跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 22:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張昱德
研究生(外文):Yu-De Chang
論文名稱:DOPA於常見生醫用疏水性基材之修飾效應研究
論文名稱(外文):A study on the effectiveness of DOPA as a linker for the modification of various hydrophobic biomaterials
指導教授:蔡瑞瑩
指導教授(外文):Ruey-Yug Tsay
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學工程學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:66
中文關鍵詞:DOPASBMA
外文關鍵詞:DOPASBMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
PE、PDMS、PTFE、PET由於其良好的生物惰性而被廣泛的運用於各式醫療器材,唯疏水性材料長時間與人體的組織、體液和血液接觸,往往將導致蛋白質的吸附或血小板的貼附,甚至啟動凝血反應造成補體活化,致使器材失效,因此對不同生醫基材進行表面親水化修飾為生醫應用之重要課題。DOPA為具有良好生物相容性,且可經由簡單程序吸附在許多不同的材料表面之分子,因此俱有作為嫁接物質,再藉由末端之官能基修飾,以獲得不同的表面性質之應用潛力。
  本研究首先利用DOPA針對金表面改質以便找尋DOPA改質之適當條件,再分別針對不同之疏水性基材探討經DOPA改質,並進一步接枝上親水的雙離子型高分子p-SBMA,對於材料表面親疏水性的變化以及其抗蛋白質吸附和血小板貼附的影響。
  金表面經過DOPA處理,雖然提高了表面的親水性,唯對於抗非特異性的蛋白質吸附則無顯著效果。藉由SI-ATPR將SBMA的修飾上表面後,抗非特異性吸附的效果隨著高分子膜越高效果越好,而接觸角的實驗也顯示在高分子膜越高的情況下表面的親水性越好,由此可推斷表面的抗吸附能力是由親水性之pSBMA所貢獻。針對上述疏水性材料,接觸角實驗顯是DOPA可成功吸附在PE與PET表面上;同樣條件下DOPA吸附於PTFE和PDMS的能力則較差。各基材經由DOPA吸附後確實能藉由SI-ATPR將pSBMA修飾於表面上,並且由螢光強度實驗得到僅DOPA吸附後就有一定的抗吸附效果,後續pSBMA之修飾後抗吸附能力更佳。
PE(polyethylene) PDMS(polydimethylsiloxane) , PTFE (polytetrafluoroethene) and PET(polyethylene terephthalate) are commonly used biomaterials because of their superior biocompatibility property . Nevertheless , these hydrophobic materials may failure because prolonged exposure of these materials with tissue or blood can increase the possibility of proteins adsorption , platelet adhesion , and thrombus formation . DOPA (3,4-Dihydroxyphenyl-L-alanine) is a natural substance which can easily adhere to many substrates . It therefore can be used as a linker to introduce various functional groups for different substrates .
This research study the adsorption behavior of DOPA on gold surface to find the optimal sufcace modification conditions . The result were further implemented to various hydrophobic substrates for the surface modification with a DOPA layer , the adsorbed DOPA layer were further grafted by p-SBMA via ATRP method and tested for its protein adsorption and platelet adhesion resistance abilities .
Although the adsorption of DOPA on gold surface reduced its surface contact angle , it is not effective on receding resistance non-specific protein adsorption . Further grafting pSMBA on a DOPA coated surface via SI-ATRP method can effectively reduce non-specific protein adsorption and the effectiveness increases with polymer membrane thickness . Contact angle data also showed that the thicker the polymer membrane , the more hydrophilic the surface is . It can be concluded that ability of anti-fouling property of a modified on the surfaces are contributed by the integrity of the grafted p-SBMA layer . For the above-mentioned hydrophobic materials , PE and PET can be modified by using DOPA as a linker . While the adsorption of DOPA on PTFE and PDMS substrates are not as good as that of PE and PET using the same conditions . Surface grafted by p-SBMA using DOPA as a linker can further improve its anti-fouling property .
目錄
致謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VII
第一章 簡介 1
1.1 研究背景 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1 血液相容性 3
2.1.1 血液之組成 3
2.1.2 血液與表面之交互作用 4
2.1.3 蛋白質與表面之交互作用 6
2.1.4 水與表面之交互作用 8
2.2 材料表面抗蛋白質吸附之機制 8
2.3 抗生物分子吸附之材料 12
2.3.1 聚乙烯乙二醇(Poly(ethylene glycol), PEG)之簡介 12
2.3.2 仿生雙性離子型高分子之簡介 12
2.4 表面固定化 15
2.4.1 自組性單層膜(Self assemble membrane) 15
2.4.2 DOPA修飾 15
第三章 實驗藥品、儀器及方法 18
3.1 實驗藥品 18
3.2 實驗設備 19
3.3 實驗儀器原理 19
3.3.1 傅立葉紅外線光譜儀(FTIR) 19
3.3.2 橢圓儀(Ellipsometer) 19
3.3.3 表面電漿共振儀(SPR) 20
3.3.4 化學分析電子能譜儀(ESCA) 21
3.3.5 螢光顯微鏡(Fluorensce) 21
3.4 藥品合成 21
合成ω-mercaptoundecylbromoisobutyrate 21
3.5 溶液配製 22
3.5.1 緩衝溶液 22
3.5.2 蛋白質溶液 22
3.5.3 Hepes-Tyrodes溶液 22
3.5.4 富含血小板溶液 23
3.6 表面修飾方法 23
3.6.1 金表面清潔 23
3.6.2 PE、PET、PDMS、PTFE表面清潔 23
3.6.3 DOPA吸附 23
3.6.4 BIBB修飾 23
3.6.5 表面高分子聚合反應 23
3.7 表面分析 24
3.7.1 表面定性分析 24
3.7.2 表面定量分析 25
3.8 表面測試 25
3.8.1 表面真空乾燥測試 25
3.8.2 表面抗吸附測試 25
3.8.3 血小板貼附 26
第四章 結果與討論 27
4.1 DOPA在金表面之吸附性質探討 27
4.1.1 環境參數對Au-DOPA吸附之影響 30
4.2 金表面之SI-ATRP-pSBMA修飾 33
4.2.1 Au-pSBMA修飾表面定性分析 33
4.2.2 Au-DOPA-pSBMA 之表面脫附測試和真空乾燥測試 33
4.2.3 Au-pSBMA表面聚合條件探討 36
4.3 蛋白質非特異性吸附測試 41
4.3.1 pSBMA 表面靜態之非特異性吸附 41
4.3.2 pSBMA表面動態之非特異性吸附 43
4.4 非金表面修飾 44
4.4.1 非金表面DOPA及pSBMA修飾之定性分析 44
4.4.2 金與非金表面DOPA及pSBMA修飾之定量分析 52
4.4.3 PET修飾DOPA之定性分析 54
4.5 修飾表面之螢光蛋白吸附探討 56
4.6 血液相容性 59
第五章 結論與未來展望 62
第六章 文獻引用 63


圖目錄
圖2-1 血液與材料間引起產生免疫與凝血作用示意圖1 3
圖2-2 血液中各成分示意圖2 3
圖2-3 植入材料引發的宿主反應之階段示意圖12 5
圖2-4 材料與組織間傷口修復與發炎之一系列反應機制13 6
圖2-5 蛋白質單層吸附模型圖18 7
圖2-6 水與材料之間作用與影響示意圖19 8
圖2-7 表面修飾PEO之抗蛋白質吸附示意圖22 9
圖2-8 不同尺寸之蛋白質在高分子表面的吸附模式23 9
圖2-9 高分子鏈段型態之示意圖24 9
圖2-10 不同表面密度之EG4OH-SAM的吸附量25 10
圖2-11 高分子SBMA鏈段不同型態之示意圖26 10
圖2-12 SBMA不同接枝密度之膜厚及接觸角26 10
圖2-13 SBMA不同膜厚之非特異性蛋白質吸附量27 11
圖2-14 抗吸附系統三元素之示意圖29 11
圖2-15 不同排列之帶電荷自組裝單層膜示意圖及蛋白質吸附結果 13
圖2-16 常見雙性離子之結構 13
圖2-17 高分子表面接枝法 (A) GRAFT FROM (B) GRAFT TO示意圖 14
圖2-18 ATRP之反應機制38 14
圖2-19 DOPAMINE對25種基材貼附前後的XPS訊號變化40 15
圖2-20 DOPA吸附於不同基材之鍵結能42 16
圖2-21 DOPA氧化聚合示意圖43 16
圖2-22 DOPA與各表面解離常數實驗結果44 17
圖2-23 DOPA與表面鍵結型態之SERS光譜圖分析45 17
圖3- 1橢圓儀裝置圖 20
圖3- 2 SPR共振訊號與感應圖 21
圖4-1不同PH質金表面貼附DOPA之光譜圖 28
圖4-2 DOPA膜厚與接觸角之變化圖 (A) 前進角 (B) 後退角 (C) 遲滯角 29
圖4-3 DOPA隨著環境及時間之膜厚和接觸角變化 (A) 膜厚 (B) 前進角 (C) 後退角 (D) 遲滯角。實心為大氣環境;斜線為氮氣環境 31
圖4-4 DOPA在不同PH水溶液中吸附之膜厚和接觸角變化(24小時氮氣環境) (A) 膜厚 (B) 前進角 (C) 後退角 (D) 遲滯角。 32
圖4-5 DOPA與PSBMA表面之FT-IR光譜圖 34
圖4-6 PSBMA膜厚隨真空乾燥時間之變化 35
圖4-7 PSBMA膜厚之脫附測試 35
圖4-8 不同聚合條件之PSBMA接觸角與膜厚變化圖 (A) 前進角 (B) 後退角 (C) 遲滯角 38
圖4-9 Ω-INITIATOR為LINKER之PSBMA表面聚合時間之效應 (A) PSBMA膜厚 (B)前進角 (C) 後進角 (D) 遲滯角 39
圖4-10 DOPA為LINKER之PSBMA表面聚合時間之效應 (A) PSBMA膜厚 (B)前進角 (C) 後進角 (D) 遲滯角 40
圖4-11 DOPA表面之蛋白質吸附實驗 41
圖4-12 Ω-INITIATOR為LINKER之PSBMA表面抗吸附實驗 42
(A) 白蛋白 (B) 纖維蛋白 (C) 血清 42
圖4-13 DOPA為LINKER之PSBMA表面抗吸附實驗 42
(A) 白蛋白 (B) 纖維蛋白 (C) 血清 42
圖4-14 PSBMA膜厚動態蛋白質吸附之變化量 (A) 白蛋白 (B) 纖維蛋白 (C) 血清 44
圖4-15 非金表面與DOPA和P-SBMA之FT-IR光譜圖 (A) PE表面 (B) PTFE表面 (C) PET表面 (D) PDMS表面 46
圖4-15 非金表面與DOPA和P-SBMA之FT-IR光譜圖 (A) PE表面 (B) PTFE表面 (C) PET表面 (D) PDMS表面 47
圖4-15 非金表面與DOPA和P-SBMA之FT-IR光譜圖 (A) PE表面 (B) PTFE表面 (C) PET表面 (D) PDMS表面 48
圖4-15 非金表面與DOPA和P-SBMA之FT-IR光譜圖 (A) PE表面 (B) PTFE表面 (C) PET表面 (D) PDMS表面 49
圖4-16各表面與DOPA和PSBMA修飾之接觸角作圖 50
圖4-17各表面前後兩個月之表面接觸角測試 51
圖4-18 不同修飾表面接觸角與ESCA表面元素測定關係圖 (A) 氧碳比 (B) 氮碳比 53
圖4-19不同階段PET表面之ESCA表面元素測定 (A) 氧碳比值 (B) 氮碳比值 55
圖4-20 不同階段之PET表面之接觸角變化 55
圖4-23各修飾表面螢光蛋白吸附前後之螢光影像圖 57
圖4-24各修飾表面之螢光強度比較圖 (A) AU表面之螢光強度與表面濃度關係圖 (B) 表面吸附螢光蛋白前後之螢光強度 (C) 表面吸附螢光蛋白前後之量化圖 (D) 表面吸附螢光蛋白之相對圖 58
圖4-25各修飾表面之血小板貼附比較圖 (A) LDH細胞定量檢量線 (B) 血小板貼附量 (C) 血小板之相對貼附量 60
圖4-26不同表面的之血小板貼附情形 61
1. Gorbet M.B., Sefton M.V. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25:5681-5703
2. Manzone T.A., Dam H.Q., Soltis D., Sagar V.V. Blood volume analysis: A new technique and new clinical interest reinvigorate a classic study. Journal of nuclear medicine technology. 2007;35:55-63; quiz 77, 79
3. He X.M., Carter D.C. Atomic structure and chemistry of human serum albumin. Nature. 1992;358:209-215
4. Lassen B., Malmsten M. Structure of protein layers during competitive adsorption. Journal of Colloid and Interface Science. 1996;180:339-349
5. Sugio S., Kashima A, Mochizuki S., Noda M., Kobayashi K. Crystal structure of human serum albumin at 2.5 resolution. Protein Engineering. 1999;12:439-446
6. Mosesson M.W. Fibrinogen and fibrin structure and functions. Journal of Thrombosis and Haemostasis. 2005;3:1894-1904
7. Fuss C., Palmaz J.C., Sprague E.A. Fibrinogen: Structure, function, and surface interactions. Journal of Vascular and Interventional Radiology. 2001;12:677-682
8. Ortega-Vinuesa J.L., Tengvall P., Lundstrom I. Molecular packing of hsa, igg, and fibrinogen adsorbed on silicon by afm imaging. Thin Solid Films. 1998;324:257-273
9. Rodrigues S.N., Goncalves I.C., Martins M.C., Barbosa M.A., Ratner B.D. Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials. 2006;27:5357-5367
10. Park K., Mao E.W., Park H. The minimum surface fibrinogen concentration necessary for platelet activation on dimethyldichlorosilane-coated glass. Journal of Biomaterials Materials Research. 1991;25:407-420
11. Horbett T.A. Protein adsorption on biomaterials. American Chemical Society. 1982;199:233-244
12. Grainger, D. W., All charged up about implanted biomaterials. Nature
biotechnology 2013, 31 (6), 507-509.
13. Anderson, J. M.; Rodriguez, A.; Chang, D. T. In Foreign body reaction to
biomaterials, Seminars in immunology, Elsevier: 2008; pp 86-100.
14. Johnson C.A., Wu P., Lenhof A.M. Electrostatic and van der waals contributions to protein adsorption: Comparison of theory and experiment. Langmuir. 1995;11:3500-3509
15. Johnson C.A., Wu P., Lenhof A.M. Electrostatic and van der waals contributions to protein adsorption: 2. Modeling of ordered arrays. Langmuir. 1994;10:3705-3713
16. Claesson P.M., Blomberg E., Froberg J.C., Nylander T., Arnebrant T. Protein interactions at solid surfaces. Advances in Colloid and Interface Science. 1995;57:161-227
17. Latour R.A. Biomaterials: Protein-surface interactions. Encyclopedia of Biomaterials and Biomedical Engineering. 2005;28:1-15
18. Horbett, T. A., Principles underlying the role of adsorbed plasma proteins in
blood interactions with foreign materials. Cardiovascular Pathology 1993, 2
(3), 137-148.
19. Vogler E.A. Water and the acute biological response to surfaces. Journal of Biomaterials Science, Polymer Edition. 1999;10:1015-1045
20. Vogler E.A. Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science. 1998;74:69-117
21. Goertz M.P., Houston J.E., Zhu X.Y. Hydrophilicity and the viscosity of interfacial water. Langmuir. 2007;23:5491-5497
22. Jeon S.I., Lee J.H., Andrade J.D., Gennes P.G.D. Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory. Journal of Colloid and Interface Science. 1991;142:149-158
23. Halperin A. Polymer brushes that resist adsorption of model proteins: Design parameters. Langmuir. 1999;15:2525-2533
24. Norde W., Gage D. Interaction of bovine serum albumin and human blood plasma with peo-tethered surfaces: Influence of peo chain length, grafting density, and temperature. Langmuir. 2004;20:4162-4167
25. Li L., Chen S., Zheng J., Ratner B.D., Jiang S. Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior. Journal of Physical Chemistry. 2005;109:2934-2941
26. Cheng N., A A., Brown O.A., Huck W.T.S. Thickness-dependent properties of polyzwitterionic brushes. Macromolecules. 2008;41:6317-6321
27. Yang W., Chen S., Cheng G., Vaisocherova H., Zhang J., Jiang S. Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir. 2008;24:9211-9214
28. Ostuni E., Chapman R.G., Holmlin R.E., Takayama S., Whitesides G.M. A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir. 2001;17:5605-5620
29. Kane R.S., Deschatelets P., Whitesides G.M. Kosmotropes form the basis of protein-resistant surfaces. Langmuir. 2003;19:2388-2391
30. Prime K.L., Whitesides G.M. Adsorption of proteins onto surfaces containing end-attached oligo( ethylene oxide): A model system using self-assembled monolayers. Journal of American Chemical Society. 1993;115:10714-10721
31. Luk Y.Y., Kato M., Mrksich M. Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir. 2000;16:9604-9608
32. Efremova N.V., Sheth S.R., Leckband D.E. Protein-induced changes in poly(ethylene glycol) brushes: Molecular weight and temperature dependence. Langmuir. 2001;17:7628-7636
33. Zwaal R., Comfurius P., Van Deenen L. Membrane asymmetry and blood coagulation. Nature. 1977;268:358-360
34. Holmlin R.E., Chen X., Chapman R.G., Takayama S., Whitesides G.M. Zwitterionic sams that resist nonspecific adsorption of protein from aqueous buffer. Langmuir. 2001;17:2841-2850
35. Chen S., Li L., Zhao C., Zheng J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer. 2010;51:5283-5293
36. Jiang S., Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced materials. 2010;22:920-932
37. Wang J.S., Matyjaszewski K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society. 1995;117:5614-5615
38. Gromada J., Matyjaszewski K. Simultaneous reverse and normal initiation in atom transfer radical polymerization. Macromolecules. 2001;34:7664-7671
39. Chapman, R. G.; Ostuni, E.; Yan, L.; Whitesides, G. M., Preparation of mixed self-assembled monolayers (SAMs) that resist adsorption of proteins using the reaction of amines with a SAM that presents interchain carboxylic anhydride groups. Langmuir. 2000;6927-6936.
40.  Haeshin L, Shara M Dellatore,William M Miller, Phillip B Messersmith.   
 Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science.   
 2007; 318(5849): 426–430
41. Wang L, Yang Z, Gao J, Xu K, Gu H. A biocompatible method of
Decorporation : bisphosphonate-modified magnetite nanoparticles to remove
uranyl ions from blood. J Am Chem Soc 2006;128:13358-9.
42. Yiran Li, Meng Qin, Ying Li, Yi Cao,Wei Wang. Single Molecule Evidence
for the Adaptive Binding of DOPA to Different Wet Surfaces. Langmuir.
2014;30: 4358−4366
43. Yan Sui, Xueli Gao, Zhining Wang, Congjie Gao. Antifouling and    
Antibacterial improvement of surface-functionalized poly(vinylidene
fluoride) membrane prepared via dihydroxyphenylalanine-initiated atom
transfer radical graft polymerizations. Journal of Membrane Science
2012,394:107-119
44. Salima Bahri, Caroline M. Jonsson, Christopher L. Adsorption and Surface
Complexation Study of L-DOPA on Rutile (r-TiO2) in NaCl Solutions
Jonsson, David Azzolini, Dimitri A. Sverjensky, Robert M. Hazen .Environ.
Sci. Technol. 2011,45:3959-3966
45. Namhey Lee, Daniel R. Hummer, Dimitri A. Sverjensky, Tijana Rajh, Robert
M. Hazen,Andrew Steele, George D. Cody. Speciation of L‑DOPA on
Nanorutile as a Function of pH and Surface Coverage Using Surface-
Enhanced Raman Spectroscopy (SERS) Langmuir, 2012,28:17322-17330
46. Nice E.C., Catimel B. Instrumental biosensors: New perspectives for the analysis of biomolecular interactions. Bioessays. 1999;21:339-352
47. Stenberg E., Persson B., Roos H., Urbaniczky C. Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. Journal of colloid and interface science. 1991;143:513-526

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top