|
1. A. Formhals, “Process and apparatus for preparing artificial threads,” U.S., Patent 1975504, 1934. 2. J. Doshi, D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” J Electrostat. 35:151–160, 1995. 3. A. L. Yarin, “Taylor cone and jetting from liquid droplets in electrospinning of nanofibers,” J. Appl. Phys. 90: 4836–4846, 2001. 4. A. Greiner, J. H. Wendorff, “Electrospinning: a fascinating method for the preparation of ultrathin fibers,” Angew. Chem. Int. Ed. 46:5670–5703, 2007. 5. C. J. Koh, A. Atala, “Tissue engineering, stem cells, and cloning: opportunities for redenerative medicine,” J. Am. Soc. Nephrol. 15:1113–1125, 2004. 6. E. -R. Kenawy, F. I. Abdel-Hay, M. H. El-Newehy, G. E. Wnek, “Processing of polymer nanofibers through electrospinning as drug delivery systems,” Mater Chem Phys. 113:296–302, 2009. 7. E. J. Chong, T. T. Phan, I. J. Lim, Y. Z. Zhang, B. H. Bay, S. Ramakrishna, C. T. Lim, “Evaluation of electrospun PCL-gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution,” Acta Biomater. 3(3):321–330, 2007. 8. S. Y. Lee, P. Valtchev, F. Dehghani, “Synthesis and purification of poly(L-lactic acid) using a one step benign process,” Green Chem. 14:1357–1366, 2012. 9. J. M. Kanczler, P. J. Ginty, J. J. A. Barry, N. M. P. Clarke, S. M. Howdle, K. M. Shakesheff, R. O. C. Oreffo, “The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation,” Biomaterials 29:1892–1900, 2008. 10. K. Fukushima, Y. Kimura, “An efficient solid-state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight,” Polym. Chem. 46:3714–3722, 2008. 11. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, F. K. Ko, “Electrospun nanofibrous structure a novel scaffold for tissue engineering,” Biomed. Mater. 60:613–621, 2002. 12. C. Mauli-Agrawal, R. B. Ray, “Biodegradable polymeric scaffolds for musculoskeletal tissue engineering,” Biomed. Mater. 55:141–150, 2001. 13. M. L. Hans, A. M. Lowman, “Biodegradable nanoparticles for drug delivery and targeting,” Curr. Opin. Solid State Mater. Sci. 6:319–327, 2002. 14. Y. Cheng, S. Deng, P. Chen, R. Ruan, “Polylactic acid (PLA) synthesis and modifications,” Front. Chem. Chin. 4:259–264, 2009. 15. M. S. Lopes, A. L. Jardini, R. M. Filho, “Poly (lactic acid) production for tissue engineering applications,” Procedia Eng. 42:1402–1413, 2012. 16. S. Jacobsen, PH. Degee, H. G. Fritz, PH. Dubois, R. Jerome, “Polylactide (PLA)-A new way of production,” Polym. Eng. Sci. 39:1311–1319, 1999. 17. S. –I. Moon, C. –W. Lee, I. Taniguchi, M. Miyamoto, Y. Kimura, “Melt/solid polycondensation of L-lactic acid: an alternative route to poly(L-lactic acid) with high molecular weight,” Polymer 42:5059–5062, 2001. 18. P. K. Baumgarten, “Electrostatic spinning of acrylic microfibers,” J. Colloid. Interface. Sci. 36:71–79, 1971. 19. T. T. T. Nguyen, C. Ghosh, S. -G. Hwang, N. Chanunpanich, J. S. Park, “Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system,” Int. J. Pharm. 439:296–306, 2012. 20. A. S. Badami, M. R. Kreke, M. S. Thompson, J. S. Riffle, A. S. Goldstein, “Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates,” Biomaterials 27:596–606, 2006. 21. F. Yang, R. Murugan, S. Wang, S. Ramakrishna, “Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering,” Biomaterials 26:2603–2610, 2005. 22. M. J. Jenkins, K. L. Harrison, M. M. C. G. Silva, M. J. Whitaker, K. M. Shakesheff, S. M. Howdle, “Characterisation of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide,” Eur Polym J. 42:3145–3151, 2006. 23. L. S. Nair, C. T. Laurencin, “Biodegradable polymers as biomaterials,” Prog. Polym. Sci. 32:762–798, 2007. 24. H. Y. Kweon, M. K. Yoo, I. K. Park, T. H. Kim, H. C. Lee, H. –S. Lee, J. –S. Oh, T. Akaike, C. –S. Cho, “A novel degradable polycaprolactone networks for tissue engineering,” Biomaterials 24:801–808, 2003. 25. C. S. Wu, “Physical properties and biodegradability of maleated-polycaprolactone/starch composite,” Bioorg. Med. Chem. Lett. 80:127–134, 2003. 26. M.. P. Prabhakaran, J. Venugopal, C. K. Chan, S. Ramakrishna, “Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering,” Nanotechnology 19:455102, 2008. 27. G. Shi, D. G. Cooper, M. Maric, “Poly(ɛ-caprolactone)-based ‘green’ plasticizers for poly(vinyl choride),” Polym. Degrad. Stab. 96(9):1639–1647, 2011. 28. B. F. Goodrich Company, “Synthetic rubber-like composition and method of making same,” U.S. Patent 1929453, 1932. 29. Y. Habibi, A. –L. Goffin, N. Schiltz, E. Duquesne, P. Dubois, A. Dufresne, “Bionanocomposites based on poly(3-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization,” J. Mater. Chem. 18:5002–5010, 2008. 30. J. Gunn, M. Zhang, “Polyblend nanofibers for biomedical applications: perspectives and challenges,” Trends Biotechnol. 28(4):189–197, 2010. 31. K. G. Marra, J. W. Szem, P. N. Kumta, P. A. DiMilla, L. E. Weiss, “In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering,” J. Bio. Mat. Res. 324–335, 1999. 32. D. J. Heath, P. Christian, M. Griffin, “Involvement of tissue transglutaminase in the stabilisation of biomaterial/tissue interfaces important in medical devices,” Biomaterials 23:1519–1526, 2002. 33. C. M. Agrawal, R. B. Ray, “Biodegradable polymeric scaffolds for musculoskeletal tissue engineering,” Biomed. Mater. 55(2):141–150, 2001. 34. A. G. A. Coombes, S. C. Rizzi, M. Williamson, J. E. Barralet, S. Downes, W. A. Wallace, “Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery,” Biomaterials 25:315–325, 2004. 35. K. J. Lowry, K. R. Hamson, L. Bear, Y. B. Peng, R. Calaluce, M. L. Evans, J. O. Anglen, W. C. Allen, “Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model,” J. Bio. Mat. Res. 36(4):536–541, 1996. 36. S. B. Gadkari, “Scaling analysis for electrospinning,” Springerplus 3:705–711, 2014. 37. M. M. Hohman, M. Shin, G. Rutledge, M. P. Brenner, “Electrospinning and electrically forced jets. I. Stability theory,” Phys. Fluids 13:2201–2220, 2001. 38. M. M. Hohman, M. Shin, G. Rutledge, M. P. Brenner, “Electrospinning and electrically forced jets. II. Applications,” Phys. Fluids 13:2221–2236, 2001., 39. H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer 40:4585–4592, 1999. 40. G. C. Rutledge, S. V. Fridrikh, “Formation of fibers by electrospinning,” Adv Drug Deliv Rev 59:1384–1391, 2007. 41. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer 43:4403–4412, 2002. 42. S. Yang, K. F. Leong, M. S. E., M. S. M. E., Z. Du, C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. traditional factors,” Tissue Eng. 7(6):679–689, 2001. 43. G. F. Muschler, C. Nakamoto, L. G. Griffith, “Engineering principles of clinical cell-based tissue engineering,” J. Bone. Joint. Surg. Am. 86(7):1541–1558, 2004. 44. B. K. Mann, A. S. Gobin, A. T. Tsai, R. H. Schmedlen, J. L. West, “Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering,” Biomaterials 22:3045–3051, 2001. 45. R. L. Carrier, M. Papadaki, M. Rupnick, F. J. Schoen, N. Bursac, R. Langer, L. E. Freed, G. Vunjak-Novakovic, “Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization,” Biotechnol. Bioeng. 64:580–589, 1999. 46. C. M. Vaz, S. V. Tuijl, C. V. C. Bouten, F. P. T. Baaijens, “Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique,” Acta Biomater 1:575–582, 2005. 47. H. J. Haroosh, Y. Dong, G. D. Ingram, “Synthesis, morphological structures, and material characterization of electrospun PLA: PCL/magnetic nanoparticle composites for drug delivery,” J Polym Sci B Polym Phys 51:1607–1617, 2013. 48. B. W. Chieng, N. A. Ibrahim, Y. Y. Then, Y. Y. Loo, “Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: mechanical, thermal and morphology properties,” Molecules 19:16024–16038, 2014. 49. K. Boua-In, N. Chaiyut, B. Ksapabutr, “Preparation of polylactide by ring-opening polymerisation of lactide,” Optoelectron. Adv. Mat. 4(9):1404–1407, 2010. 50. W. H. Hoidy, M. B. Ahmad, E. A. J. Al-Mulla, N. A. B. Ibrahim, “Preparation and Characterization of Polylactic Acid/Polycaprolactone Clay Nanocomposites,” J. Appl. Sci. 10(20):97–106, 2010. 51. M. Cui, L. Liu, N. Guo, R. Su, F. Ma, “Preparation, cell compatibility and degradability of collagen-modified poly(lactic acid),” Molecules 20:595–607, 2015. 52. D. K. Wang, S. Varanasi, P. M. Fredericks, D. J. T. Hill, A. L. Symons, A. K. Whittaker, F. Rasoul, “FT-IR characterization and hydrolysis of PLA-PEG-PLA based copolyester hydrogels with short PLA segments and a cytocompatibility study,” J Polym Sci A Polym Chem. 51:5163–5176, 2013. 53. Elzein, M. Nasser-Eddine, C. Delaite, S. Bistac, P. Dumas, “FTIR study of polycaprolactone chain organization at interfaces,” J Colloid Interf Sci. 273:381–387, 2004. 54. V. K. Khatiwala,N. Shekhar, S. Aggarwal, U. K. Mandal, “Biodegradation of Poly(ε-caprolactone) (PCL) Film by Alcaligenes faecalis,” J Polym Environ. 16(1):61–67, 2008. 55. T. Kemala, E. Budianto, B. Soegiyono, “Preparation and characterization of microspheres based on blend of poly(lactic acid) and poly(ε-caprolactone) with poly(vinyl alcohol) as emulsifier,” Arab J Chem. 5(1):103–108, 2012. 56. A. Benkaddour, K. Jradi, S. Robert, C. Daneault, “Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry,” Nanomaterials 3(1):141–157, 2013. 57. H. Yu, Y. Jia, C. Yao, Y. Lu, “PCL/PEG core/sheath fibers with controlled drug release rate fabricated on the basis of a novel combined technique,” Int. J. Pharm. 469(1):17–22, 2014. 58. A. E. Senador-Jr, M. T. Shaw, P. T. Mather, “Electrospinning of polymeric nanofibers: Analysis of jet formation,” Mat. Res. Soc. Symp. Proc. 661:KK5.9.1–KK5.9.6, 2001. 59. Y. C. Zeng, Z. G. Pei, X. H. Wang, “Numerical simulation of whipping process in electrospinning,” ISSN: 1790-5117 309–317, 2009. 60. C. J. Thompson, G. G. Chase, A. L. Yarin, D. H. Reneker, “Effects of parameters on nanofiber diameter determined from electrospinning model,” Polymer 48:6913–6922, 2007. 61. J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. Beck-Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer 42:261–272, 2001. 62. Z. Jun, H. Hou, A. Schaper, J. H. Wendorff, A. Greiner, “Poly-L-lactide nanofibers by electrospinning – Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology,” E Polymer 3(1):1–9, 2003. 63. P. Gupta, C. Elkins, T. E. Long, G. L. Wilkes, “Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent,” Polymer 46: 4799-4810, 2005. 64. C. Li, J. H. Hsieh, W. W. Hu, Y. H. Lin, “Fabrication and characterization of polymethylmethacrylate (PMMA) thin film by plasma polymerization used for cell culture,” Surface & Coatings Technology 259:20–26, 2014. 65. S. Wei, J. Sampathi, Z. Guo, N. Anumandla, D. Rutman, A. Kucknoor, L. James, A. Wang, “Nanoporous poly(methyl methacrylate)-quantum dots nanocomposite fibers toward biomedical applications,” Polymer 52:5817–5829, 2011. 66. H. S. Jeon, J. Wyatt, D. Harper-Nixon, D. H. Weinkauf, “Characterization of thin polymer-like films formed by plasma polymerization of methylmethacrylate: A Neutron Reflectivity Study,” J Polym Sci B Polym Phys 42:2522–2530, 2004., 67. D. Yan, J. Jones, X. Y. Yuan, X. H. Xu, J. Sheng, J. C. –M. Lee, G. Q. Ma, Q. S. Yu, “Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement,” J Biomed Mater Res A 101A(4):963–972, 2013. 68. A. Manakhov, D. Nečas, J. Čechal, D. Pavliňák, M. Eliáš, L. Zajíčková, “Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization,” Thin Solid Films 581:7–13, 2015. 69. J. Petersen, T. Fouquet, M. Michel, V. Toniazzo, A. Dinia, D. Ruch, J. A. S. Bomfim, “Enhanced adhesion over aluminum solid substrates by controlled atmospheric plasma deposition of amine-rich primers,” ACS Appl. Mater. Interfaces 4:1072−1079, 2012. 70. B. Finke, F. Hempel, H. Testrich, A. Artemenko, H. Rebl, O. Kylián, J. Meichsner, H. Biederman, B. Nebe, K. –D. Weltmann, K. Schröder, “Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings,” Surf. Coat. Tech. 205:S520– S524, 2011.
|