跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/09 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李萍惠
研究生(外文):Ping-Hui Li
論文名稱:開發用於治療法布瑞氏症的α-半乳糖苷酶和類胰島素生長因子2嵌合式酵素蛋白
論文名稱(外文):To develop a fusion protein combined α-galactosidase A and insulin-like growth factor 2 for treatment of Fabry disease
指導教授:牛道明
指導教授(外文):Dau-Ming Niu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:90
中文關鍵詞:法布瑞氏症α半乳糖苷酶鞘糖脂非陽離子依賴型甘露糖六磷酸根受體
外文關鍵詞:Fabry diseaseGLAGb3CI-M6PR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
  法布瑞氏症為X染色體性聯遺傳疾病,發生率約為五萬分之一,而研究發現在台灣的發生率極高(男性約1/1,500;女性約1/800)。其致病原因主要為GLA基因發生突變,導致酵素蛋白功能異常。缺乏α-半乳糖苷酶酵素使得細胞無法正常代謝鞘糖脂,導致鞘糖脂大量堆積於細胞溶酶體當中,進一步使細胞受損而影響器官功能產生疾病。
  對於法布瑞氏症最有效的方法為酵素替代療法,目前我國衛生福利部已核准兩種用於治療法布瑞氏症的酵素蛋白藥物,分別為 Agalsidase alfa(Replagal®, Shire)與Agalsidase beta(Fabrazyme®, Sanofi)。酵素治療可有效延緩症狀的發生,但是現行的酵素替代療法價格昂貴、且患者須長期輸注,因此如何開發新的治療策略提高療效、改善長期輸注的模式便顯得相當重要。酵素治療主要是將α-半乳糖苷酶酵素透過靜脈輸注到患者體內,透過細胞膜上的甘露糖六磷酸根受體進入溶酶體,分解過度堆積的糖鞘脂。先前研究發現第二型胰島素生長因子(IGF2)也可以被非陽離子依賴型甘露糖六磷酸根受體辨識結合,因此後續研究便開始嘗試將蛋白酵素與IGF2部分胜肽片段結合,發現此嵌合蛋白確實能增加進入細胞溶酶體內的效率。在本研究中,我們藉由建構第二型胰島素生長因子α半乳糖苷酶嵌合重組蛋白,並測試其是否能提高細胞的吸收效率,進而提高治療的效果。
  先前本實驗室已經利用CRISPR/Cas9的技術成功建立GLA基因剔除HEK293細胞株,同時我們也建構不同形式的嵌合蛋白。接著轉染至GLA基因剔除HEK293細胞株使其過度表現嵌合蛋白,最後發現將IGF2部分胜肽片段嵌於GLA的羧基端為最具有酵素活性。在細胞吸收的實驗中,我們發現此形式的嵌合重組蛋白與野生型重組蛋白相比,其被細胞吸收的效率有9.8倍的提升。我們進一步利用GLA基因剔除HEK293細胞株製作GLA-IGF2嵌合式蛋白的穩定表現細胞株(stable clone),避免內生性蛋白的干擾,做為大量製備嵌合式重組蛋白的來源。接下來將大量純化嵌合式重組蛋白,探討嵌合式重組蛋白對於細胞內Gb3的清除能力。期許藉由嵌合式重組蛋白的開發,提升法布瑞氏症患者現行酵素治療的療效。
Fabry disease is an X-linked inherited disease with the incidence rate 1/50000 and was reported at an high frequency in Taiwan. The major cause of the disease is due to the mutation of alpha-Galactosidase A (GLA). Deficient of GLA activity results in the accumulation of globotriaosylceramide (Gb3) in cells and induce cell damages.
The most effective therapy so far is enzyme replacement therapy (ERT). At present, Ministry of Health and Welfare has approved two protein drugs for Fabry disease treatment, Agalsidase alfa (Replagal®, Shire) and Agalsidase beta (Fabrazyme®, Sanofi), respectively. Although ERT can delay the onset of Fabry symptoms, the cost is very expensive. Develop a new treatment strategy to increase efficiency is highly demanded. The main concept of ERT is the intravascular injection of GLA which can accesses lysosomes through binding to mannose-6-phosphate receptor (M6PR) and help break down Gb3. Previous study showed that IGF2 can be recognized by cation-independent mannose-6-phosphate receptor (CI-M6PR) as well. Furthermore, following studies demonstrated that fusion of IGF2 with enzyme can enhance uptake efficiency. In this study, we develop a fusion protein contained a partial IGF2 peptide and GLA. The fusion protein will be examined of uptake efficiency and therapeutic effect.
First, we generated GLA-deficient HEK293 cell lines using CRISPR/Cas9 technique. Meanwhile, we constructed the most active form of fusion protein by measuring enzyme activity. We found out this GLA-IGF2 fusion protein is more efficient up-taken by cells compare with recombinant GLA. We have generated a GLA-IGF2 stable clone and now purifying recombinant protein to investigate its Gb3 clearence ability. We speculated that the development of GLA-IGF2 recombination protein would provide a better treatment for Fabry patients.
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 vii
表目錄 viii
附錄目錄 ix
1.緒論 1
1.1 溶酶體功能簡介 1
1.2 溶酶體儲積症 1
1.3 台灣新生兒篩檢 2
1.4 法布瑞氏症簡介與文獻回顧 3
   人類GLA酵素功能介紹 3
   台灣的法布瑞氏症常見基因突變點 4
   法布瑞氏症的症狀與分類 5
   法布瑞氏症的診斷 6
   法布瑞氏症的致病機轉 6
1.5 法布瑞氏症的治療 8
   酵素替代療法 8
   藥理伴護子療法 10
   化學修飾 11
   基因治療 11
1.6 甘露糖六磷酸根受體(M6PR)簡介 12
   甘露糖六磷酸根受體(M6PR)的結構 13
   非陽離子依賴型甘露糖六磷酸根受體(CI-M6PR)在治療上扮演的角色 13
   以甘露糖六磷酸根受體(M6PR)為標的蛋白質酵素研究 14
1.7 研究動機 16
2.材料與方法 17
2.1 實驗材料 17
   試藥列表 17
   試劑套組 20
   儀器列表 21
2.2 載體的建構 22
   GLA-myc-6xHis載體建立 22
   IGF2-GLA-myc-6xHis載體建構 22
   IGF2-GLA-myc-6xHis spd載體建構 22
   IGF2-GLA-myc-6xHis scd載體建構 23
   GLA-IGF2-myc-6xHis載體建立 23
2.3 細胞株相關實驗 24
   細胞培養 24
   細胞轉染 24
   細胞蛋白質萃取 24
   蛋白質定量 25
   酵素活性測試 25
2.4 西方墨點法 26
   膠體配置 26
   膠體電泳 26
   轉漬與抗體染色 27
2.5 穩定表現GLA和GLA-IGF2的 HEK293細胞株建立 27
   載體的建立 27
   穩定細胞株的建立 28
   培養液中酵素活性的測量 29
2.6 免疫螢光染色 29
2.7 GLA-IGF2蛋白質純化 30
2.8 M6P抑制細胞吞噬能力測試 30
2.9 統計分析 31
3. 結果 32
3.1 建立具有功能的GLA-IGF2酵素嵌合蛋白 32
3.2 細胞吞噬效率測試 36
3.3 細胞Gb3清除能力測試 37
3.4 穩定表現GLA、GLA-IGF2的HEK293細胞株建立 38
3.5 細胞吞噬抑制實驗測試 39
3.6 GLA-IGF2蛋白質純化 39
4. 討論 43
5. 參考文獻 48
圖 58
表 74
附錄 79

圖目錄
圖一、將IGF2-GLA-myc-6xHis載體轉染至GLA基因剔除HEK293細胞株中 59
圖二、將IGF2-GLA-myc-6xHis spd載體轉染至GLA基因剔除HEK293細胞株中 60
圖三、將IGF2-GLA-myc-6xHis scd載體轉染至GLA基因剔除HEK293細胞株中 61
圖四、將GLA-IGF2-myc-6xHis載體轉染至GLA基因剔除HEK293細胞株中 62
圖五、細胞對於GLA和GLA -IGF2重組蛋白的吞噬能力測試(I) 63
圖六、細胞對於GLA和GLA -IGF2重組蛋白的吞噬能力測試(II) 64
圖七、GLA-IGF2酵素重組蛋白對於細胞內Gb3清除能力 65
圖八、GLA基因剔除HEK293穩定表現GLA細胞株 66
圖九、GLA基因剔除HEK293穩定表現GLA-IGF2細胞株 67
圖十、穩定表現GLA和GLA-IGF2細胞株酵素活性和西方墨點法分析 68
圖十一、GLA-IGF2細胞吞噬抑制實驗 69
圖十二、GLA-IGF2酵素融合蛋白純化 70
圖十三、Imidazole影響GLA酵素活性測試 71
圖十四、測試鎳離子管柱Elution時所需Imidazole濃度 72
圖十五、利用Imidazole濃度為70mM的Elution緩衝液執行蛋白質純化 73

表目錄
表一、穩定表現GLA的HEK293 細胞株 75
表二、穩定表現GLA-IGF2的HEK293細胞株 76
表三、GLA-IGF2 純化酵素活性分析(I) 77
表四、GLA-IGF2 純化酵素活性分析(II)78

附錄目錄
附錄一、溶酶體的結構 80
附錄二、溶酶體的主要功能 81
附錄三、溶酶體儲積症的分類 82
附錄四、Glycosphingolipid代謝流程圖 83
附錄五、27個在台灣常見的GLA基因突變點 84
附錄六、心臟型法布瑞氏症特異突變(GLA IVS4+919 G>A)造成mRNA剪輯異常 85
附錄七、CD-M6PR和CI-M6PR結構 86
附錄八、抗體列表 87
附錄九、pcDNA3.1/myc-His B載體 88附錄十、利用 CRISPR/Cas9 技術剔除GLA基因 89
附錄十一、各種溶酶體儲積症的酵素蛋白作用方式 90
1. Settembre C, Fraldi A, Medina DL, Ballabio A. Signals for the lysosome: a control centre for cellular clearance and energy metabolism. Nature Reviews Molecular Cell Biology. 2013;14(5):283-96.
2. Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature Reviews Molecular Cell Biology. 2009;10(9):623-35.
3. Boya P. Lysosomal Function and Dysfunction: Mechanism and Disease. Antioxidants & Redox Signaling. 2012;17(5):766-74.
4. Ballabio A, Gieselmann V. Lysosomal disorders: From storage to cellular damage. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2009;1793(4):684-96.
5. Pompen AW, Ruiter M, Wyers HJ. Angiokeratoma corporis diffusum (universale) Fabry, as a sign of an unknown internal disease; two autopsy reports. Acta medica Scandinavica. 1947;128(3):234-55.
6. Poorthuis BJHM, Wevers RA, Kleijer WJ, Groener JEM, de Jong JGN, van Weely S, et al. The frequency of lysosomal storage diseases in The Netherlands. Human Genetics. 2014;105(1-2):151-6.
7. Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. Jama. 1999;281(3):249-54.
8. Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, et al. High Incidence of Later-Onset Fabry Disease Revealed by Newborn Screening*. The American Journal of Human Genetics. 2006;79(1):31-40.
9. Mechtler TP, Stary S, Metz TF, De Jesús VR, Greber-Platzer S, Pollak A, et al. Neonatal screening for lysosomal storage disorders: feasibility and incidence from a nationwide study in Austria. The Lancet. 2012;379(9813):335-41.
10. Scott CR, Elliott S, Buroker N, Thomas LI, Keutzer J, Glass M, et al. Identification of Infants at Risk for Developing Fabry, Pompe, or Mucopolysaccharidosis-I from Newborn Blood Spots by Tandem Mass Spectrometry. The Journal of Pediatrics. 2013;163(2):498-503.
11. Garman SC, Garboczi DN. The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. Journal of molecular biology. 2004;337(2):319-35.
12. Lemansky P, Bishop DF, Desnick RJ, Hasilik A, von Figura K. Synthesis and processing of alpha-galactosidase A in human fibroblasts. Evidence for different mutations in Fabry disease. The Journal of biological chemistry. 1987;262(5):2062-5.
13. Hoffmann B. Fabry disease: recent advances in pathology, diagnosis, treatment and monitoring. Orphanet Journal of Rare Diseases. 2009;4(1):21.
14. Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30.
15. Quinta R, Rodrigues D, Assuncao M, Macedo MF, Azevedo O, Cunha D, et al. Reduced glucosylceramide in the mouse model of Fabry disease: correction by successful enzyme replacement therapy. Gene. 2014;536(1):97-104.
16. Lee SH, Li CF, Lin HY, Lin CH, Liu HC, Tsai SF, et al. High-throughput detection of common sequence variations of Fabry disease in Taiwan using DNA mass spectrometry. Mol Genet Metab. 2014;111(4):507-12.
17. Lin HY, Chong KW, Hsu JH, Yu HC, Shih CC, Huang CH, et al. High incidence of the cardiac variant of Fabry disease revealed by newborn screening in the Taiwan Chinese population. Circulation Cardiovascular genetics. 2009;2(5):450-6.
18. Ishii S, Nakao S, Minamikawa-Tachino R, Desnick RJ, Fan J-Q. Alternative Splicing in the α-Galactosidase A Gene: Increased Exon Inclusion Results in the Fabry Cardiac Phenotype. The American Journal of Human Genetics. 2002;70(4):994-1002.
19. Hsu TR, Sung SH, Chang FP, Yang CF, Liu HC, Lin HY, et al. Endomyocardial biopsies in patients with left ventricular hypertrophy and a common Chinese later-onset Fabry mutation (IVS4 + 919G > A). Orphanet J Rare Dis. 2014;9:96.
20. Hsu T-R, Hung S-C, Chang F-P, Yu W-C, Sung S-H, Hsu C-L, et al. Later Onset Fabry Disease, Cardiac Damage Progress in Silence. Journal of the American College of Cardiology. 2016;68(23):2554-63.
21. Eng CM, Germain DP, Banikazemi M, Warnock DG, Wanner C, Hopkin RJ, et al. Fabry disease: Guidelines for the evaluation and management of multi-organ system involvement. Genetics in Medicine. 2006;8(9):539-48.
22. Schiffmann R. Fabry disease. Pharmacology & Therapeutics. 2009;122(1):65-77.
23. Zarate YA, Patterson L, Yin H, Hopkin RJ. A case of minimal change disease in a Fabry patient. Pediatric Nephrology. 2009;25(3):553-6.
24. Moore DF, Altarescu G, Ling GS, Jeffries N, Frei KP, Weibel T, et al. Elevated cerebral blood flow velocities in Fabry disease with reversal after enzyme replacement. Stroke. 2002;33(2):525-31.
25. Desnick RJ, Brady R, Barranger J, Collins AJ, Germain DP, Goldman M, et al. Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Annals of internal medicine. 2003;138(4):338-46.
26. Rolfs A, Böttcher T, Zschiesche M, Morris P, Winchester B, Bauer P, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. The Lancet. 2005;366(9499):1794-6.
27. Svennerholm L, Vanier MT, Mansson JE. Krabbe disease: a galactosylsphingosine (psychosine) lipidosis. Journal of lipid research. 1980;21(1):53-64.
28. Rombach SM, Dekker N, Bouwman MG, Linthorst GE, Zwinderman AH, Wijburg FA, et al. Plasma globotriaosylsphingosine: Diagnostic value and relation to clinical manifestations of Fabry disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2010;1802(9):741-8.
29. Germain DP, Benistan K, Angelova L. X-linked inheritance and its implication in the diagnosis and management of female patients in Fabry disease. La Revue de medecine interne. 2010;31 Suppl 2:S209-13.
30. Marchesoni CL, Roa N, Pardal AM, Neumann P, Caceres G, Martinez P, et al. Misdiagnosis in Fabry disease. J Pediatr. 2010;156(5):828-31.
31. Sachs N, Sonnenberg A. Cell–matrix adhesion of podocytes in physiology and disease. Nature Reviews Nephrology. 2013;9(4):200-10.
32. Utsumi K, Itoh K, Kase R, Shimmoto M, Yamamoto N, Katagiri Y, et al. Urinary excretion of the vitronectin receptor (integrin alpha V beta 3) in patients with Fabry disease. Clinica chimica acta; international journal of clinical chemistry. 1999;279(1-2):55-68.
33. Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nature Reviews Molecular Cell Biology. 2010;11(1):23-36.
34. Chatziantoniou C, Liebau MC, Braun F, Höpker K, Weitbrecht C, Bartels V, et al. Dysregulated Autophagy Contributes to Podocyte Damage in Fabry’s Disease. PLoS ONE. 2013;8(5):e63506.
35. Barbey F. Cardiac and Vascular Hypertrophy in Fabry Disease: Evidence for a New Mechanism Independent of Blood Pressure and Glycosphingolipid Deposition. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26(4):839-44.
36. Rombach SM, Twickler TB, Aerts JMFG, Linthorst GE, Wijburg FA, Hollak CEM. Vasculopathy in patients with Fabry disease: Current controversies and research directions. Molecular Genetics and Metabolism. 2010;99(2):99-108.
37. Vedder AC, Biro E, Aerts JMFG, Nieuwland R, Sturk G, Hollak CEM. Plasma markers of coagulation and endothelial activation in Fabry disease: impact of renal impairment. Nephrology Dialysis Transplantation. 2009;24(10):3074-81.
38. Demuth K, Germain DP. Endothelial markers and homocysteine in patients with classic Fabry disease. Acta paediatrica (Oslo, Norway : 1992) Supplement. 2002;91(439):57-61.
39. Lee K, Jin X, Zhang K, Copertino L, Andrews L, Baker-Malcolm J, et al. A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. Glycobiology. 2003;13(4):305-13.
40. Schiffmann R, Kopp JB, Austin HA, 3rd, Sabnis S, Moore DF, Weibel T, et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. Jama. 2001;285(21):2743-9.
41. Weidemann F. Improvement of Cardiac Function During Enzyme Replacement Therapy in Patients With Fabry Disease: A Prospective Strain Rate Imaging Study. Circulation. 2003;108(11):1299-301.
42. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, et al. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry's disease. The New England journal of medicine. 2001;345(1):9-16.
43. Ohashi T, Iizuka S, Ida H, Eto Y. Reduced α-Gal A enzyme activity in Fabry fibroblast cells and Fabry mice tissues induced by serum from antibody positive patients with Fabry disease. Molecular Genetics and Metabolism. 2008;94(3):313-8.
44. Ishii S, Kase R, Sakuraba H, Suzuki Y. Characterization of a mutant alpha-galactosidase gene product for the late-onset cardiac form of Fabry disease. Biochemical and biophysical research communications. 1993;197(3):1585-9.
45. Ishii S, Chang H-H, Kawasaki K, Yasuda K, Wu H-L, Garman Scott C, et al. Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochemical Journal. 2007;406(2):285-95.
46. Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, et al. Treatment of Fabry's Disease with the Pharmacologic Chaperone Migalastat. The New England journal of medicine. 2016;375(6):545-55.
47. Kizhner T, Azulay Y, Hainrichson M, Tekoah Y, Arvatz G, Shulman A, et al. Characterization of a chemically modified plant cell culture expressed human alpha-Galactosidase-A enzyme for treatment of Fabry disease. Mol Genet Metab. 2015;114(2):259-67.
48. Ziegler RJ, Yew NS, Li C, Cherry M, Berthelette P, Romanczuk H, et al. Correction of enzymatic and lysosomal storage defects in Fabry mice by adenovirus-mediated gene transfer. Human gene therapy. 1999;10(10):1667-82.
49. Li C, Ziegler RJ, Cherry M, Lukason M, Desnick RJ, Yew NS, et al. Adenovirus-transduced lung as a portal for delivering alpha-galactosidase A into systemic circulation for Fabry disease. Molecular therapy : the journal of the American Society of Gene Therapy. 2002;5(6):745-54.
50. Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nature Reviews Molecular Cell Biology. 2003;4(3):202-13.
51. Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, et al. Insulin-like growth factor II receptor as a multifunctional binding protein. Nature. 1987;329(6137):301-7.
52. Tong PY, Gregory W, Kornfeld S. Ligand interactions of the cation-independent mannose 6-phosphate receptor. The stoichiometry of mannose 6-phosphate binding. The Journal of biological chemistry. 1989;264(14):7962-9.
53. MacDonald RG, Pfeffer SR, Coussens L, Tepper MA, Brocklebank CM, Mole JE, et al. A single receptor binds both insulin-like growth factor II and mannose-6-phosphate. Science (New York, NY). 1988;239(4844):1134-7.
54. Tong PY, Tollefsen SE, Kornfeld S. The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II. The Journal of biological chemistry. 1988;263(6):2585-8.
55. LeBowitz JH, Grubb JH, Maga JA, Schmiel DH, Vogler C, Sly WS. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. Proceedings of the National Academy of Sciences. 2004;101(9):3083-8.
56. Kan S-h, Troitskaya Larisa A, Sinow Carolyn S, Haitz K, Todd Amanda K, Di Stefano A, et al. Insulin-like growth factor II peptide fusion enables uptake and lysosomal delivery of α-N-acetylglucosaminidase to mucopolysaccharidosis type IIIB fibroblasts. Biochemical Journal. 2014;458(2):281-9.
57. Kan SH, Aoyagi-Scharber M, Le SQ, Vincelette J, Ohmi K, Bullens S, et al. Delivery of an enzyme-IGFII fusion protein to the mouse brain is therapeutic for mucopolysaccharidosis type IIIB. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(41):14870-5.
58. Maga JA, Zhou J, Kambampati R, Peng S, Wang X, Bohnsack RN, et al. Glycosylation-independent Lysosomal Targeting of Acid-Glucosidase Enhances Muscle Glycogen Clearance in Pompe Mice. Journal of Biological Chemistry. 2012;288(3):1428-38.
59. Peng J, Dalton J, Butt M, Tracy K, Kennedy D, Haroldsen P, et al. Reveglucosidase alfa (BMN 701), an IGF2-Tagged rhAcid α -Glucosidase, Improves Respiratory Functional Parameters in a Murine Model of Pompe Disease. Journal of Pharmacology and Experimental Therapeutics. 2017;360(2):313-23.
60. Urayama A, Grubb JH, Sly WS, Banks WA. Mannose 6-Phosphate Receptor–mediated Transport of Sulfamidase Across the Blood–brain Barrier in the Newborn Mouse. Molecular Therapy. 2008;16(7):1261-6.
61. Togawa T, Takada M, Aizawa Y, Tsukimura T, Chiba Y, Sakuraba H. Comparative study on mannose 6-phosphate residue contents of recombinant lysosomal enzymes. Molecular Genetics and Metabolism. 2014;111(3):369-73.
62. Jayabharathi J, Thanikachalam V, Srinivasan N, Venkatesh Perumal M. Fluorescence spectral studies of some imidazole derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;90:125-30.
63. Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Experimental dermatology. 2009;18(10):833-41.
64. Terasawa H, Kohda D, Hatanaka H, Nagata K, Higashihashi N, Fujiwara H, et al. Solution structure of human insulin-like growth factor II; recognition sites for receptors and binding proteins. The EMBO journal. 1994;13(23):5590-7.
65. Torres AM, Forbes BE, Aplin SE, Wallace JC, Francis GL, Norton RS. Solution structure of human insulin-like growth factor II. Relationship to receptor and binding protein interactions. Journal of molecular biology. 1995;248(2):385-401.
66. Hashimoto R, Fujiwara H, Higashihashi N, Enjoh-Kimura T, Terasawa H, Fujita-Yamaguchi Y, et al. N-terminal deletion mutants of insulin-like growth factor-II (IGF-II) show Thr7 and Leu8 important for binding to insulin and IGF-I receptors and Leu8 critical for all IGF-II functions. The Journal of biological chemistry. 1995;270(30):18013-8.
67. Roth BV, Burgisser DM, Luthi C, Humbel RE. Mutants of human insulin-like growth factor II: expression and characterization of analogs with a substitution of TYR27 and/or a deletion of residues 62-67. Biochemical and biophysical research communications. 1991;181(2):907-14.
68. Sahara T. HIGHLY EFFICIENT SECRETORY SIGNAL PEPTIDE AND A PROTEIN EXPRESSION SYSTEM USING THE PEPTIDE THEREOF. 2007.
69. Hachmeister M, Bobowski KD, Hogl S, Dislich B, Fukumori A, Eggert C, et al. Regulated intramembrane proteolysis and degradation of murine epithelial cell adhesion molecule mEpCAM. PLoS One. 2013;8(8):e71836.
70. Cheung HS, Wang FL, Ondetti MA, Sabo EF, Cushman DW. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. The Journal of biological chemistry. 1980;255(2):401-7.
71. Dussaule J-C, Prabakaran T, Nielsen R, Larsen JV, Sørensen SS, Rasmussen UF, et al. Receptor-Mediated Endocytosis of α-Galactosidase A in Human Podocytes in Fabry Disease. PLoS ONE. 2011;6(9):e25065.
72. Kotani M, Kawashima I, Ozawa H, Ogura K, Ariga T, Tai T. Generation of one set of murine monoclonal antibodies specific for globo-series glycolipids: evidence for differential distribution of the glycolipids in rat small intestine. Archives of biochemistry and biophysics. 1994;310(1):89-96.
73. Takahashi N, Yokoi S, Kasuno K, Kogami A, Tsukimura T, Togawa T, et al. A heterozygous female with Fabry disease due to a novel alpha-galactosidase A mutation exhibits a unique synaptopodin distribution in vacuolated podocytes. Clinical nephrology. 2015;83(5):301-8.
74. Sakuraba H, Chiba Y, Kotani M, Kawashima I, Ohsawa M, Tajima Y, et al. Corrective effect on Fabry mice of yeast recombinant human alpha-galactosidase with N-linked sugar chains suitable for lysosomal delivery. Journal of human genetics. 2006;51(4):341-52.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊