跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 23:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳信彰
研究生(外文):Hsin-Chang Chen
論文名稱:新式棘突穩定支架(M rod)之生物力學分析
論文名稱(外文):Biomechanical Analysis of Novel Interspinous Process Device in Non-Fusion Surgery
指導教授:鄭誠功鄭誠功引用關係
指導教授(外文):Cheng-Kung Cheng
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物醫學工程學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:83
中文關鍵詞:棘突間撐開器新式棘突穩定支架有限元素分析活動度豬骨脊椎傳統棘突撐開器
外文關鍵詞:Interspinous spacers“M” deviceFinite element analysisRange of motionPorcine lumbar cadaverCoflex-F
相關次數:
  • 被引用被引用:0
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
目前市面上有多種棘突間撐開器已常被使用來治療腰痛及椎孔狹窄。本論文開發一種新形椎弓釘固定的棘突撐開器,可提供類似傳統棘突撐開器的穩定脊椎效果,卻沒有傳統棘突撐開器的缺點,植入時可保留脊上韌帶,可穩定的固定不會脫落,可適用於各種大小的脊突,甚至適用於腰五薦一節。
本研究包含三個部分,利用新式棘突穩定支架(M-rod),實行有限元素分析、生物力學實驗及臨床測量實驗。
第一部分是利用有限元素分析,研究新式棘突穩定支架(M-rod)及傳統棘突撐開器(Coflex-F)之間的差別。各節脊椎間的活動度、硬度、椎間盤壓力峰值、棘突接觸面的壓力峰值,於各個植入物間均被分析。於各個植入物之間,Coflex-F有最大的活動限制,對比於完整模型,Coflex-F模型的椎間盤壓力峰值下降81%,而M-rod(Ti)及M-rod(PEEK)分別下降60.2%及46.7%。相對鄰節活度度來說,M-rod(Ti)及M-rod(PEEK)只對鄰節活動度增加有很小的影響。
第二部分是生物力學研究,共二十五份豬骨脊椎,分五組模型,每組模型五份豬脊椎。第一組模型為完整模型,第二組為Coflex-F,第三組為M-rod(Ti),第四組為M-rod(PEEK),第五組為傳統二節固定器。植入物均植入於腰第三四節。測量腰第二三節、腰第三四節、腰第四五節等的前彎、後伸、側彎、旋轉的活動度。
第三部分為病患的植入後測量報告。此部分記錄病患的影像學及門診蹤報告。
結論,新式棘突穩定支架(M-rod)可於植入當節提供後伸(extension)的穩定度,而對其他前彎、側彎、旋轉的活動度沒有影響,也對其他節的活動度影響很小。經由分析,可說明新式棘突穩定支架(M-rod)是一安全的、有效的、臨床上可行的植入物。
Interspinous spacers have been designed to provide a minimally invasive surgical technique for patients with lumbar spinal stenosis or foraminal stenosis. A novel pedicle screw-based interspinous spacer has been developed in this study, this device is a minimally invasive lumbar non-fusion device that provides significant segmental stability with all the advantages of an interspinous implant, moreover, the strengths of “M” device include the preservation of supraspinous ligaments and interspinous ligaments, the secure locking with pedicle screws to avoid being pulled out from the interspinous space, the reduced effects on the adjacent segments, and the easy adjustments to fit the heights of the interspinous process.
This study was divided into three research parts with purposes to investigate the biomechanical behavior and clinical performance of the “M” device.
The first research was to investigate the biomechanical differences between the pedicle screw-based interspinous spacer (M-rod system) and the typical interspinous spacer (Coflex-F) by using finite element analysis. A validated finite element model of an intact lumbar spine was used to analyze the insertions of the Coflex-F, titanium alloy M-rod (M-Ti), and polyetheretherketone M-rod (M-PEEK), independently. The range of motion between each vertebrae, stiffness of the implanted level, the peak stress at the intervertebral discs, and the contact forces on spinous process were analyzed. Of all three devices, the Coflex-F provided the largest restrictions in extension, flexion and lateral bending. For intervertebral disc, the peak stress at the implanted segment decreased by 81% in the Coflex-F, 60.2% in the M-Ti and 46.7% in the M-PEEK when compared to the intact model. For the adjacent segments, while the Coflex-F caused considerable increases in the ROM and disc stress, the M-PEEK only had small changes.
The second was to investigate and compare the range of motion at the instrumented and the adjacent levels after segmental instrumentation with an "M" pedicle screw-based interspinous device, a rigid posterior stabilization device, or a typical interspinous device (Coflex-F). This part was performed with twenty five fresh porcine lumbar cadaver spines extending from L2 to L5; and five groups of 5 specimens were established by different instrumented groups; first group was intact lumbar model without any instrument, second group was implanted with original Coflex-F, third group was inserted with self-design titanium alloy “M” device (M-Ti), fourth group was inserted with self-design PEEK “M” device (M-PEEK) and the last group with conventional pedicle screw system. Each implant was simulated to insert the interspinous space of L3/L4; and the range of motion at the segments L2/L3, L3/L4, L4/L5 during extension-flexion, lateral bending and rotation were calculated with the signal of the main direction motion separately. In instrumented levels (L3/L4), the motion results of the in vitro test highlight the differences between pedicle screw and intact model especial in extension and bending; although the average motion data of flexion in pedicle screw system group was lower markedly than intact model. In flexion, lateral bending and axial rotation, the motion of the “M” case (titanium alloy or PEEK) is more similar to that of the intact model. The titanium alloy “M” device offer a rigid limitation in extension motion (25% range of motion of intact model), and the motion data was significant different from Coflex F device and intact model. The M-PEEK group exhibits more motion in extension than the titanium alloy M-Ti group, but the ROM of extension was less than Coflex F group and intact model.
The third part was to report two cases with the herniated disc of lumbar spine treated with decompression and the titanium M-rod instrumentation. The radiographic range of motion before and after the index surgery were recorded. In a short-term follow up (less than 6 months), two cases have significant improvement in their pain and daily activities after surgery procedure.
In conclusion, the “M” device implantation can provide stability in extension at the surgical segment, and it had no influence at adjacent segments except during extension. Furthermore, the PEEK “M” device had a lower effect on range of motions and stress at both adjacent discs, and then the relatively lower peak contact force of interspinous process may decrease risk of process fracture. Besides, M rod device treatment in patients has excellent outcome in short-term follow-up.
Table of Contents
Acknowledgments………………………………………………………...I
中文摘要..........……………………………………………………….Ⅲ
Abstract…………………………………….…………….………………V
Table of Contents….……………………………………………………IX
List of Figures…………………………………………………………..XI
List of Tables…………………………………………………………XII
Chapter 1:Background and Introduction…………………..…………....1
Chapter 2:Material and Methods…………………………..…….……..17
2.1 Finite element analysis………………………………….…...17
2.1.1 Finite element models……………………………………17
2.1.2 Boundary and Loading Conditions………………………23
2.2 Experimental in-vitro test……………………………….…...26
2.3 Clinical evaluation…………………………………………...31
Chapter 3:Results……………………………………..………………..32
3.1 Finite element analysis………………………………………...32
3.1.1 Range of motions……………………………...…………32
3.1.2 Peak stresses of intervertebral discs……………………..35
3.1.3 Peak contact force ……………………………………….38
3.2 Experimental in-vitro test……………………………………...39
3.3 Clinical evaluation……………………………………………..47
3.3.1 Case report I……………………………………………..47
3.3.2 Case report II…………………………………………….54
Chapter 4:Discussion…………………..……………………………...59
4.1 Finite Element Model …………..……………………..……….60
4.2 Experimental In-Vitro Test …………...………………………..68
4.3 Clinical Evaluation ……………………………………….……72
Chapter 5:Conclusion…………………………………………………75
Chapter 6:Reference…………………………………………………..76

List of figure

Figure 1 pedicle screw system…………………………………… 2
Figure 2 Laminectomy…………………………………………… 4
Figure 3 X-STOP………………………………………………… 7
Figure 4 Wallis implant…………………………………………… 8
Figure 5 DIAM implant…………………………………………… 9
Figure 6 Coflex implant…………………………………………... 10
Figure 7 novel pedicle screw-based devices with M geometry…… 14
Figure 8 the finite element models validation………… 19
Figure 9 M-rod system and M-rod in L3/4……………….. 22
Figure 10 specimen mounted in testing device……………. 29
Figure 11 Specimen with M-rod in testing device…… 30
Figure 12 ROM percentages of intact model in FEM……… 34
Figure 13 Annulus stress percentages of intact model in FEM…… 37
Figure 14 Contact force in FEM…………………………………… 38
Figure 15 Von-Mises stress in extension…………………………… 39
Figure 16 Mean ROM in cranial adjacent segment in vitro… 40
Figure 17 Mean ROM in the instrumented segment in vitro…… 40
Figure 18 Mean ROM in caudal adjacent segment in vitro…… 41
Figure 19 Pre-operative films in Case I………………………. 49
Figure 20 The film after the L4/5 implantation in Case I… 51
Figure 21 The post-op 8th day film in Case I……………. 52
Figure 22 The post-op 6th week film in Case I………. 53
Figure 23 Pre-operative films in Case II…………………………… 55
Figure 24 Pre-operative CT in Case II……………………………... 56
Figure 25 Post-op 4th month films in Case II……………. 57
Figure 26 Post-op 6th month films in Case II…………. 58


List of table

Table 1 the material properties in finite element models…………. 20
Table 2 the ROM of different implanted group……………… 25
Table 3 Extension ROM difference in L2/3………………………. 41
Table 4 Extension ROM difference in L3/4………………………. 43
Table 5 Lateral bending ROM difference in L3/4…………… 44
Table 6 Axial rotation ROM difference in L3/4…………… 45
Table 7 Extension ROM difference in L4/5……………………….. 46
1. Lee CK. Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 1988; 13: 375-377.
2. Schlegel JD, Smith JA, Schleusener RL. Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine 1996; 21: 970–981.
3. Lee CK, Langrana NA. Lumbosacral spinal fusion. A biomechanical study. Spine 1984; 9: 574-581.
4. Lehmann TR, Tozz JE, Weinstein JN, Reinarz SJ, El-Khoury G. Long term follow up of lower lumbar fusion patient. Spine 1987; 12: 97-103.
5. Bowers C, Amini A, Dailey AT, Schmidt MH. Dynamic interspinous process stabilization: Review of complications associated with the X-STOP device. Neurosurg Focus 2010; 28: E8.
6. Tsai KJ, Murakami H, Lowery GL, Hutton WC. A biomechanical evaluation of an interspinous device (Coflex F) used to stabilize the lumbar spine. J Surg Orthop Adv 2006; 15(3): 167-72.
7. Sobottke R, Schlüter-Brust K, Kaulhausen T, Röllinghoff M, Joswig B, Stützer H, Eysel P, Simons P, Kuchta J. Interspinous implants (X Stop, Wallis, DIAM) for the treatment of LSS: is there a correlation between radiological parameters and clinical outcome? Eur Spine J 2009; 18(10): 1494-503.
8. Shim CS, Park SW, Lee SH, Lim TJ, Chun K, Kim DH. Biomechanical evaluation of an interspinous stabilizing device, Locker. Spine (Phila Pa 1976) 2008; 33(22): E820-7.
9. Moojen WA, Arts MP, Bartels RH, Jacobs WC, Peul WC. Effectiveness of interspinous implant surgery in patients with intermittent neurogenic claudication: a systematic review and meta-analysis. Eur Spine J 2011; 20(10): 1596-606.
10. Josip Buric and Massimiliano Pulidori. Long-term reduction in pain and disability after surgery with the interspinous device for intervertebral assisted motion (DIAM) spinal stabilization system in patients with low back pain: 4-year follow-up from a longitudinal prospective case series. Eur Spine J. 2011; 20(8): 1304-1311.
11. Adv Orthop. 2013; 2013: 451956. doi: 10.1155/2013/451956.
12. Verhoof OJ, Bron JL, Wapstra FH, van Royen BJ. High failure rate of the interspinous distraction device (X-Stop) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis. Eur Spine J. 2008; 17(2): 188-92.
13. Tamburrelli FC, Proietti L, Logroscino CA. Critical analysis of lumbar interspinous devices failures: a retrospective study. Eur Spine J. 2011; 20 Suppl 1: S27-35.
14. Barbagallo GM, Olindo G, Corbino L, Albanese V. Analysis of complications in patients treated with the x‐stop interspinous process decompression system: proposal for a novel anatomic scoring system for patient selection and review of the literature. Neurosurgery. 2009; 65(1): 111-19.
15. Kim DH, Tantorski M, Shaw J, Martha J, Li L, Shanti N, Rencu T, Parazin S, Kwon B. Occult spinous process fractures associated with interspinous process spacers. Spine (Phila Pa 1976). 2011; 36(16): E1080-5.
16. Albietz JS, Rosasarellano P, Fleming JC, Gurr KR, Bailey SI, Bailey CS. An anatomic study of the interspinous space of the lumbosacral spine. Eur Spine J. 2012; 21(1): 145-8.
17. Fuchs PD, Lindsey DP, Hsu KY, Zucherman JF, Yerby SA. The use of an interspinous implant in conjunction with a graded facetectomy procedure. Spine 2005; 30(11): 1266-1272.
18. Chen CS, Cheng CK, Liu CL, Lo WH. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys 2001; 23: 485-93.
19. Chen CS, Cheng CK, Liu CL. Biomechanical comparison between posterolateral fusion and posterior fusion in lumbar spine. J Spinal Disord Tech 2002; 15(1): 53–63.
20. Liu CL, Zhong ZC, Hsu HW, Shih SL, Wang ST, Hung C, Chen CS. Effect of the cord pretension of the Dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: a finite element analysis. Eur Spine J. 2011; 20(11): 1850-1858.
21. Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine (Phila Pa 1976). 2001; 26(24): E557-61.
22. Chen SH, Zhong ZC, Chen CS, Chen WJ, Hung C. 2009. Biomechanical comparison between lumbar disc arthroplasty and fusion. Med Eng Phys. 2009; 31(2): 244-253.
23. Zhong ZC, Chen SH, Hung CH. Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proc Inst Mech Eng H. 2009; 223(2): 143-157.
24. Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ, Meade KP, Gavin TM, Paxinos O. Effect of compressive follower preload on the flexion extension response of the human lumbar spine. J Orthop Res. 2003; 21(3): 540 -546.
25. Panjabi MM, Henderson G, James Y, Timm JP. StabilimaxNZ vs. simulated fusion: evaluation of adjacent level effects. Eur Spine J. 2007, 16(12): 2159- 2165.
26. Kettler A, Drumm J, Heuer F, Haeussler K, Mack C, Claes L, Wilke HJ. Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech (Bristol, Avon). 2008, 23(2): 242-247.
27. Richter M, Wippermann B, Thermann H, Schroeder G, Otte D, Troeger HD, Krettek C. Plantar impact causing midfoot fractures result in higher forces in Chopart's joint than in the ankle joint. J Orthop Res. 2002; 20(2): 222-32.
28. Lo CC, Tsai KJ, Chen SH, Zhong ZC, Hung C. Biomechanical effect after Coflex F and Coflex F rivet implantation for segmental instability at surgical and adjacent segments: a finite element analysis. Comput Methods Biomech Biomed Engin. 2011; 14(11): 969-78.
29. Depalma MJ. Ispine: Evidence based interventional spine care. 2011, Demos Medical Publishing. (Level of Evidence 2)
30. Kong DS, Kim ES, Eoh W: One-year outcome evaluation after interspinous implantation for degenerative spinal stenosis with segmental instability. J Korean Med Sci 2007, 22: 330-335.
31. Nockels RP: Dynamic stabilization in the surgical management of painful lumbar spinal disorders. Spine 2005, 30: S68-72.
32. Lo CC, Tsai KJ, Chen SH, Zhong ZC, Hung C. Biomechanical effect after Coflex and Coflex rivet implantation for segmental instability at surgical and adjacent segments: a finite element analysis. Comput Methods Biomech Biomed Engin. 2011, 14(11): 969-78.
33. Kim DH, Tantorski M, Shaw J, Martha J, Li L, Shanti N, Rencu T, Parazin S, Kwon B. Occult spinous process fractures associated with interspinous process spacers. Spine (Phila Pa 1976), 2011, 36(16): E1080-5.
34. Xu C, Ni WF, Tian NF, Hu XQ, Li F, Xu HZ Complications in degenerative lumbar disease treated with a dynamic interspinous spacer (Coflex). Int Orthop. 2013; 37(11): 2199-204.
35. Shepherd DE, Leahy JC, Mathias KJ, Wilkinson SJ, Hukins DW. Spinous process strength. Spine 2000; 25: 319-23.
36. Talwar V, Lindsey DP, Fredrick A, Hsu KY, Zucherman JF, Yerby SA. Insertion loads of the X-STOP interspinous process distraction system designed to treat neurogenic intermittent claudication. Eur Spine J 2005; 15: 908-12.
37. Wilke HJ, Drumm J, Häussler K, Mack C, Steudel WI, Kettler A. Biomechanical Effect of different Lumbar Interspinous Implants on Flexibility and Intradiscal Pressure. European Spine Journal 2008; 17(8): 1049-1056.
38. Davis RJ, Errico TJ, Bae H, Auerbach JD. Decompression and Coflex interlaminar stabilization compared with decompression and instrumented spinal fusion for spinal stenosis and low-grade degenerative spondylolisthesis: two-year results from the prospective, randomized, multicenter, Food and Drug Administration Investigational Device Exemption trial. Spine (Phila Pa 1976). 2013; 38(18): 1529-39.
39. Gillespie KA, Dickey JP. Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model. Spine. 2004; 29: 1208-1216.

40. Asazuma T, Stokes IAF, Moreland MS, Suzuki N. Intersegmental spinal flexibility with lumbosacral instrumentation-an in vitro biomechanical investigation. Spine. 1990; 15: 1153-1158.
41. D'Anastasi M, Birkenmaier C, Schmidt GP, Wegener B, Reiser MF, Baur-Melnyk A. Correlation between vacuum phenomenon on CT and fluid on MRI in degenerative disks. Am J Roentgenol 2011; 197(5): 1182-9.
42. Lin J, Moon MS. Lumbar disc vacuum phenomenon: Its clinical implications and surgical treatment. Journal of Musculoskeletal Research 2006; 10(4): 187-196.
43. Y. J. Jhu and M. S. Hua. Chinese Version of the Oswestry Disability Index Version 2.1, Appendix of SPINE 2008, Volume 33, Number 21, pp 2354–2360
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top