跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋碧琳
研究生(外文):Pi-Lin Sung
論文名稱:卵巢癌分型、骨膜素和抗藥性研究與遺傳性乳癌卵巢癌臺灣現狀探討
論文名稱(外文):The Study of Ovarian Cancer Subtype, Periostin in Chemo-Resistance, and Hereditary Breast and Ovarian Cancer in Taiwan
指導教授:黃奇英
指導教授(外文):Chi-Ying F. Huang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:87
中文關鍵詞:卵巢癌病理分型遺傳性乳癌卵巢癌症候群骨膜素鉑金抗藥性
外文關鍵詞:ovarian cancersubtypehereditary breast-ovarian cancerperiostinplatinum resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
Ovarian cancer (OC) is basically a heterogeneous disease with different chemo-sensitivity and distinct molecular alternations for each histological subtype. The relative frequencies of subtypes were urgent for designation of clinical trial. Germline BRCA1 or BRCA2 mutations and other cancer-predisposition genes, which are related to hereditary breast-ovarian cancer (HBOC), contributes to some OC patients. The clinical genotype-phenotype information of Taiwan HBOC have not been well studied. After exploring literatures and our hospital cohort, we found that relative frequencies of subtypes were not homogenous across countries. We also analyzed genetic mutations in HBOC patients in our hospital between 2011 and 2016 and other Taiwan publications. The prevalence of germline BRCA1, BRCA2 and non-BRCA1/2 pathogenic mutations was 7.7% (21/272), 6.8% (16/236) and 8.2% (13/159), respectively among 272 HBOC patients. The main pathogenic/likely pathogenic mutations in non-BRCA1/2 genes included ATM, BRIP1, FANCI, MSH2, MUYTH, RAD50, RAD51C and TP53. The interplay between molecular variations in tumor microenvironment and OC chemoresistance remains unclear. By analyzing public available microarray datasets, we found that periostin (POSTN) was overexpressed in cancer stroma in OC patients. Overexpression of stromal POSTN is a significantly independent poor prognostic predictor for OC patients in immunohistochemistry analysis. Patients with high levels of stromal POSTN tend to have higher percentage of cisplatin resistance and POSTN tumor microenvironment can induce cisplatin resistant and activate AKT pathway.
卵巢癌是一種複雜的疾病,不同的病理分型有著不同的基因分型與不同化療藥物的感受性. 對於設計人體試驗藥物應用,探討不同種族好發的卵巢癌類型與遺傳基因型是很重要的,卵巢癌分成許多種型別,每個國家好發的比例可能不同;其中有些病患是屬於「遺傳性乳癌卵巢癌症候群」(Hereditary Breast and Ovarian Cancer, 簡稱HBOC),主要是由乳癌基因BRCA1和BRCA2發生突變所致。臺灣的HBOC基因型-表徵型的研究也需要更多的研究。本研究收集台北榮總卵巢癌病患與大規模文獻搜尋整理,發現不同種族好發的上皮性卵巢癌類型確有不同。本研究也收集在台北榮總病患中疑似「遺傳性乳癌卵巢癌症候群」與基因型結果,聯合其他台灣文獻,總共統計272病患中發現結果發現約有7.7% 的病患帶有BRCA1突變,6.8%帶有BRCA2突變和8.2%帶有其他相關的基因突變,其他與遺傳癌症相關基因還有包含ATM, BRIP1, FANCI.,MSH2, NUYTH, RAD50, RAD51C,TP53。除了探討卵巢癌的不同分型的分布與遺傳性基因的關係,腫瘤微環境與卵巢癌化療抗藥性之間的關聯值得探討。我們透過病人組織檢體染色和生物資料庫發現,腫瘤間質(stroma)內的骨膜素表現越高者,卵巢癌的預後越差。骨膜素(periostin),屬於細胞基質外蛋白質,過去被發現與ㄧ些癌症預後相關。爾後透過分析抗藥性的資料,也發現與骨膜素表現越高者,將來發生鉑金類抗藥性的比例越高。進ㄧ步分析發現微環境骨膜素蛋白質,可透過活化AKT路徑增加卵巢癌細胞中的抗藥性。若合併使用AKT 抑制劑,可以克服因為骨膜素誘發的卵巢癌抗藥性。結果有機會幫助於因骨膜素高者合併抗藥性的卵巢癌病患的臨床用藥開發。
致謝 i
目錄 ii
English Abstract vii
中文摘要 viii
List of abbreviations ix
1.0 Introduction 1
1.1 The diversity of ovarian cancer (OC) 1
1.2 The genetic mutation in Taiwan hereditary breast and ovarian cancer (HBOC) patients 1
1.3 The genetic contribution in ovarian cancer chemo-resistance 3
2.0 Rationale and Research plan 4
2.1 Project 1: The study of OC subtype distribution 4
2.2 Project 2: The frequency of genetic mutations in Taiwan HBOC 4
2.3 Project 3: Discover new biomarkers for OC chemo-resistance 4
3.0 Material and methods 5
3.1 The study of OC subtype distribution 5
3.1.1 Database retrieva 5
3.1.2 Search strategy of systematic reviews 5
3.1.3 Inclusion and exclusion criteria- 5
3.1.4 Screening and data extraction 5
3.1.5 Assessment of methodological quality 6
3.1.6 Statistical analysis 6
3.2: The frequency of genetic mutations in Taiwan HBOC 7
3.2.1 Study population-Hospital cohort 7
3.2.2 Mutation screening 8
3.2.2.1 BRCA1/2: Re-sequencing array (BRCAchip) 8
3.2.2.2 Multi-gene panel test: Library construction, target region capture, and massively parallel sequencing 9
3.2.3 Mutational analysis and web-server prediction programs (in silico bioinformatic analysis) 9
3.2.4 Literature search strategy and meta-analysis 10
3.3 Discover new biomarkers for OC chemo-resistance 11
3.3.1 Gene expression analysis of tumor for chemotherapy response in OC 11
3.3.2 Patients’ samples collections 12
3.3.3 Tissue array construction 13
3.3.4 Immunohistochemistry 14
3.3.5 Cell line, chemicals and reagents 14
3.3.6 Analysis of high-grade ovarian serous cystadenocarcinoma in The Cancer Genome Atlas (TCGA) 15
3.3.7 Cell proliferation assay 15
3.3.8 Western blotting analysis 15
3.3.9 Statistical analysis 15
4.0 RESULTS
4.1 The study of OC subtype distribution 17
4.1.1 Database analysis and quality 17
4.1.2 The distribution of each subtype 17
4.1.3 The distribution pattern of subtypes 18
4.2 The frequency of genetic mutations in Taiwan HBOC-- 29
4.2.1 Distribution of variations in BRCA1/2 and other non-BRCA genes 18
4.2.2 Prevalence of pathogenic BRCA1/2 and non-BRCA mutations in HBOC patients 19
4.2.3 Mutation rate in populations with different family histories, ages at diagnosis, and personal histories 19
4.3 Discover new biomarkers for OC chemo-resistance: Periostin (POSTN) 20
4.3.1 Identification of up-regulated POSTN in ovarian cancer stroma 20
4.3.2 Association of POSTN expression in cancer stroma with late stage OC 20
4.3.3 Stronger association of POSTN expression in cancer stroma and poor prognosis 21
4.3.4 POSTN induces cisplatin resistance in A2780 cells through AKT activation 22
5.0 Discussion
5.1The study of OC subtype distribution 24
5.1.1 Great variations in mucinous and clear cell carcinoma 24
5.1.2 Different distributions patterns for clinical trial design 24
5.1.3 Taiwan pattern of OC- 24
5.1.4 Limitations 25
5.2 The frequency of genetic mutations in Taiwan HBOC 25
5.2.1 The prevalence of BRCA1/2 in HBOC in Taiwan 25
5.2.2 The frequency of genetic mutations in Taiwan HBOC 26
5.2.3 The distribution of cancer-predisposition genes in Taiwan 26
5.2.4 The correlation of clinical phenotypes and genotypes 27
5.3 POSTN in OC tumor microenvironment and chemo-resistance 28
5.3.1 New biomarker for OC chemo-response: Stromal stroma 28
5.3.2 POSTN expression in cancer stromal cells can be served as a
Poor prognostic marker for epithelial ovarian cancer. 28
5.3.3 POSTN expression in cancer stroma was correlated with advanced disease stage 29
5.3.4 POSTN treatment increased the resistance to cisplatin through AKT pathway 29
6.0 Conclusion 31
6.1 OC subtype distribution is heterogeneous 31
6.2 The frequency of genetic mutations in Taiwan HBOC is around 7-8% 31
6.3 POSTN in OC tumor microenvironment can server as a poor prognosis of clinical outcome and chemo-resistance 31
7.0 Perspective 32
7.1 The genomic subtype distribution of OC in worldwide. 32
7.2 The role of other extracellular matrix (ECM) molecular or immunologic pathway in OC platinum resistance 32
7.3 The homologous recombination deficiency in Taiwan and clinical application of PARP inhibitor in BRCA-deficiency patients 33
8.0 Reference 34
9.0 Tables 44
Table 1 .The detail of each studies include in this project. 44
Table 2. Frequency of germline pathogenic mutations in taiwanese hboc
patients. 47
Table 3. Partial list of partial lists of indels in BRCAchip 48
Table 4. Clinical characteristics of both groups 50
Table 5. Clinical characteristics of patients with pathogenic/likely pathogenic variants in the hospital cohort 51
Table 6. Clinical characteristics and bioinformatic analysis of variants of uncertain significance in the hospital cohort 52
Table 7. Detected pathogenic/likely pathogenic genes and their clinical surveillance 53
Table 8. Distribution of pathogenic/likely pathogenic mutations with respect
to family history, age at diagnosis and first cancer at diagnosis 55
Table 9. Distribution of pathogenic/likely pathogenic mutations with respect to
personal history 56
Table 10. The clinical pathological characteristics of patients with low and high
stromal periostin expression. 57
Table 11. Univariants and multivariate analysis of disease-specific
progression-free survival 58
Table 12. Univariants and multivariate analysis of disease-specific overall
survival 59
Table 13. The relationship between POSTN and platinum
Resistance 60
10. Figures 61
Figure 1. Flowchart illustrating the cross-sectional hospital cohort and
meta-analysis 61
Figure 2. BRCAchip Analysis System: ex. 2512delC 62
Figure 3. NGS gene coverage regions; ex. #51 CHEK2 64
Figure 4. Variants predictive summary in Bioinformatics website 65
Figure 5. Gene expression analysis of tumor for chemotherapy response in
OC 67
Figure 6. Tissue array construction and Immunohistochemistry (IHC) analysis
of 308 EOC patients. 68
Figure 7. Flow diagram of the steps in the reviewing process 69
Figure 8. Geographical distribution of relative frequency of serous subtype 70
Figure 9. Geographical distribution of relative frequency of mucinous subtype. 71
Figure 10. Geographical distribution of relative frequency of endometrioid subtype. 72
Figure 11. Geographical distribution of relative frequency of clear cell subtype 73
Figure 12. Dendrogram of hierarchical cluster analysis of distribution pattern
of subtypes among countries 74
Figure 13. A example of Pedigree (Family #42; BRCA1 2512delC)- 75
Figure 14. POSTN is upregulated in stroma of epithelial ovarian adenocarcinoma 76
Figure 15. Relative POSTN levels in GSE38666 77
Figure 16. Relative POSTN levels in GSE29156 78
Figure 17. Protein expression of POSTN can be observed in the cancer stroma
and cancer cells 79
Figure 18. Overexpression of stromal POSTN predicts worse survival compared to tumor POSTN in OC cancer patients 80
Figure19. Overall and diseases-free survival analysis stratified by combination
of stromal and tumor POSTN status. 81
Figure 20. POSTN induces platinum resistance 82
Figure 21. Two platinum response groups by using TCGA ovarian cancer 83
Figure 22. Western blot analysis in A2780 cells and A2780cp cells line 84
Figure 23. Western blot analysis in A2780 cells upon combinant POSTN
protein and/or MK-2206 treatment 85
Figure 24. Cytotoxicity assay of A2780 cells treated with cisplatin and AKT
inhibitor 86
Figure 25. Schematic model shows the relationship between stromal POSTN and platinum resistance in EOC 87
11. Publications
1. Harries M, Gore M. Part I: chemotherapy for epithelial ovarian cancer-treatment at first diagnosis. The Lancet Oncology. 2002;3(9):529-36.
2. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA: a cancer journal for clinicians. 2017;67(1):7-30.
3. Chiang CJ, Lo WC, Yang YW, You SL, Chen CJ, Lai MS. Incidence and survival of adult cancer patients in Taiwan, 2002-2012. 2016;115(12):1076-88.
4. McCluggage WG. My approach to and thoughts on the typing of ovarian carcinomas. Journal of clinical pathology. 2008;61(2):152-63.
5. Shih Ie M, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. The American journal of pathology. 2004;164(5):1511-8.
6. Shih WJ. Clinical trials for drug registrations in Asian-Pacific countries: proposal for a new paradigm from a statistical perspective. Controlled clinical trials. 2001;22(4):357-66.
7. Hemminki K, Granstrom C. Familial breast cancer: scope for more susceptibility genes? Breast cancer research and treatment. 2003;82(1):17-22.
8. Serova OM, Mazoyer S, Puget N, Dubois V, Tonin P, Shugart YY, et al. Mutations in BRCA1 and BRCA2 in breast cancer families: are there more breast cancer-susceptibility genes? American journal of human genetics. 1997;60(3):486-95.
9. American College of O, Gynecologists, Bulletins--Gynecology ACoP, Genetics ACo, Society of Gynecologic O. ACOG Practice Bulletin No. 103: Hereditary breast and ovarian cancer syndrome. Obstetrics and gynecology. 2009;113(4):957-66.
10. Risch HA, McLaughlin JR, Cole DE, Rosen B, Bradley L, Fan I, et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. Journal of the National Cancer Institute. 2006;98(23):1694-706.
11. Ripperger T, Gadzicki D, Meindl A, Schlegelberger B. Breast cancer susceptibility: current knowledge and implications for genetic counselling. European journal of human genetics : EJHG. 2009;17(6):722-31.
12. Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2007;25(11):1329-33.
13. Force USPST. Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility: recommendation statement. Annals of internal medicine. 2005;143(5):355-61.
14. Moyer VA, Force USPST. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U.S. Preventive Services Task Force recommendation statement. Annals of internal medicine. 2014;160(4):271-81.
15. Chao A, Chang TC, Lapke N, Jung SM, Chi P, Chen CH, et al. Prevalence and clinical significance of BRCA1/2 germline and somatic mutations in Taiwanese patients with ovarian cancer. Oncotarget. 2016;7(51):85529-41.
16. Lin PH, Kuo WH, Huang AC, Lu YS, Lin CH, Kuo SH, et al. Multiple gene sequencing for risk assessment in patients with early-onset or familial breast cancer. Oncotarget. 2016;7(7):8310-20.
17. Wang PH, Shyong WY, Li YF, Lee HH, Tsai WY, Chao HT, et al. BRCA1 mutations in Taiwanese with epithelial ovarian carcinoma and sporadic primary serous peritoneal carcinoma. Japanese journal of clinical oncology. 2000;30(8):343-8.
18. Kuo WH, Lin PH, Huang AC, Chien YH, Liu TP, Lu YS, et al. Multimodel assessment of BRCA1 mutations in Taiwanese (ethnic Chinese) women with early-onset, bilateral or familial breast cancer. Journal of human genetics. 2012;57(2):130-8.
19. Schroeder C, Stutzmann F, Weber BH, Riess O, Bonin M. High-throughput resequencing in the diagnosis of BRCA1/2 mutations using oligonucleotide resequencing microarrays. Breast cancer research and treatment. 2010;122(1):287-97.
20. Guan Y, Hu H, Peng Y, Gong Y, Yi Y, Shao L, et al. Detection of inherited mutations for hereditary cancer using target enrichment and next generation sequencing. Familial cancer. 2015;14(1):9-18.
21. Minion LE, Dolinsky JS, Chase DM, Dunlop CL, Chao EC, Monk BJ. Hereditary predisposition to ovarian cancer, looking beyond BRCA1/BRCA2. Gynecologic oncology. 2015;137(1):86-92.
22. Tung N, Lin NU, Kidd J, Allen BA, Singh N, Wenstrup RJ, et al. Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016;34(13):1460-8.
23. Walsh T, Lee MK, Casadei S, Thornton AM, Stray SM, Pennil C, et al. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci U S A. 2010;107(28):12629-33.
24. Nilprabhassorn P, Vootiprux V, Suvongse C. An analysis of the cancer statistics of the Cancer Institute Siriraj Hospital, 1969--1972. Journal of the Medical Association of Thailand. 1976;59(4):162-7.
25. Kraus C, Hoyer J, Vasileiou G, Wunderle M, Lux MP, Fasching PA, et al. Gene panel sequencing in familial breast/ovarian cancer patients identifies multiple novel mutations also in genes others than BRCA1/2. International journal of cancer. 2017;140(1):95-102.
26. Desmond A, Kurian AW, Gabree M, Mills MA, Anderson MJ, Kobayashi Y, et al. Clinical Actionability of Multigene Panel Testing for Hereditary Breast and Ovarian Cancer Risk Assessment. JAMA oncology. 2015;1(7):943-51.
27. Kapoor NS, Curcio LD, Blakemore CA, Bremner AK, McFarland RE, West JG, et al. Multigene Panel Testing Detects Equal Rates of Pathogenic BRCA1/2 Mutations and has a Higher Diagnostic Yield Compared to Limited BRCA1/2 Analysis Alone in Patients at Risk for Hereditary Breast Cancer. Annals of surgical oncology. 2015;22(10):3282-8.
28. Castera L, Krieger S, Rousselin A, Legros A, Baumann JJ, Bruet O, et al. Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. European journal of human genetics : EJHG. 2014;22(11):1305-13.
29. Weaver JM, Edwards PA. Targeted next-generation sequencing for routine clinical screening of mutations. Genome medicine. 2011;3(9):58.
30. Tedaldi G, Tebaldi M, Zampiga V, Danesi R, Arcangeli V, Ravegnani M, et al. Multiple-gene panel analysis in a case series of 255 women with hereditary breast and ovarian cancer. Oncotarget. 2017.
31. Cannistra SA. Cancer of the ovary. The New England journal of medicine. 2004;351(24):2519-29.
32. Thigpen JT, Blessing JA, Ball H, Hummel SJ, Barrett RJ. Phase II trial of paclitaxel in patients with progressive ovarian carcinoma after platinum-based chemotherapy: a Gynecologic Oncology Group study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1994;12(9):1748-53.
33. Marsden DE, Friedlander M, Hacker NF. Current management of epithelial ovarian carcinoma: a review. Semin Surg Oncol. 2000;19(1):11-9.
34. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Controlled clinical trials. 1996;17(1):1-12.
35. Sung PL, Chang YH, Chao KC, Chuang CM, Task Force on Systematic R, Meta-analysis of Ovarian C. Global distribution pattern of histological subtypes of epithelial ovarian cancer: a database analysis and systematic review. Gynecologic oncology. 2014;133(2):147-54.
36. American College of Obstetricians, Gynecologists. ACOG practice bulletin No. 103: hereditary breast and ovarian cancer syndrome. Obstetrics and gynecology. 2009;113(4):957-66.
37. Bulletins ACoP. Hereditary breast and ovarian cancer syndrome. Gynecologic oncology. 2009;113(1):6-11.
38. Moyer VA, U. S. Preventive Services Task Force. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U.S. Preventive Services Task Force recommendation statement. Annals of internal medicine. 2014;160(4):271-81.
39. U. S. Preventive Services Task Force. Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility: recommendation statement. Annals of internal medicine. 2005;143(5):355-61.
40. Liu C, Aronow BJ, Jegga AG, Wang N, Miethke A, Mourya R, et al. Novel resequencing chip customized to diagnose mutations in patients with inherited syndromes of intrahepatic cholestasis. Gastroenterology. 2007;132(1):119-26.
41. Beroud C, Letovsky SI, Braastad CD, Caputo SM, Beaudoux O, Bignon YJ, et al. BRCA Share: A Collection of Clinical BRCA Gene Variants. Human mutation. 2016;37(12):1318-28.
42. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine : official journal of the American College of Medical Genetics. 2015;17(5):405-24.
43. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nature methods. 2010;7(4):248-9.
44. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols. 2009;4(7):1073-81.
45. Li SS, Tseng HM, Yang TP, Liu CH, Teng SJ, Huang HW, et al. Molecular characterization of germline mutations in the BRCA1 and BRCA2 genes from breast cancer families in Taiwan. Human genetics. 1999;104(3):201-4.
46. Chen ST, Chen RA, Kuo SJ, Chien YC. Mutational screening of breast cancer susceptibility gene 1 from early onset, bi-lateral, and familial breast cancer patients in Taiwan. Breast cancer research and treatment. 2003;77(2):133-43.
47. Takeshita S, Kikuno R, Tezuka K, Amann E. Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. The Biochemical journal. 1993;294 ( Pt 1):271-8.
48. Morra L, Rechsteiner M, Casagrande S, Duc Luu V, Santimaria R, Diener PA, et al. Relevance of periostin splice variants in renal cell carcinoma. The American journal of pathology. 2011;179(3):1513-21.
49. Morra L, Moch H. Periostin expression and epithelial-mesenchymal transition in cancer: a review and an update. Virchows Archiv : an international journal of pathology. 2011;459(5):465-75.
50. Kudo Y, Siriwardena BS, Hatano H, Ogawa I, Takata T. Periostin: novel diagnostic and therapeutic target for cancer. Histology and histopathology. 2007;22(10):1167-74.
51. Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer research. 2002;62(18):5358-64.
52. Hong LZ, Wei XW, Chen JF, Shi Y. Overexpression of periostin predicts poor prognosis in non-small cell lung cancer. Oncology letters. 2013;6(6):1595-603.
53. Ismail RS, Baldwin RL, Fang J, Browning D, Karlan BY, Gasson JC, et al. Differential gene expression between normal and tumor-derived ovarian epithelial cells. Cancer research. 2000;60(23):6744-9.
54. The Republic of China Yearbook 2014 . Executive Yuan ROCIhwegtUUYadp.
55. Zhu M, Saxton RE, Ramos L, Chang DD, Karlan BY, Gasson JC, et al. Neutralizing monoclonal antibody to periostin inhibits ovarian tumor growth and metastasis. Molecular cancer therapeutics. 2011;10(8):1500-8.
56. Clinical NCCNN, high-risk PGiOGf, http://www. abaoAa, nccn.org/professionas/physician_gls/pdf/genetics_screening.pdf.
57. Baril P, Gangeswaran R, Mahon PC, Caulee K, Kocher HM, Harada T, et al. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway. Oncogene. 2007;26(14):2082-94.
58. Kanno A, Satoh K, Masamune A, Hirota M, Kimura K, Umino J, et al. Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells. International journal of cancer. 2008;122(12):2707-18.
59. Tsunoda T, Furusato B, Takashima Y, Ravulapalli S, Dobi A, Srivastava S, et al. The increased expression of periostin during early stages of prostate cancer and advanced stages of cancer stroma. The Prostate. 2009;69(13):1398-403.
60. Choi KU, Yun JS, Lee IH, Heo SC, Shin SH, Jeon ES, et al. Lysophosphatidic acid-induced expression of periostin in stromal cells: Prognoistic relevance of periostin expression in epithelial ovarian cancer. International journal of cancer. 2011;128(2):332-42.
61. Ryner L, Guan Y, Firestein R, Xiao Y, Choi Y, Rabe C, et al. Upregulation of Periostin and Reactive Stroma Is Associated with Primary Chemoresistance and Predicts Clinical Outcomes in Epithelial Ovarian Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(13):2941-51.
62. Petru E, Luck HJ, Stuart G, Gaffney D, Millan D, Vergote I, et al. Gynecologic Cancer Intergroup (GCIG) proposals for changes of the current FIGO staging system. European journal of obstetrics, gynecology, and reproductive biology. 2009;143(2):69-74.
63. Bamias A, Papadimitriou C, Efstathiou E, Rodolakis A, Vlahos G, Voulgaris Z, et al. Four cycles of paclitaxel and carboplatin as adjuvant treatment in early-stage ovarian cancer: a six-year experience of the Hellenic Cooperative Oncology Group. BMC cancer. 2006;6:228.
64. Bookman MA, Greer BE, Ozols RF. Optimal therapy of advanced ovarian cancer: carboplatin and paclitaxel vs. cisplatin and paclitaxel (GOG 158) and an update on GOG0 182-ICON5. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society. 2003;13(6):735-40.
65. Tsai HY, Yang YF, Wu AT, Yang CJ, Liu YP, Jan YH, et al. Endoplasmic reticulum ribosome-binding protein 1 (RRBP1) overexpression is frequently found in lung cancer patients and alleviates intracellular stress-induced apoptosis through the enhancement of GRP78. Oncogene. 2013;32(41):4921-31.
66. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature protocols. 2006;1(3):1112-6.
67. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses. Lancet. 1999;354(9193):1896-900.
68. Koh SC, Huak CY, Lutan D, Marpuang J, Ketut S, Budiana NG, et al. Combined panel of serum human tissue kallikreins and CA-125 for the detection of epithelial ovarian cancer. Journal of gynecologic oncology. 2012;23(3):175-81.
69. McCluggage WG. Morphological subtypes of ovarian carcinoma: a review with emphasis on new developments and pathogenesis. Pathology. 2011;43(5):420-32.
70. Tsong Y, Chang WJ, Dong X, Tsou HH. Assessment of regional treatment effect in a multiregional clinical trial. Journal of biopharmaceutical statistics. 2012;22(5):1019-36.
71. Pearce CL, Templeman C, Rossing MA, Lee A, Near AM, Webb PM, et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. The Lancet Oncology. 2012;13(4):385-94.
72. Gayther SA, Song H, Ramus SJ, Kjaer SK, Whittemore AS, Quaye L, et al. Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer. Cancer research. 2007;67(7):3027-35.
73. McCluggage WG, Young RH. Immunohistochemistry as a diagnostic aid in the evaluation of ovarian tumors. Seminars in diagnostic pathology. 2005;22(1):3-32.
74. Malpica A, Deavers MT, Lu K, Bodurka DC, Atkinson EN, Gershenson DM, et al. Grading ovarian serous carcinoma using a two-tier system. The American journal of surgical pathology. 2004;28(4):496-504.
75. Kim YC, Zhao L, Zhang H, Huang Y, Cui J, Xiao F, et al. Prevalence and spectrum of BRCA germline variants in mainland Chinese familial breast and ovarian cancer patients. Oncotarget. 2016;7(8):9600-12.
76. Ang P, Lim IH, Lee TC, Luo JT, Ong DC, Tan PH, et al. BRCA1 and BRCA2 mutations in an Asian clinic-based population detected using a comprehensive strategy. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2007;16(11):2276-84.
77. Szabo CI, King MC. Population genetics of BRCA1 and BRCA2. American journal of human genetics. 1997;60(5):1013-20.
78. LaDuca H, Stuenkel AJ, Dolinsky JS, Keiles S, Tandy S, Pesaran T, et al. Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genetics in medicine : official journal of the American College of Medical Genetics. 2014;16(11):830-7.
79. Rajkumar T, Meenakumari B, Mani S, Sridevi V, Sundersingh S. Targeted Resequencing of 30 Genes Improves the Detection of Deleterious Mutations in South Indian Women with Breast and/or Ovarian Cancers. Asian Pacific journal of cancer prevention : APJCP. 2015;16(13):5211-7.
80. Wong ESY, Shekar S, Met-Domestici M, Chan C, Sze M, Yap YS, et al. Inherited breast cancer predisposition in Asians: multigene panel testing outcomes from Singapore. NPJ Genom Med. 2016;1:15003.
81. Ng PS, Wen WX, Fadlullah MZ, Yoon SY, Lee SY, Thong MK, et al. Identification of germline alterations in breast cancer predisposition genes among Malaysian breast cancer patients using panel testing. Clinical genetics. 2016;90(4):315-23.
82. Stadler ZK, Salo-Mullen E, Patil SM, Pietanza MC, Vijai J, Saloustros E, et al. Prevalence of BRCA1 and BRCA2 mutations in Ashkenazi Jewish families with breast and pancreatic cancer. Cancer. 2012;118(2):493-9.
83. Gorski B, Jakubowska A, Huzarski T, Byrski T, Gronwald J, Grzybowska E, et al. A high proportion of founder BRCA1 mutations in Polish breast cancer families. International journal of cancer. 2004;110(5):683-6.
84. Kwong A, Ng EK, Wong CL, Law FB, Au T, Wong HN, et al. Identification of BRCA1/2 founder mutations in Southern Chinese breast cancer patients using gene sequencing and high resolution DNA melting analysis. PloS one. 2012;7(9):e43994.
85. Kang E, Seong MW, Park SK, Lee JW, Lee J, Kim LS, et al. The prevalence and spectrum of BRCA1 and BRCA2 mutations in Korean population: recent update of the Korean Hereditary Breast Cancer (KOHBRA) study. Breast cancer research and treatment. 2015;151(1):157-68.
86. Wong ES, Shekar S, Chan CH, Hong LZ, Poon SY, Silla T, et al. Predictive factors for BRCA1 and BRCA2 genetic testing in an Asian clinic-based population. PloS one. 2015;10(7):e0134408.
87. Brozek I, Ratajska M, Piatkowska M, Kluska A, Balabas A, Dabrowska M, et al. Limited significance of family history for presence of BRCA1 gene mutation in Polish breast and ovarian cancer cases. Familial cancer. 2012;11(3):351-4.
88. Rahman B, Side L, Gibbon S, Meisel SF, Fraser L, Gessler S, et al. Moving towards population-based genetic risk prediction for ovarian cancer. BJOG. 2017.
89. Llort G, Chirivella I, Morales R, Serrano R, Sanchez AB, Teule A, et al. SEOM clinical guidelines in hereditary breast and ovarian cancer. Clin Transl Oncol. 2015;17(12):956-61.
90. Chitrathara K, Sheikh ZA, Vijaykumar DK, Kuriakose S, Anupama R, Nandeesh M. Is hysterectomy needed in ovarian cancer? Indian journal of cancer. 2011;48(4):471-6.
91. Redaniel MT, Laudico A, Mirasol-Lumague MR, Gondos A, Uy GL, Toral JA, et al. Ovarian cancer survival population differences: a "high resolution study" comparing Philippine residents, and Filipino-Americans and Caucasians living in the US. BMC cancer. 2009;9:340.
92. Zhao C, Annamalai L, Guo C, Kothandaraman N, Koh SC, Zhang H, et al. Circulating haptoglobin is an independent prognostic factor in the sera of patients with epithelial ovarian cancer. Neoplasia. 2007;9(1):1-7.
93. Tangjitgamol S, Manusirivithaya S, Khunnarong J, Jesadapatarakul S, Tanwanich S. Expressions of estrogen and progesterone receptors in epithelial ovarian cancer: a clinicopathologic study. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society. 2009;19(4):620-7.
94. Gram IT, Lukanova A, Brill I, Braaten T, Lund E, Lundin E, et al. Cigarette smoking and risk of histological subtypes of epithelial ovarian cancer in the EPIC cohort study. International journal of cancer. 2012;130(9):2204-10.
95. Stadlmann S, Pollheimer J, Moser PL, Raggi A, Amberger A, Margreiter R, et al. Cytokine-regulated expression of collagenase-2 (MMP-8) is involved in the progression of ovarian cancer. European journal of cancer. 2003;39(17):2499-505.
96. Koshiyama M, Matsumura N, Konishi I. Recent concepts of ovarian carcinogenesis: type I and type II. Biomed Res Int. 2014;2014:934261.
97. Kurman RJ, Shih Ie M. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. The American journal of surgical pathology. 2010;34(3):433-43.
98. Banerjee S, Kaye SB, Ashworth A. Making the best of PARP inhibitors in ovarian cancer. Nature reviews Clinical oncology. 2010;7(9):508-19.
99. Haber JE. DNA recombination: the replication connection. Trends in biochemical sciences. 1999;24(7):271-5.
100. Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Molecular cell. 2001;7(2):263-72.
101. Noel G, Giocanti N, Fernet M, Megnin-Chanet F, Favaudon V. Poly(ADP-ribose) polymerase (PARP-1) is not involved in DNA double-strand break recovery. BMC cell biology. 2003;4:7.
102. Moynahan ME, Chiu JW, Koller BH, Jasin M. Brca1 controls homology-directed DNA repair. Molecular cell. 1999;4(4):511-8.
103. Ledermann J, Harter P, Gourley C. Correction to Lancet Oncol 2014; 15: 856. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. The Lancet Oncology. 2015;16(4):e158.
104. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. The New England journal of medicine. 2016;375(22):2154-64.
105. Walsh CS. Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecologic oncology. 2015;137(2):343-50.
106. Chien J, Kuang R, Landen C, Shridhar V. Platinum-sensitive recurrence in ovarian cancer: the role of tumor microenvironment. Front Oncol. 2013;3:251.
107. Zhang W, Ota T, Shridhar V, Chien J, Wu B, Kuang R. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment. PLoS Comput Biol. 2013;9(3):e1002975.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top