跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊瑋
研究生(外文):Chun-Wei Chen
論文名稱:探討miRNAs在肺腺癌細胞中對O-GlcNAc Transferase 表現之調控
論文名稱(外文):Investigation of the regulating roles of miRNAs on O-GlcNAc Transferase expression in lung adenocarcinoma cells
指導教授:周德盈
指導教授(外文):Teh-Ying Chou
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:51
外文關鍵詞:O-GlcNAc transferasemiRNA200a-3p
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
O-GlcNAcylaion是一種蛋白質轉譯後修飾,其修飾是將單一的N-acetylglucosamine(GlcNAc)添加到細胞核與細胞質蛋白上的絲氨酸或蘇胺酸,此種修飾參與調控代謝、基因轉錄以及轉譯,且具有可逆、動態、可誘導的特性,分別由兩個酵素進行催化: O-GlcNAc transferase (OGT)負責添加以及O-GlcNAcase (OGA)負責移除GlcNAc修飾。在肺癌中,OGT的mRNA以及蛋白質在腫瘤當中表現量比正常的組織要來的高,且較高的OGT表現和病人較差的存活率有關聯。微核醣核酸(miRNA)在基因表現的調控中扮演重要角色,可透過結合到3’UTR調節mRNA的穩定性或轉譯的效率,已知miRNA的異常調控和腫瘤的進程有關。然而,在肺癌細胞中OGT的表現量是如何被調控並不清楚。在本篇研究中,我們致力於在肺腺癌細胞中尋找是否有miRNAs會結合到OGT的3’UTR上。利用螢光素酶分析對OGT的3’UTR分析,我們發現在OGT的3’UTR +3881到+5482這段序列有可能參與抑制OGT的表現,利用四種不同運算方法的miRNA-mRNA網站作預測,發現16個可能結合到OGT之3’UTR上的miRNAs。在這16個miRNA當中,我們發現miR-200a-3p對於帶有OGT-3’UTR之報導基因的螢光素酶活性具有最明顯的抑制效果。我們也利用點突變實驗確認miR-200a-3p可能會直接透過OGT的3’UTR去OGT表現。除此之外,過度表現miR-200a-3p會去抑制OGT蛋白的表現。
O-GlcNAcylation is a form of post-translational protein modification in which a single N-acetylglucosamine(GlcNAc) is added to serine or threonine residues of nuclear and cytoplasmic proteins. This modificationis involved in regulating metabolism, gene transcription and translation. O-GlcNAcylation is a reversible, dynamic and inducible modification that is catalyzed by two enzymes: O-GlcNAc transferase (OGT) is responsible for the addition and O-GlcNAcase (OGA) mediates the removal of GlcNAc from proteins respectively. In lung cancer, the expression of OGT mRNA and protein is higher in tumor tissues than that in normal tissues, and the high expression of OGT is associated with poorer survival of patients. MicroRNAs (miRNAs) plays an important role in modulating gene expression by regulating mRNA stability or translation efficiency through binding to 3’UTR, and dysregulation of miRNAs is involved in tumor progression. However, the underlying mechanism that regulates OGT expression in lung cancer cells is still unclear. Therefore, we aimed to explore if the OGT gene can be targeted by any miRNAs through its 3’UTR in lung adenocarcinoma cells. Our analysis of the 3’UTR of OGT by luciferase reporter assays revealed that the+3881 to +5482 region in OGT-3’UTR may participate in repressing OGT expression. By using four different algorithms to predict miRNA-mRNA interaction, sixteen miRNAs that may target OGT-3’UTR were obtained. Among these sixteen candidates, we demonstrated that miR-200a-3p could most significantly decrease the luciferase activity expressed from a reporter gene carrying OGT-3’UTR. We also used site-directed mutagenesis to confirm that miR-200a-3p may directly regulateOGT expression through OGT-3’UTR. Moreover, OGT protein levels were repressed upon overexpressing miR-200a-3p.
致謝……………………………………………………………………………….…i
Abstract………………………………………………………………………….…ii
摘要………………………………………………………………………………....iii
目次………………………………………………………………………………....iv
第一章、 緒論……………………………………………………………….…….1
1.1肺癌………………………………………………………………………….….1
1.2 O-GlcNAc Transferase (OGT)與O-GlcNAcylation………………………..1
1.3 O-GlcNAc Transferase (OGT)與癌症……………………………………….2
1.4 MicroRNA(s) 與O-GlcNAc Transferase (OGT)…………………………...3
第二章、 實驗材料與方法………………………………………………….…….6
2.1 材料…………………………………………………………………….……....6
2.1.1細胞株 (Cell line) …………………………………………………..............6
2.1.2勝任細胞 (Competent cell) ……….………………………………….…....6
2.1.3引子 (Primer) ………………………………………………………….…....6
2.1.4抗體 (Antibody).…………………….……….….………...……….….…....6
2.1.5緩衝溶液 (Buffer) ………………….…….…………….………….…..…....6
2.1.6質體 (Plasmid) …..…….………………....………………..………….…....6
2.1.7酵素、Kit與其他試劑………………………………………………….…....7
2.2 方法……………………………………………………………………….…....8
2.2.1細胞培養 (Cell culture) ……………………………………………….…....8
2.2.2質體建構 (Plasmid construction) ……………………………………........8
2.2.3細胞轉染 (Cell transfection).….………………………..………….…......10
2.2.4微核糖核酸表現量偵測 (miRNA expression detection ) ………....…....10
2.2.5細胞株蛋白質表現測量 (Protein expression detection).……………....12
2.2.6報導基因試驗 (Reporter assay) ………......................................…....13
2.2.7統計分析...……...…………………………………………………….........14
第三章、 結果……...……...……………………………………………….........15
3.1 OGT-3’UTR(+3881-+5482)可能參與調控OGT表現…..........................15
3.2利用miRNA資料庫預測可能結合在OGT-3’UTR上的miRNA(s)........15
3.3研究miRNA(s)調控OGT-3’UTR能力之分析…......................................16
3.4 過量表現miRNA-200a-3p抑制OGT蛋白表現….................................17
3.5抑制miRNA-200a-3p表現會促進luciferase activity…………………..…18
第四章、 討論….........................................................................................19
第五章、 參考文獻......................................................................................22
第六章、 圖…..............................................................................................25
第七章、 表…..............................................................................................32
附錄……………………………………………………………………………….38
1. Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446(7139):1017-22.
2. Shafi R, Iyer SP, Ellies LG, O'Donnell N, Marek KW, Chui D, et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(11):5735-9.
3. Harwood KR, Hanover JA. Nutrient-driven O-GlcNAc cycling - think globally but act locally. Journal of cell science. 2014;127(Pt 9):1857-67.
4. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annual review of biochemistry. 2011;80:825-58.
5. Ngoh GA, Facundo HT, Zafir A, Jones SP. O-GlcNAc signaling in the cardiovascular system. Circulation research. 2010;107(2):171-85.
6. Zachara NE. The roles of O-linked beta-N-acetylglucosamine in cardiovascular physiology and disease. American journal of physiology Heart and circulatory physiology. 2012;302(10):H1905-18.
7. Bond MR, Hanover JA. O-GlcNAc cycling: a link between metabolism and chronic disease. Annual review of nutrition. 2013;33:205-29.
8. Yang YR, Suh PG. O-GlcNAcylation in cellular functions and human diseases. Advances in biological regulation. 2014;54:68-73.
9. Comer FI, Hart GW. O-GlcNAc and the control of gene expression. Biochimica et biophysica acta. 1999;1473(1):161-71.
10. Zachara NE, Hart GW. O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochimica et biophysica acta. 2004;1673(1-2):13-28.
11. Zachara NE, O'Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. The Journal of biological chemistry. 2004;279(29):30133-42.
12. Slawson C, Lakshmanan T, Knapp S, Hart GW. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Molecular biology of the cell. 2008;19(10):4130-40.
13. Ma Z, Vosseller K. Cancer metabolism and elevated O-GlcNAc in oncogenic signaling. The Journal of biological chemistry. 2014;289(50):34457-65.
14. Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene. 2010;29(19):2831-42.
15. Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ. Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. The Journal of biological chemistry. 2012;287(14):11070-81.
16. Ma Z, Vocadlo DJ, Vosseller K. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pancreatic cancer cells. The Journal of biological chemistry. 2013;288(21):15121-30.
17. Wen T, Hou K, Li Z, Li L, Yu H, Liu Y, et al. Silencing beta-linked N-acetylglucosamine transferase induces apoptosis in human gastric cancer cells through PUMA and caspase-3 pathways. Oncology reports. 2015;34(6):3140-6.
18. Zhu Q, Zhou L, Yang Z, Lai M, Xie H, Wu L, et al. O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation. Medical oncology (Northwood, London, England). 2012;29(2):985-93.
19. Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, et al. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochimica et biophysica acta. 2011;1812(4):514-9.
20. Babae N, Bourajjaj M, Liu Y, Van Beijnum JR, Cerisoli F, Scaria PV, et al. Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma. Oncotarget. 2014;5(16):6687-700.
21. Luo P, He T, Jiang R, Li G. MicroRNA-423-5p targets O-GlcNAc transferase to induce apoptosis in cardiomyocytes. Molecular medicine reports. 2015;12(1):1163-8.
22. Liu Y, Huang H, Cao Y, Wu Q, Li W, Zhang J. Suppression of OGT by microRNA24 reduces FOXA1 stability and prevents breast cancer cells invasion. Biochemical and biophysical research communications. 2017;487(3):755-62.
23. Liu Y, Huang H, Liu M, Wu Q, Li W, Zhang J. MicroRNA-24-1 suppresses mouse hepatoma cell invasion and metastasis via directly targeting O-GlcNAc transferase. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017;91:731-8.
24. Zhen Q, Liu J, Gao L, Liu J, Wang R, Chu W, et al. MicroRNA-200a Targets EGFR and c-Met to Inhibit Migration, Invasion, and Gefitinib Resistance in Non-Small Cell Lung Cancer. Cytogenetic and genome research. 2015;146(1):1-8.
25. Feng J, Wang J, Chen M, Chen G, Wu Z, Ying L, et al. miR-200a suppresses cell growth and migration by targeting MACC1 and predicts prognosis in hepatocellular carcinoma. Oncology reports. 2015;33(2):713-20.
26. Wang J, Song W, Shen W, Yang X, Sun W, Qu S, et al. MicroRNA-200a Suppresses Cell Invasion and Migration by Directly Targeting GAB1 in Hepatocellular Carcinoma. Oncology research. 2017;25(1):1-10.
27. Yao J, Zhou E, Wang Y, Xu F, Zhang D, Zhong D. microRNA-200a inhibits cell proliferation by targeting mitochondrial transcription factor A in breast cancer. DNA and cell biology. 2014;33(5):291-300.
28. Wang X, Jiang F, Song H, Li X, Xian J, Gu X. MicroRNA-200a-3p suppresses tumor proliferation and induces apoptosis by targeting SPAG9 in renal cell carcinoma. Biochemical and biophysical research communications. 2016;470(3):620-6.
29. Wu X, Wu G, Wu Z, Yao X, Li G. MiR-200a Suppresses the Proliferation and Metastasis in Pancreatic Ductal Adenocarcinoma through Downregulation of DEK Gene. Translational oncology. 2016;9(1):25-31.
30. Zhao G, Liu L, Zhao T, Jin S, Jiang S, Cao S, et al. Upregulation of miR-24 promotes cell proliferation by targeting NAIF1 in non-small cell lung cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(5):3693-701.
31. Lu K, Wang J, Song Y, Zhao S, Liu H, Tang D, et al. miRNA-24-3p promotes cell proliferation and inhibits apoptosis in human breast cancer by targeting p27Kip1. Oncology reports. 2015;34(2):995-1002.
32. Chen Y, Peng W, Lu Y, Chen J, Zhu YY, Xi T. MiR-200a enhances the migrations of A549 and SK-MES-1 cells by regulating the expression of TSPAN1. Journal of biosciences. 2013;38(3):523-32.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top