|
1. Settembre C, Fraldi A, Medina DL, Ballabio A. Signals for the lysosome: a control centre for cellular clearance and energy metabolism. Nature Reviews Molecular Cell Biology. 2013;14(5):283-96. 2. Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature Reviews Molecular Cell Biology. 2009;10(9):623-35. 3. Boya P. Lysosomal Function and Dysfunction: Mechanism and Disease. Antioxidants & Redox Signaling. 2012;17(5):766-74. 4. Ballabio A, Gieselmann V. Lysosomal disorders: From storage to cellular damage. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2009;1793(4):684-96. 5. Pompen AW, Ruiter M, Wyers HJ. Angiokeratoma corporis diffusum (universale) Fabry, as a sign of an unknown internal disease; two autopsy reports. Acta medica Scandinavica. 1947;128(3):234-55. 6. Poorthuis BJHM, Wevers RA, Kleijer WJ, Groener JEM, de Jong JGN, van Weely S, et al. The frequency of lysosomal storage diseases in The Netherlands. Human Genetics. 2014;105(1-2):151-6. 7. Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. Jama. 1999;281(3):249-54. 8. Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, et al. High Incidence of Later-Onset Fabry Disease Revealed by Newborn Screening*. The American Journal of Human Genetics. 2006;79(1):31-40. 9. Mechtler TP, Stary S, Metz TF, De Jesús VR, Greber-Platzer S, Pollak A, et al. Neonatal screening for lysosomal storage disorders: feasibility and incidence from a nationwide study in Austria. The Lancet. 2012;379(9813):335-41. 10. Scott CR, Elliott S, Buroker N, Thomas LI, Keutzer J, Glass M, et al. Identification of Infants at Risk for Developing Fabry, Pompe, or Mucopolysaccharidosis-I from Newborn Blood Spots by Tandem Mass Spectrometry. The Journal of Pediatrics. 2013;163(2):498-503. 11. Garman SC, Garboczi DN. The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. Journal of molecular biology. 2004;337(2):319-35. 12. Lemansky P, Bishop DF, Desnick RJ, Hasilik A, von Figura K. Synthesis and processing of alpha-galactosidase A in human fibroblasts. Evidence for different mutations in Fabry disease. The Journal of biological chemistry. 1987;262(5):2062-5. 13. Hoffmann B. Fabry disease: recent advances in pathology, diagnosis, treatment and monitoring. Orphanet Journal of Rare Diseases. 2009;4(1):21. 14. Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30. 15. Quinta R, Rodrigues D, Assuncao M, Macedo MF, Azevedo O, Cunha D, et al. Reduced glucosylceramide in the mouse model of Fabry disease: correction by successful enzyme replacement therapy. Gene. 2014;536(1):97-104. 16. Lee SH, Li CF, Lin HY, Lin CH, Liu HC, Tsai SF, et al. High-throughput detection of common sequence variations of Fabry disease in Taiwan using DNA mass spectrometry. Mol Genet Metab. 2014;111(4):507-12. 17. Lin HY, Chong KW, Hsu JH, Yu HC, Shih CC, Huang CH, et al. High incidence of the cardiac variant of Fabry disease revealed by newborn screening in the Taiwan Chinese population. Circulation Cardiovascular genetics. 2009;2(5):450-6. 18. Ishii S, Nakao S, Minamikawa-Tachino R, Desnick RJ, Fan J-Q. Alternative Splicing in the α-Galactosidase A Gene: Increased Exon Inclusion Results in the Fabry Cardiac Phenotype. The American Journal of Human Genetics. 2002;70(4):994-1002. 19. Hsu TR, Sung SH, Chang FP, Yang CF, Liu HC, Lin HY, et al. Endomyocardial biopsies in patients with left ventricular hypertrophy and a common Chinese later-onset Fabry mutation (IVS4 + 919G > A). Orphanet J Rare Dis. 2014;9:96. 20. Hsu T-R, Hung S-C, Chang F-P, Yu W-C, Sung S-H, Hsu C-L, et al. Later Onset Fabry Disease, Cardiac Damage Progress in Silence. Journal of the American College of Cardiology. 2016;68(23):2554-63. 21. Eng CM, Germain DP, Banikazemi M, Warnock DG, Wanner C, Hopkin RJ, et al. Fabry disease: Guidelines for the evaluation and management of multi-organ system involvement. Genetics in Medicine. 2006;8(9):539-48. 22. Schiffmann R. Fabry disease. Pharmacology & Therapeutics. 2009;122(1):65-77. 23. Zarate YA, Patterson L, Yin H, Hopkin RJ. A case of minimal change disease in a Fabry patient. Pediatric Nephrology. 2009;25(3):553-6. 24. Moore DF, Altarescu G, Ling GS, Jeffries N, Frei KP, Weibel T, et al. Elevated cerebral blood flow velocities in Fabry disease with reversal after enzyme replacement. Stroke. 2002;33(2):525-31. 25. Desnick RJ, Brady R, Barranger J, Collins AJ, Germain DP, Goldman M, et al. Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Annals of internal medicine. 2003;138(4):338-46. 26. Rolfs A, Böttcher T, Zschiesche M, Morris P, Winchester B, Bauer P, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. The Lancet. 2005;366(9499):1794-6. 27. Svennerholm L, Vanier MT, Mansson JE. Krabbe disease: a galactosylsphingosine (psychosine) lipidosis. Journal of lipid research. 1980;21(1):53-64. 28. Rombach SM, Dekker N, Bouwman MG, Linthorst GE, Zwinderman AH, Wijburg FA, et al. Plasma globotriaosylsphingosine: Diagnostic value and relation to clinical manifestations of Fabry disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2010;1802(9):741-8. 29. Germain DP, Benistan K, Angelova L. X-linked inheritance and its implication in the diagnosis and management of female patients in Fabry disease. La Revue de medecine interne. 2010;31 Suppl 2:S209-13. 30. Marchesoni CL, Roa N, Pardal AM, Neumann P, Caceres G, Martinez P, et al. Misdiagnosis in Fabry disease. J Pediatr. 2010;156(5):828-31. 31. Sachs N, Sonnenberg A. Cell–matrix adhesion of podocytes in physiology and disease. Nature Reviews Nephrology. 2013;9(4):200-10. 32. Utsumi K, Itoh K, Kase R, Shimmoto M, Yamamoto N, Katagiri Y, et al. Urinary excretion of the vitronectin receptor (integrin alpha V beta 3) in patients with Fabry disease. Clinica chimica acta; international journal of clinical chemistry. 1999;279(1-2):55-68. 33. Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nature Reviews Molecular Cell Biology. 2010;11(1):23-36. 34. Chatziantoniou C, Liebau MC, Braun F, Höpker K, Weitbrecht C, Bartels V, et al. Dysregulated Autophagy Contributes to Podocyte Damage in Fabry’s Disease. PLoS ONE. 2013;8(5):e63506. 35. Barbey F. Cardiac and Vascular Hypertrophy in Fabry Disease: Evidence for a New Mechanism Independent of Blood Pressure and Glycosphingolipid Deposition. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26(4):839-44. 36. Rombach SM, Twickler TB, Aerts JMFG, Linthorst GE, Wijburg FA, Hollak CEM. Vasculopathy in patients with Fabry disease: Current controversies and research directions. Molecular Genetics and Metabolism. 2010;99(2):99-108. 37. Vedder AC, Biro E, Aerts JMFG, Nieuwland R, Sturk G, Hollak CEM. Plasma markers of coagulation and endothelial activation in Fabry disease: impact of renal impairment. Nephrology Dialysis Transplantation. 2009;24(10):3074-81. 38. Demuth K, Germain DP. Endothelial markers and homocysteine in patients with classic Fabry disease. Acta paediatrica (Oslo, Norway : 1992) Supplement. 2002;91(439):57-61. 39. Lee K, Jin X, Zhang K, Copertino L, Andrews L, Baker-Malcolm J, et al. A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. Glycobiology. 2003;13(4):305-13. 40. Schiffmann R, Kopp JB, Austin HA, 3rd, Sabnis S, Moore DF, Weibel T, et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. Jama. 2001;285(21):2743-9. 41. Weidemann F. Improvement of Cardiac Function During Enzyme Replacement Therapy in Patients With Fabry Disease: A Prospective Strain Rate Imaging Study. Circulation. 2003;108(11):1299-301. 42. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, et al. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry's disease. The New England journal of medicine. 2001;345(1):9-16. 43. Ohashi T, Iizuka S, Ida H, Eto Y. Reduced α-Gal A enzyme activity in Fabry fibroblast cells and Fabry mice tissues induced by serum from antibody positive patients with Fabry disease. Molecular Genetics and Metabolism. 2008;94(3):313-8. 44. Ishii S, Kase R, Sakuraba H, Suzuki Y. Characterization of a mutant alpha-galactosidase gene product for the late-onset cardiac form of Fabry disease. Biochemical and biophysical research communications. 1993;197(3):1585-9. 45. Ishii S, Chang H-H, Kawasaki K, Yasuda K, Wu H-L, Garman Scott C, et al. Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochemical Journal. 2007;406(2):285-95. 46. Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, et al. Treatment of Fabry's Disease with the Pharmacologic Chaperone Migalastat. The New England journal of medicine. 2016;375(6):545-55. 47. Kizhner T, Azulay Y, Hainrichson M, Tekoah Y, Arvatz G, Shulman A, et al. Characterization of a chemically modified plant cell culture expressed human alpha-Galactosidase-A enzyme for treatment of Fabry disease. Mol Genet Metab. 2015;114(2):259-67. 48. Ziegler RJ, Yew NS, Li C, Cherry M, Berthelette P, Romanczuk H, et al. Correction of enzymatic and lysosomal storage defects in Fabry mice by adenovirus-mediated gene transfer. Human gene therapy. 1999;10(10):1667-82. 49. Li C, Ziegler RJ, Cherry M, Lukason M, Desnick RJ, Yew NS, et al. Adenovirus-transduced lung as a portal for delivering alpha-galactosidase A into systemic circulation for Fabry disease. Molecular therapy : the journal of the American Society of Gene Therapy. 2002;5(6):745-54. 50. Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nature Reviews Molecular Cell Biology. 2003;4(3):202-13. 51. Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, et al. Insulin-like growth factor II receptor as a multifunctional binding protein. Nature. 1987;329(6137):301-7. 52. Tong PY, Gregory W, Kornfeld S. Ligand interactions of the cation-independent mannose 6-phosphate receptor. The stoichiometry of mannose 6-phosphate binding. The Journal of biological chemistry. 1989;264(14):7962-9. 53. MacDonald RG, Pfeffer SR, Coussens L, Tepper MA, Brocklebank CM, Mole JE, et al. A single receptor binds both insulin-like growth factor II and mannose-6-phosphate. Science (New York, NY). 1988;239(4844):1134-7. 54. Tong PY, Tollefsen SE, Kornfeld S. The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II. The Journal of biological chemistry. 1988;263(6):2585-8. 55. LeBowitz JH, Grubb JH, Maga JA, Schmiel DH, Vogler C, Sly WS. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. Proceedings of the National Academy of Sciences. 2004;101(9):3083-8. 56. Kan S-h, Troitskaya Larisa A, Sinow Carolyn S, Haitz K, Todd Amanda K, Di Stefano A, et al. Insulin-like growth factor II peptide fusion enables uptake and lysosomal delivery of α-N-acetylglucosaminidase to mucopolysaccharidosis type IIIB fibroblasts. Biochemical Journal. 2014;458(2):281-9. 57. Kan SH, Aoyagi-Scharber M, Le SQ, Vincelette J, Ohmi K, Bullens S, et al. Delivery of an enzyme-IGFII fusion protein to the mouse brain is therapeutic for mucopolysaccharidosis type IIIB. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(41):14870-5. 58. Maga JA, Zhou J, Kambampati R, Peng S, Wang X, Bohnsack RN, et al. Glycosylation-independent Lysosomal Targeting of Acid-Glucosidase Enhances Muscle Glycogen Clearance in Pompe Mice. Journal of Biological Chemistry. 2012;288(3):1428-38. 59. Peng J, Dalton J, Butt M, Tracy K, Kennedy D, Haroldsen P, et al. Reveglucosidase alfa (BMN 701), an IGF2-Tagged rhAcid α -Glucosidase, Improves Respiratory Functional Parameters in a Murine Model of Pompe Disease. Journal of Pharmacology and Experimental Therapeutics. 2017;360(2):313-23. 60. Urayama A, Grubb JH, Sly WS, Banks WA. Mannose 6-Phosphate Receptor–mediated Transport of Sulfamidase Across the Blood–brain Barrier in the Newborn Mouse. Molecular Therapy. 2008;16(7):1261-6. 61. Togawa T, Takada M, Aizawa Y, Tsukimura T, Chiba Y, Sakuraba H. Comparative study on mannose 6-phosphate residue contents of recombinant lysosomal enzymes. Molecular Genetics and Metabolism. 2014;111(3):369-73. 62. Jayabharathi J, Thanikachalam V, Srinivasan N, Venkatesh Perumal M. Fluorescence spectral studies of some imidazole derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;90:125-30. 63. Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Experimental dermatology. 2009;18(10):833-41. 64. Terasawa H, Kohda D, Hatanaka H, Nagata K, Higashihashi N, Fujiwara H, et al. Solution structure of human insulin-like growth factor II; recognition sites for receptors and binding proteins. The EMBO journal. 1994;13(23):5590-7. 65. Torres AM, Forbes BE, Aplin SE, Wallace JC, Francis GL, Norton RS. Solution structure of human insulin-like growth factor II. Relationship to receptor and binding protein interactions. Journal of molecular biology. 1995;248(2):385-401. 66. Hashimoto R, Fujiwara H, Higashihashi N, Enjoh-Kimura T, Terasawa H, Fujita-Yamaguchi Y, et al. N-terminal deletion mutants of insulin-like growth factor-II (IGF-II) show Thr7 and Leu8 important for binding to insulin and IGF-I receptors and Leu8 critical for all IGF-II functions. The Journal of biological chemistry. 1995;270(30):18013-8. 67. Roth BV, Burgisser DM, Luthi C, Humbel RE. Mutants of human insulin-like growth factor II: expression and characterization of analogs with a substitution of TYR27 and/or a deletion of residues 62-67. Biochemical and biophysical research communications. 1991;181(2):907-14. 68. Sahara T. HIGHLY EFFICIENT SECRETORY SIGNAL PEPTIDE AND A PROTEIN EXPRESSION SYSTEM USING THE PEPTIDE THEREOF. 2007. 69. Hachmeister M, Bobowski KD, Hogl S, Dislich B, Fukumori A, Eggert C, et al. Regulated intramembrane proteolysis and degradation of murine epithelial cell adhesion molecule mEpCAM. PLoS One. 2013;8(8):e71836. 70. Cheung HS, Wang FL, Ondetti MA, Sabo EF, Cushman DW. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. The Journal of biological chemistry. 1980;255(2):401-7. 71. Dussaule J-C, Prabakaran T, Nielsen R, Larsen JV, Sørensen SS, Rasmussen UF, et al. Receptor-Mediated Endocytosis of α-Galactosidase A in Human Podocytes in Fabry Disease. PLoS ONE. 2011;6(9):e25065. 72. Kotani M, Kawashima I, Ozawa H, Ogura K, Ariga T, Tai T. Generation of one set of murine monoclonal antibodies specific for globo-series glycolipids: evidence for differential distribution of the glycolipids in rat small intestine. Archives of biochemistry and biophysics. 1994;310(1):89-96. 73. Takahashi N, Yokoi S, Kasuno K, Kogami A, Tsukimura T, Togawa T, et al. A heterozygous female with Fabry disease due to a novel alpha-galactosidase A mutation exhibits a unique synaptopodin distribution in vacuolated podocytes. Clinical nephrology. 2015;83(5):301-8. 74. Sakuraba H, Chiba Y, Kotani M, Kawashima I, Ohsawa M, Tajima Y, et al. Corrective effect on Fabry mice of yeast recombinant human alpha-galactosidase with N-linked sugar chains suitable for lysosomal delivery. Journal of human genetics. 2006;51(4):341-52.
|