跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/10 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林哲良
研究生(外文):Che-Liang Lin
論文名稱:探討口型蛋白質參與外泌體分泌與細胞融合之功能區域
論文名稱(外文):Functional domains of stomatin involved in exosome secretion and cell fusion
指導教授:林奇宏林奇宏引用關係
指導教授(外文):Chi-Hung Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:39
中文關鍵詞:口型蛋白質細胞融合外泌體
外文關鍵詞:stomatincell fusionexosome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞膜上分布著許多蛋白,其中有些可扮演受器或是動器的角色,幫助細胞間進行訊息傳遞,或開啟細胞融合機制。細胞膜上有許多富含膽固醇與鞘脂的區域,稱為脂質筏,此處聚集許多膜蛋白,而口型蛋白質 (stomatin) 是其中一個主要組成,且在身體的多數組織中都有口型蛋白質的存在。先前文獻中發現,大量表現口型蛋白質可誘導細胞產生融合,且細胞表現的口型蛋白質可以傳遞到別的細胞,促使不同細胞進行融合,產生多核細胞。口型蛋白質的結構可分為多個功能性區域,但那些區域參與細胞融合尚不清楚,因此,本篇論文欲探討哪些功能性區域與細胞融合有關。利用分子生物技術將口型蛋白質上的部分區域摘除,或進行點突變,再建構大量表現不同片段口型蛋白質的倉鼠卵巢細胞 CHO-K1 和人類鱗狀癌細胞 A431 之穩定細胞株,進而觀察特定區域被摘除是否影響其分布、外泌體釋出、以及促進細胞融合功能。實驗結果發現,當 C 端被摘除後,會影響口型蛋白的分布,增加外泌體的分泌,但卻降低多核細胞的產生。由於 C 端可能是口型蛋白質與其他蛋白質交互作用的區域,當摘除後,可能失去與其他蛋白質的交互作用能力,造成讓細胞融合的功能喪失,因此 C 端扮演著影響外泌體分泌及細胞融合的重要區域。
In cell membrane, lots of integral proteins play roles of receptors and effectors. Some of them are required to passage a series of signals in initiating cell fusion. Membrane proteins are abound in small regions named lipid rafts, where cholesterol and sphingolipid are enriched. Stomatin is one of the major proteins in lipid rafts and is widely distributed over the human tissues. Previous researches showed that stomatin overexpression may induce cell fusion, besides, stomatin could also be secreted to promote fusion of other cells and both result in increasing the multinucleated cell proportion. The protein structure of stomatin is composed of several functional domains, however, the link between each domain and its function is still not established. In this study, I construct several truncated stomatin with deletions in different functional domains or point mutations at the post translational palmitoylation or phosphorylation sites. These constructs are genetically fused with fluorescence proteins and expressed in CHO-K1 or A431 cells through the lentiviral system and their distribution, secretion, and efficiency to increase multinucleated cells are then analyzed. Results revels that the C terminal deletion significantly changes the distribution, increases secretion, and decreases multinucleated cell formation. Stomatin was reported to associate with other proteins through the C terminal regions, therefore, this functional loss could be due to the its inability to interact with other proteins. According to these results, the C terminal region is crucial in its secretion and promoting cell fusion.
致謝......i
目錄......ii
Abstract......iv
摘要......v
圖表清單......vi
表格清單......vii
1. 緒論......1
1.1 口型蛋白質(Stomatin)......1
1.2 口型蛋白質的分布與功能......1
1.3 口型蛋白質與細胞融合和外泌體分泌之相關研究......2
1.4 口型蛋白質結構上之功能性區域......3
1.5 口型蛋白質的功能性區域與細胞融合之研究......4
2. 材料與方法......5
2.1 細胞培養......5
2.2 質體建構......5
2.2.1 cDNA 相關資訊......5
2.2.2 引子設計與建構變異性口型蛋白質......5
2.3 慢病毒系統與感染......6
2.4 螢光影像與共軛焦顯微鏡......7
2.5 西方墨點法與分析......7
2.6 多核細胞形成與分析......8
2.7 外泌體分泌與收集......8
2.8 統計分析......9
3. 結果......10
3.1 由cDNA建構變異性口型蛋白質......10
3.2 不同區域剔除後的口型蛋白質分布情形......10
3.3 點突變後的口型蛋白質分布情形......11
3.4 口型蛋白質的不同功能性區域參與細胞融合作用......12
3.5 變異性口型蛋白質影響外泌體的分泌......12
4. 討論......14
4.1 不同區域剔除後的口型蛋白質分布情形......14
4.2 點突變後的口型蛋白質分布情形......15
4.3 口型蛋白質的不同功能性區域參與細胞融合作用......15
4.4 變異性口型蛋白質影響外泌體的分泌......16
5. 參考文獻......18
6. 附錄......36-39

圖表清單
圖一、由 cDNA 建構變異性口型蛋白質......20
圖二、不同區域剔除後的口型蛋白質分布情形......22
圖三、點突變後的口型蛋白質分布情形......25
圖四、不同變異性口型蛋白質在 CHO-K1 細胞表現情形......28
圖五、不同變異性的口型蛋白質形成多核細胞的能力之差異......30
圖六、外泌體分泌在不同變異性口型蛋白質中有差異......32

表格清單
表一、不同變異性口型蛋白質在細胞內的分布情形......34
1. Eber SW, Lande WM, Iarocci TA, Mentzer WC, Hohn P, Wiley JS, et al. Hereditary stomatocytosis: consistent association with an integral membrane protein deficiency. Br J Haematol. 1989;72(3):452-5.
2. Lande WM, Thiemann PV, Mentzer WC, Jr. Missing band 7 membrane protein in two patients with high Na, low K erythrocytes. J Clin Invest. 1982;70(6):1273-80.
3. Zhu Y, Paszty C, Turetsky T, Tsai S, Kuypers FA, Lee G, et al. Stomatocytosis is absent in "stomatin"-deficient murine red blood cells. Blood. 1999;93(7):2404-10.
4. Fricke B, Argent AC, Chetty MC, Pizzey AR, Turner EJ, Ho MM, et al. The "stomatin" gene and protein in overhydrated hereditary stomatocytosis. Blood. 2003;102(6):2268-77.
5. Paltrinieri S, Comazzi S, Ceciliani F, Prohaska R, Bonfanti U. Stomatocytosis of Standard Schnauzers is not associated with stomatin deficiency. Vet J. 2007;173(1):200-3.
6. Lapatsina L, Brand J, Poole K, Daumke O, Lewin GR. Stomatin-domain proteins. Eur J Cell Biol. 2012;91(4):240-5.
7. Mairhofer M, Steiner M, Mosgoeller W, Prohaska R, Salzer U. Stomatin is a major lipid-raft component of platelet alpha granules. Blood. 2002;100(3):897-904.
8. Janes PW, Ley SC, Magee AI, Kabouridis PS. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol. 2000;12(1):23-34.
9. Gupta N, DeFranco AL. Lipid rafts and B cell signaling. Semin Cell Dev Biol. 2007;18(5):616-26.
10. Baird B, Sheets ED, Holowka D. How does the plasma membrane participate in cellular signaling by receptors for immunoglobulin E? Biophys Chem. 1999;82(2-3):109-19.
11. Sheets ED, Holowka D, Baird B. Membrane organization in immunoglobulin E receptor signaling. Curr Opin Chem Biol. 1999;3(1):95-9.
12. Field KA, Holowka D, Baird B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci U S A. 1995;92(20):9201-5.
13. Holowka D, Sheets ED, Baird B. Interactions between Fc(epsilon)RI and lipid raft components are regulated by the actin cytoskeleton. J Cell Sci. 2000;113 ( Pt 6):1009-19.
14. Pietiainen VM, Marjomaki V, Heino J, Hyypia T. Viral entry, lipid rafts and caveosomes. Ann Med. 2005;37(6):394-403.
15. Alving CR, Beck Z, Karasavva N, Matyas GR, Rao M. HIV-1, lipid rafts, and antibodies to liposomes: implications for anti-viral-neutralizing antibodies. Mol Membr Biol. 2006;23(6):453-65.
16. Umlauf E, Csaszar E, Moertelmaier M, Schuetz GJ, Parton RG, Prohaska R. Association of stomatin with lipid bodies. J Biol Chem. 2004;279(22):23699-709.
17. Zhang JZ, Hayashi H, Ebina Y, Prohaska R, Ismail-Beigi F. Association of stomatin (band 7.2b) with Glut1 glucose transporter. Arch Biochem Biophys. 1999;372(1):173-8.
18. Zhang JZ, Abbud W, Prohaska R, Ismail-Beigi F. Overexpression of stomatin depresses GLUT-1 glucose transporter activity. Am J Physiol Cell Physiol. 2001;280(5):C1277-83.
19. Montel-Hagen A, Kinet S, Manel N, Mongellaz C, Prohaska R, Battini JL, et al. Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell. 2008;132(6):1039-48.
20. Brand J, Smith ES, Schwefel D, Lapatsina L, Poole K, Omerbasic D, et al. A stomatin dimer modulates the activity of acid-sensing ion channels. EMBO J. 2012;31(17):3635-46.
21. Lee JH, Hsieh CF, Liu HW, Chen CY, Wu SC, Chen TW, et al. Lipid raft-associated stomatin enhances cell fusion. FASEB J. 2017;31(1):47-59.
22. Green JB, Young JP. Slipins: ancient origin, duplication and diversification of the stomatin protein family. BMC Evol Biol. 2008;8:44.
23. Salzer U, Mairhofer M, Prohaska R. Stomatin: A New Paradigm of Membrane Organization Emerges. Dynamic Cell Biology. 2007;1(1):20-33.
24. Kadurin I, Huber S, Grunder S. A single conserved proline residue determines the membrane topology of stomatin. Biochem J. 2009;418(3):587-94.
25. Tsuruta T, Goda N, Umetsu Y, Iwaya N, Kuwahara Y, Hiroaki H. (1)H, (1)(3)C, and (1)(5)N resonance assignment of the SPFH domain of human stomatin. Biomol NMR Assign. 2012;6(1):23-5.
26. Yokoyama H, Fujii S, Matsui I. Crystal structure of a core domain of stomatin from Pyrococcus horikoshii Illustrates a novel trimeric and coiled-coil fold. J Mol Biol. 2008;376(3):868-78.
27. Rungaldier S, Umlauf E, Mairhofer M, Salzer U, Thiele C, Prohaska R. Structure-function analysis of human stomatin: A mutation study. PLoS One. 2017;12(6):e0178646.
28. Yokoyama H, Matsui I. A novel thermostable membrane protease forming an operon with a stomatin homolog from the hyperthermophilic archaebacterium Pyrococcus horikoshii. J Biol Chem. 2005;280(8):6588-94.
29. Umlauf E, Mairhofer M, Prohaska R. Characterization of the stomatin domain involved in homo-oligomerization and lipid raft association. J Biol Chem. 2006;281(33):23349-56.
30. Snyers L, Umlauf E, Prohaska R. Cysteine 29 is the major palmitoylation site on stomatin. FEBS Lett. 1999;449(2-3):101-4.
31. Salzer U, Ahorn H, Prohaska R. Identification of the phosphorylation site on human erythrocyte band 7 integral membrane protein: implications for a monotopic protein structure. Biochim Biophys Acta. 1993;1151(2):149-52.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊