disease revealed by newborn screening in the Taiwan Chinese population. Circ Cardiovasc Genet. 2009;2(5):450-6.
60. Seydelmann N, Wanner C, Stork S, Ertl G, Weidemann F. Fabry disease and the heart. Best Pract Res Clin Endocrinol Metab. 2015;29(2):195-204.
61. Taguchi A, Maruyama H, Nameta M, Yamamoto T, Matsuda J, Kulkarni AB, et al. A symptomatic Fabry disease mouse model generated by inducing globotriaosylceramide synthesis. Biochem J. 2013;456(3):373-83.
62. Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A. 2008;105(8):2812-7.
63. Manwaring V, Boutin M, Auray-Blais C. A metabolomic study to identify new globotriaosylceramide-related biomarkers in the plasma of Fabry disease patients. Anal Chem. 2013;85(19):9039-48.
64. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240-73, Table of Contents.
65. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci. 2004;117(Pt 8):1281-3.
66. Huang ES, Strate LL, Ho WW, Lee SS, Chan AT. Long-term use of aspirin and the risk of gastrointestinal bleeding. Am J Med. 2011;124(5):426-33.
67. Hegde NS, Sanders DA, Rodriguez R, Balasubramanian S. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem. 2011;3(9):725-31.
68. Bhat UG, Halasi M, Gartel AL. Thiazole antibiotics target FoxM1 and induce apoptosis in human cancer cells. PLoS One. 2009;4(5):e5592.
69. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 2010;70(24):10433-44.
70. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704-15.
71. Health Quality O. Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: An Evidence-Based Analysis. Ont Health Technol Assess Ser. 2010;10(24):1-48.
72. Liu YP, Yang CJ, Huang MS, Yeh CT, Wu AT, Lee YC, et al. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res. 2013;73(1):406-16.
73. Zhang X, Cheng L, Minn K, Madan R, Godwin AK, Shridhar V, et al. Targeting of mutant p53-induced FoxM1 with thiostrepton induces cytotoxicity and enhances carboplatin sensitivity in cancer cells. Oncotarget. 2014;5(22):11365-80.
74. Vaiopoulos AG, Athanasoula K, Papavassiliou AG. NF-kappaB in colorectal cancer. J Mol Med (Berl). 2013;91(9):1029-37.
75. Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci. 2005;30(1):43-52.
76. Rice NR, Ernst MK. In vivo control of NF-kappa B activation by I kappa B alpha. EMBO J. 1993;12(12):4685-95.
77. De Francesco PN, Mucci JM, Ceci R, Fossati CA, Rozenfeld PA. Fabry disease peripheral blood immune cells release inflammatory cytokines: role of globotriaosylceramide. Mol Genet Metab. 2013;109(1):93-9.
78. Ko Y, Lee C, Moon MH, Hong GR, Cheon CK, Lee JS. Unravelling the mechanism of action of enzyme replacement therapy in Fabry disease. J Hum Genet. 2016;61(2):143-9.
79. Brooks DA, Kakavanos R, Hopwood JJ. Significance of immune response to enzyme-replacement therapy for patients with a lysosomal storage disorder. Trends Mol Med. 2003;9(10):450-3.
80. Biancini GB, Vanzin CS, Rodrigues DB, Deon M, Ribas GS, Barschak AG, et al. Globotriaosylceramide is correlated with oxidative stress and inflammation in Fabry patients treated with enzyme replacement therapy. Biochim Biophys Acta. 2012;1822(2):226-32.
81. Connock M, Juarez-Garcia A, Frew E, Mans A, Dretzke J, Fry-Smith A, et al. A systematic review of the clinical effectiveness and cost-effectiveness of enzyme replacement therapies for Fabry's disease and mucopolysaccharidosis type 1. Health Technol Assess. 2006;10(20):iii-iv, ix-113.
82. Fizazi K, Faivre L, Lesaunier F, Delva R, Gravis G, Rolland F, et al. Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): a phase 3 randomised controlled trial. Lancet Oncol. 2015;16(7):787-94.
83. Fernandez-Campos F, Mallandrich M, Calpena AC, Ayestaran A, Lacasa C. Stability studies of binary and ternary mixtures containing morphine, midazolam, levomepromazine and hyoscine butylbromide for parenteral administration. J Pharm Pharmacol. 2013;65(3):379-89.
84. Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015;16(7):795-803.
85. Sert Kuniyoshi FH, Singh P, Gami AS, Garcia-Touchard A, van der Walt C, Pusalavidyasagar S, et al. Patients with obstructive sleep apnea exhibit impaired endothelial function after myocardial infarction. Chest. 2011;140(1):62-7.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊