跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林之勛
研究生(外文):Chih-Hsun Lin
論文名稱:去細胞處理之異源性動脈血管支架性質及其作為小管徑血管替代物之可行性評估
論文名稱(外文):Evaluation on the properties of a decellularized xenogenic artery and its feasibility as a small-caliber vascular graft
指導教授:蔡瑞瑩
指導教授(外文):Ruey-Yug Tsay
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物醫學工程學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:201
中文關鍵詞:去細胞異源性血管替代物數學模式脂肪幹細胞動物模式
外文關鍵詞:decellularizationxenogenicvascular graftmathematic modeladipose stem cellanimal model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
去細胞支架屬於生物性支架的一種。理論上保留了細胞外基質及微血管網絡。它提供適合細胞移行、生長、分化等所需的微環境,能促進細胞的浸潤及召集其他前驅細胞來達成組織重組及再生。然而使用去細胞之異源性血管組織作為人體應用前需對去細胞流程對管壁組成,結構及力學性質的改變詳加了解。進一步要對去細胞血管移植物的生物相容性,如細胞毒性,及發炎反應等加以測試。
本研究擬結合力學拉伸測試、數學模擬分析、組織結構觀察及生化定量技術對不同的去細胞處理流程於豬冠狀動脈管壁的力學性質影響進行評估。並在體外針對內皮細胞、內皮前驅細胞、及脂肪幹細胞等於支架上的生長狀況進行相容性測試。最後並於動物模式上進行完整的發炎反應及血管內皮化評估。綜合以上血管組織組成、結構、力學性質及生物相容性的測試結果作為應用去細胞異源性血管組織於小管徑血管移植物的初步可行性評估及往後研究之基礎。
本研究首先提出一纖維漸進參與模式來描述動脈血管壁的擬彈性力學行為。模式中以一彈簧代表細胞外基質內的彈性纖維,以一組波浪狀分佈由小至大之彈簧來代表一膠原蛋白纖維。彈性蛋白和膠原蛋白彼此以並聯方式聯結。用此模式所轉譯出的數學方程式來描述彈性組織拉伸過程中的三階段變化。第一階段只有彈性蛋白參與。第二階段拉伸起始時,波浪程度較少之膠原蛋白開始參與拉伸。於第二階段持續拉伸過程中,其餘不同波浪程度之膠原蛋白纖維逐漸參與。到第三階段應變時則所有的膠原蛋白纖維已自波浪狀全部展開,協同彈性蛋白參與最後的拉伸。此模型中包含四個參數來代表單軸拉伸應變-應力關係。分別是m: 起始應變,N:轉折應變,E0:起始模數及E1:陡陗模數。並以此模式對新鮮及去細胞組織進行組成、結構及力學性質之比較。
此一模式與血管組織之單軸應變-應力關係高度擬合。依膠原蛋白及彈性蛋白平行排列所建立的纖維漸進參與模式可有效描述一維的血管壁力學行為。根據雙向單軸拉伸力學測試及模擬分析結果發現豬主動脈之軸向及環向力學性質差異較小,而冠狀動脈則差異較大。兩者的組成亦有所不同。主動脈含有較多的彈性蛋白而冠狀動脈含有較多的膠原蛋白。兩種血管的醣胺聚糖含量則相近。以胰蛋白酶去細胞處理(0.05%, 12小時)之冠狀動脈組織,其力學拉伸在起始應變及轉折應變皆有明顯的減少。而起始模數及陡峭模數只有稍微增加。這樣的結果對應於組織結構上膠原蛋白波浪狀的減少,彈性蛋白及醣胺聚糖含量的減少。亦說明此一數學模式用於評估血管組織的可行性。
進一步以此模型有系統地分析胰蛋白酶對冠狀動脈組織組成、結構及力學行為則發現隨著胰蛋白酶使用時間或濃度的增加,豬源性冠狀動脈的尺寸有明顯的改變。包含長度及寬的增加,厚度減少及重量下降。單軸應變-應力關係呈現隨時間或濃度增加,雖然最終斷裂應力及應變無明顯改變。但起始應變及轉折應變明顯減少,特別是環向上的應變。環向起始模數及陡峭模數也隨之明顯增加。可知經胰蛋白酶處理過後之血管組織纖維間的聯結變得較不緊密,易往受力方向轉向。同時膠原蛋白的波浪狀亦明顯減少。此現象也對應到組成的改變,如膠原蛋白,彈性蛋白及醣胺聚糖。由一次線性迴歸進一步發現醣胺聚糖的減少和環向起始應變、環向轉折應變及環向起始模數的改變皆有明顯之相關。
生物相容性方面,初步的支架萃取液細胞毒性測試顯示對豬胚胎幹細胞及誘導幹細胞無明顯毒性。細胞培養結果顯示人體脂肪幹細胞及人體臍靜脈內皮細胞在去細胞支架上有較佳的貼附並可維持一週以上的生長。人體內皮前驅細胞則無法有效的貼附及生長。另外,脂肪幹細胞可於支架上成功分化為平滑肌細胞。大鼠背部皮下植入三天,七天及十四天生物相容性測試發現,以胰蛋白酶為主加上Triton X-100界面活性劑去細胞處理三天及七天的血管支架引起的急性發炎反應在第三天至第七天時最為強烈,在第七天至第十四天後逐漸減緩,慢性發炎較不劇烈。但新鮮組織在植入後第七至十四天的慢性發炎反應則反而越趨明顯。新鮮及去細胞處理過的組織在植入約十四天後皆有局部纖維化的現象。 MMP及macrophage染色間接顯示有支架降解及重組之進行。大鼠主動脈修補模式(三天、七天及三十天)顯示植入約30天後以未接種細胞之空白去細胞血管支架修補動脈破洞可達到約50%的成功率。以血流都卜勒檢查可見管腔血流通輰。巨觀下觀察支架內面上仍有血栓覆蓋;組織切片發現去細胞支架表面不易完整的內皮化,膠原蛋白纖維的結構及排列較不完整,且管壁隨時間有發炎細胞或血球細胞浸潤增加的情形。相對地,以(大鼠)脂肪幹細胞種植後之去細胞血管支架進行主動脈修補,雖仍有輕微內膜增生之現象,但膠原蛋白纖維的結構及排列較完整,管腔內面有高度內皮化之現象,手術30天後可達100%存活率。
總結以上,去細胞處理過後的豬源性冠狀動脈是具有潛力於體外細胞培養和動物體內的血管組織修補。但需注意去細胞過程中不適當條件的酵素處理可能造成血管組織在結構及力學性質上的改變,可能會進一步影響其體內的長期表現。本研究所提出的數學模式可作為去細胞流程優化之篩選平台。適當的酵素-界面活性劑處理條件可製作適當保留結構及力學性質,同時有效去除異源性細胞之血管支架。血管支架搭配脂肪幹細胞之再細胞化(Recellularization)有潛力發展為功能性組織工程血管,於臨床上作為小管徑血管替代物。
There is a clinical need for small-diameter vascular graft and decellularized vascular scaffold could pave a path for evaluation. Theorectically, decellularized scaffold preserves extracellular matrix and vascular networks. The scaffold could provide microenvironment for cell migration, infiltration, proliferation and differentiation. The progenitor cells could be recruited to achieve tissue remodeling and regeneration. The technique of decellularization has been applied in tissue engineering research for various tissues or organs.
It is necessary to evaluate the effects of decellularization on the vascular wall structure, composition and mechanical properties as using a decellularized vascular scaffold for vascular tissue engineering. The process of decellularization, such as treatments by enzymes and/or detergents could bring damage to the tissues. Therefore, the biocompatibility including cytotoxicity, inflammatory reaction, capability of endothelialization and tissue remodeling should be investigated before clinical application to avoid intimal hyperplasia, calcification or pseudoaneurysm formaton.
The current study integrated mechanical test, mathematical modeling, histo-morphology and biochemistry examinations to evaluate the effects of decellularization on the properties of porcine coronary arteries. Scaffold-extraction cytotoxicity test was conducted with porcine embryonic and induced pluripotent stem cells. Cell seeding and culture with human adipose stem cell, human umbilical vein endothelial cell, human peripheral endothelial progenitor cell were performed for in vitro biocompatibility. Finally, in vivo biocompatibility was evaluated with rat subcutaneous implantation and abdominal aorta repair models.
In this study, a fiber-progressive engagement model was first proposed to describe the pseudo-elastic property of the fiberous structures of vascular wall. The model consists two sets of parallel springs. One represents elastin fiber and the other, which was further composed by a set of varied distributed wavy fibers, represents collagen fiber. This model can well describe the three-stage transition behavior of the stress-strain curved observed in a uniaxial tensile test. In this model, the first stage was only elastin fiber involved and in the beginning of second stage, some less wavy fibers of collagen started to be engaged. At third stage, all wavy collagen fibers were stretched and completely engaged. There were four parameters in the model to describe the uniaxial tensile stress-strain relationship, i. e. parameter “m” for initial strain; “N” for turning strain; “E0” for initial modulus and “E1” for stiff modulus.
The model was implemented to analyze the stress-strain curves of native vascular tissues. The resuts showed there was less discrepancy in mechanical behavior between longitudinal and circumferential direction in porcine aorta while much more difference in porcine coronary artery. There was also difference in composition between aorta and coronary artery. There was more elastin in aorta while more collagen in coronary artery. The glycosaminoglycan (GAG) content was similar in these two kinds of artery. After decellularization with trypsin (0.05%, 12 hours), the initial strain and turning strain decreased significantly while there was substantial increased in initial modulus and stiff modulus. The alteration in mechanical behavior of coronary artery after decellularization was correlated to change in microstructure and composition, such as decrease in collagen fiber waviness, elastin and GAG content. Put above together, it also indicated the validation of fiber-progressive engagement model in analysis of vascular tissue mechanical behavior.
Next, we applied this model to investigate the effect of trypsin on the microstructure, composition and mechanical properties of porcine coronary artery. After decellularization with different trypsin concentration and duration, the results indicated significant alteration in dimension of coronary artery, such as increase in length & width and decrease in thickness & wet weight. Although the ultimate tensile stress did not change significantly with increase of treatment duration or concentration, stress-strain relationship of decellularized coronary already altered. The circumferential strain increased significantly, followed by circumferential intial modulus and stiff modulus. It was noticed that interfibriller connection became loose after trypsin decellularization. The waviness of collagen fibers also decreased significantly. Thereafter, the fibers could re-orient easily to the applied force direction. These results were correlated to change in collagen, elastin and GAG contents. Moreover, linear regression revealed higher correlation between circumferential parameters (initial strain, turning strain, initial modulus) and the GAGs content.
For biocompatibility in vitro, preliminary scaffold-extraction cytotoxicity tests revealed minimal toxicity to porcine embryonic and induced pluripotent cells. Human adipose stem cells (hASCs) and umbilical vein endothelial cells (HUVEC) could adhere and proliferate on the decellularized porcine coronary artery scaffolds for about 1 week. Furthermore, ASCs could successfully differentiate to smooth muscle cell in the scaffold.
For biocompatibility in vivo, it showed that more severe acute inflammatory reaction was noted in decellularized vascular scaffold (trypsin and Triton X-100 3 days or 7 days) at Day 3 but inflammation decreased gradually at Day 7 and Day 14. There was no severe chronic inflammation in the decellularized vascular scaffolds. However, severe chronic inflammation was noted gradually in native vascular tissue from Day 7 to Day 14. Fibrous encapsulation was noted in both native and decellularized tissues at Day 14. The results of MMP and macrophage stain indirectly revealed slowly degradation of decellularized scaffolds with tissue remodeling.
The rat abdominal aorta repair model (sacrificed at Day 3, Day 7 and Day 30) showed that non cell-seeded decellularized porcine vascular tissue could achieve about 50% survival rate at Day 30. The Doppler ultrasound confirmed patent flow at repair site. Macroscopically, it showed there was thin layer of mural thrombi coating at the surface of luminal side in survival cases. Histology revealed no complete endothelialization at luminal side of patch at Day 3, Day 7 and Day 30. The fiber structure and arrangement was less organized. Increase of inflammatory and hematopoietic cellular infiltration into the scaffolds was noted. For cell-seeded scaffolds (rASC), histology relvealed complete endothelization albeit mild intimal hyperplasia was still noted. The fiber structure and arrangement was much more intact. All animals achieved 100% survival rate at Day 30.
In conclusion, decellularized porcine vascular tissue could support human cell living in vitro and has potential in vascular tissue replacement in vivo. But it was noticed that decellularization with improper enzyme method could alter the microstructure, composition and mechanical property of vascular tissue significantly, which could compromise its long-term behavior in vivo. Optimized trypsin and Triton X-100 should be obtained before in vivo application. Adipose stem cell-seeded decellularized porcine vascular tissue has potential in developing functional tissue engineering vascular graft for clinical application.
誌謝 i
摘要 iii
Abstract vii
目錄 xi
圖目錄 xiv
表目錄 xix
第一章 簡介 1
1.1 研究背景 1
1.1.1天然血管之組成、結構、力學特性 2
1.1.2.血管替代物之發展 8
1.1.3 組織工程技術應用於血管替代物的發展 14
1.1.4.各種去細胞技術文獻整理及優劣比較介紹 15
1.2 研究目的 17
附圖 19
第二章 血管壁力學性質數學模式建立 24
2.1研究背景 24
2.1.1血管力學性質模型簡介 24
2.1.2 纖維漸近參與模式(progressive-fiber engagement model)相關文獻探討 28
2.2實驗方法 29
2.3 理論模型建立與數值分析 35
2.4結果 37
2.4.1 模型確效 37
2.4.2豬源性主動脈,冠狀動脈及去細胞血管在組織、結構及組成上的差異 38
2.4.3 力學性質的差異 40
2.4.4數學模式擬合結果 42
2.5 討論及結論 43
附圖 47
第三章 去細胞效應探討 59
3.1 文獻回顧 59
3.1.1 常見之組織去細胞技術介紹 59
3.1.2 去細胞過程對生化成份的影響 60
3.1.3 不同去細胞處理對去細胞支架之分子排列、結構完整性及力學性質之影響 68
3.2實驗方法 71
3.2.1 實驗設計 72
3.2.2 組織獲取 73
3.2.3改變Trypsin的條件 73
3.2.4 尺寸測量 73
3.2.5 力學測試 74
3.2.6 生化組成分析 74
3.2.7 組織型態及細胞核之觀察 74
3.3 實驗結果 75
3.3.1 不同去細胞條件對ECM重量及尺寸性質之影響 75
3.3.2 不同去細胞處理條件對去細胞支架力學性質之影響 75
3.3.3不同去細胞條件之ECM組成、結構效應探討 76
3.3.4 不同去細胞條件對去細胞支架組織結構之影響 77
3.4 結果與討論 78
附圖 81
第四章 去細胞支架之體外生物相容性測試 102
4.1 文獻回顧 102
4.1.1 植入式生醫材料之急/慢性生物相容性反應 102
4.1.2 去細胞生物性支架的生物相容性 109
4.2 體外細胞培養之檢測方法與實驗設計介紹 120
4.2.1 支架粹取液細胞毒性測試 120
4.2.2 於支架上培養細胞測試 124
4.2.3人體脂肪幹細胞在去細胞血管支架上的生長及分化情形 127
4.3 去細胞血管支架之體外細胞生長試驗結果與討論 131
4.4 體外細胞培養測試結論 134
附圖 135
第五章 去細胞支架之體內植入動物實驗探討 151
5.1 文獻回顧 151
5.1.1 動物實驗的重要性 151
5.1.2 動物模型回顧與比較 151
5.2 動物實驗方法介紹 155
5.3 動物實驗模型的建立 158
5.3.1 大鼠生物相容性測試 158
5.3.2 大鼠腹部主動脈架接試驗 162
5.4 動物實驗結果討論 165
附圖 169
第六章 綜合討論與結論 182
參考著作 185

圖目錄
圖1-1血管壁環向剖面示意圖[11] 19
圖1-2血管壁軸向剖面示意圖[11] 19
圖1-3 內皮細胞調控訊息傳遞示意圖[16] 20
圖1-4 平滑肌細胞型態轉換示意圖[17] 20
圖1-5 血管壁應力-應變關係圖[9] 21
圖1-6 冷凍保存之人體臍帶(左),臍靜脈(中)及臍動脈(右)外觀 21
圖1-7 人體臍靜脈及豬源性主動脈、冠狀動脈單軸應力-應變關係圖 22
圖1-8 去細胞原理示意圖 23
圖2-1 以Modified Hill’s model模擬血管壁纖維結構示意圖[70] 47
圖2-2 以Generalized Maxwell model模擬血管壁纖維結構示意圖[77] 47
圖2-3 血管壁開放角(open angle)計算方式示意圖[77] 47
圖2-4 血管壁纖維排列結構(Silver et al.)示意圖[71] 48
圖2-5 Holzapfel’s 人類冠狀動脈管壁分層力學性質應力應變關係圖[79] 48
圖2-6 Maksym’s 肺部組織膠原蛋波浪狀漸近參與模式示意圖[82] 49
圖2-7 纖維漸近參與模式示意圖 49
圖2-8 纖維漸近參與模式三階段拉伸示意圖 50
圖2-9 Matlab 血管力學拉伸實驗數據操作介面 50
圖2-10 Matlab 血管力學拉伸實驗數據擬合程式介面 51
圖2-11 三階段力學拉伸應力應變關係及參數示意圖 51
圖2-12 樣本橫截面積計算示意圖 52
圖2-13 典型豬主動脈軸向應力-應變關係圖 52
圖2-14 豬主動脈組織切片(H&E stain) 53
圖2-15 豬冠狀動脈組織切片(H&E stain) 53
圖2-16 豬主動脈電子顯微鏡圖 54
圖2-17 豬冠狀動脈電子顯微鏡 54
圖2-18 豬新鮮冠狀動脈及去細胞處理之冠狀動脈組織結構圖 55
圖2-19 豬新鮮冠狀動脈及去細胞處理之冠狀動脈膠原蛋白含量比較圖 55
圖2-20 豬主動脈, 冠狀動脈及去細胞冠狀動脈彈性蛋白含量比較圖 56
圖2-21 豬主動脈, 冠狀動脈及去細胞冠狀動脈醣胺聚糖含量比較圖 56
圖2-22 不同部位動脈的應力應變關係圖[71] 56
圖2-23 以參數m、N、E0、E1模擬出豬冠狀動脈、主動脈及去細胞豬冠狀動脈軸向及環向拉伸應力-應變關係圖 57
圖2-24 豬主動脈,冠狀動脈及去細胞豬冠狀動脈軸向及環向參數(m、N、E0、E1)比較圖 57
圖3-1新鮮組織與去細胞組織穿透式顯微鏡結果[89] 81
圖3-2新鮮組織與去細胞組織應力應變關係圖[89] 81
圖3-3新鮮組織(A)與去細胞組織(B)小角度散射儀結果[89] 82
圖3-4 trypsin不同處理條件對血管組織尺寸(3-4A、B&C)及重量(3-4D)之影響 83
圖3-5 trypsin不同處理條件對血管組織纖維漸近參與模式參數m (3-5A&B) &N (3-5C&D)之影響 85
圖3-6 trypsin不同處理條件對血管組織纖維漸近參與模式參數E0 (3-6A&B)&E1(3-6C&D)之影響 88
圖3-7 trypsin不同處理條件對血管組織最終拉伸應力之影響 90
圖3-8 trypsin不同處理條件對血管組織膠原,蛋白彈性蛋白含量之影響 92
圖3-9 trypsin不同處理條件對血管組織醣胺聚糖, 雙股螺旋核糖核酸含量之影響 94
圖3-10 trypsin不同處理條件對血管組織去細胞效果比較(H&E &DAPI stain) 97
圖3-11A 血管細胞外基質組成成份與軸向起始應變m(L)之一次迴歸相關性圖 98
圖3-11B 血管細胞外基質組成成份與環向起始應變m(C)之一次迴歸相關 98
圖3-11C 血管細胞外基質組成成份與軸向轉折應變N(L)之一次迴歸相關性圖 99
圖3-11D 血管細胞外基質組成成份與環向轉折應變N(C)之一次迴歸相關性圖 99
圖3-11E 血管細胞外基質組成成份與軸向起始模數E0(L)之一次迴歸相關性圖 100
圖3-11F 血管細胞外基質組成成份與環向起始模數E0(C)之一次迴歸相關性圖 100
圖3-11G 血管細胞外基質組成成份與軸向陡峭模數E1(L)之一次迴歸相關性圖 101
圖3-11H 血管細胞外基質組成成份與環向陡峭模數E1(C)之一次迴歸相關性圖 101
圖4-1 M1 macrophage及M2 macrophage轉換示意圖[47] 135
圖4-2 由脂肪幹細胞經TGF-β1及BMP-4誘導分化為平滑肌細胞 135
圖4-3由脂肪幹細胞經TGF-β1及BMP-4誘導分化為平滑肌細胞(免疫染色)[53] 136
圖4-4顯示脂肪幹細胞以SMIM培養液誘導分化為平滑肌細胞[193] 136
圖4-5豬胚胎幹細胞群落 [186] 137
圖4-6用dissecting pipette以機械方式將豬胚胎幹細胞群落自培養皿中刮下[186] 137
圖4-7 由豬耳朵皮膚纖維母細胞經lentivirus方式誘導為萬能幹細胞 138
圖4-8 管腔內種植細胞步驟示意圖 138
圖4-9 管腔內種植細胞實驗步驟圖 139
圖 4-10 平面細胞種植後培養之情形 140
圖4-11 豬胚胎幹細胞特徵圖 140
圖4-12 豬誘導幹細胞特徵圖 141
圖4-13不同萃取液濃度培養下,豬胚胎幹細胞及誘導幹細胞細胞存活數分析結果 142
圖4-14 Live and dead assay (piPS) 142
圖4-15 脂肪幹細胞特徵圖 143
圖4-16脂肪幹細細胞表面標記 143
圖4-17 內皮細胞特徵圖 144
圖4-18 內皮前驅細胞特徵圖 144
圖4-19 人體脂肪幹細胞alamar blue assay反應時間 145
圖4-20人體內皮前驅細胞alamar blue assay反應時間 145
圖4-21 人體脂肪幹細胞、內皮前驅細胞、內皮細胞在去細胞血管支架上的貼附及生長情形(alamar blue assay, 4-21A&B) 146
圖4-22 人體脂肪幹細胞及內皮細胞在血管支架上可貼附及生長 147
圖4-23以WST-8測試培養皿中不同人體脂肪幹細胞細胞數之生長情形 148
圖4-24 以WST-8測試人體(Hu ASC)及大鼠脂肪(Rat ASC)於D3(TritonX-100處理3天)及D7(TritonX-100處理7天)血管支架上的生長情形 148
圖4-25人體脂肪幹細胞於培養皿內以TGF-β1及BMP-4分化為平滑肌細胞 149
圖4-26 大鼠脂肪幹細胞於培養皿內以TGF-β1及BMP-4分化為平滑肌細胞 149
圖4-27人體脂肪幹細胞於血管支架上以TGF-β1及BMP-4分化為平滑肌細胞 150
圖5-1血管支架(新鮮、Trypsin+Triton X-100 3天及7天植入後第3、7、14天組織取樣切片圖 H&E stain 及Masson’s Trichrom stain) 169
圖5-2急性發炎量化圖 170
圖5-3慢性發炎量化圖 170
圖5-4纖維化量化圖 171
圖5-5血管支架(新鮮、Trypsin+Triton X-100 3天及7天植入後第3、7、14天組織取樣切片圖MMP&Macrophage ) 171
圖5-6基質蛋白酶量化圖 172
圖5-7巨噬細胞量化圖 173
圖5-8大鼠主動脈示意圖 173
圖5-9大鼠主動脈解剖圖 174
圖5-10 大鼠主動脈血管分支分佈圖 174
圖5-11 前試驗分組示意圖 175
圖5-12 端對端吻合術中圖 175
圖5-13 異體大鼠腹部主動脈血管架接 176
圖5-14 自體組織大鼠腹部主動脈修補 176
圖5-15 異源性組織大鼠腹部主動脈修補 177
圖5-16以超音波(Terason 128 ultrasound system)檢測術後血流 177
圖5-17 以種植脂肪幹細胞之異源性組織主動脈修補 178
圖5-18異源性組織大鼠腹部主動脈修補於第3(左)、7(中)、30(右)天取樣血管組織外觀圖 178
圖5-19異源性組織大鼠腹部主動脈修補於第3(左)、7(中)、30(右)天取樣血管組織組織切片圖 179
圖5-20種植脂肪幹細胞之異源性組織大鼠腹部主動脈修補(編號7)之術後及樣本外觀圖 179
圖5-21種植脂肪幹細胞之異源性組織大鼠腹部主動脈修補(編號8)之術後及樣本外觀圖 180
圖5-22未種植脂肪幹細胞及種植脂肪幹細胞之異源性去細胞血管組織種植於大鼠主動脈約30天後的組織切片圖 180

表目錄
表2-1比較Fung及Holzapfel等人的應變能模式[67-69] 25
表2-2 主動脈和冠狀動脈及去細胞冠狀動脈成份分析表 40
表2-3不同部位動脈的斷裂應力及應變分析表[76]: 41
表2-4 主動脈、冠狀動脈、去細胞處理後冠狀動脈管管徑及壁厚比較表 41
表2-5 主動脈、冠狀動脈及去細胞冠狀動脈軸向及環向參數m,N,E0,E1整理表 42
表3-1文獻中常見化學去細胞技術(trypsin、Triton X-100、SDS)對細胞外基質成份影響整理 64
表3-2 文獻中關於去細胞對組織力學影響檢測的結果 69
表3-3 去細胞過程對血管組織開放角(open angle)的影響 70
表3-4改變Trypsin條件實驗分組表 73
表3-5 不同濃度trypsin經不同時間處理後血管支架內水溶性膠原蛋白及非水溶性膠原蛋白含量 77
表3-6不同組成成份與力學參數值一次迴歸相關性分析(R2 & slope) 80
表4-1 支架萃取液細胞毒性測試 (不同萃取液濃度配置方法) 123
表5-1動物血管尺寸表[221] 152
表5-2不同種類動物血流動力資料整理[221] 152
表5-3不同種類動物血球資料整理[221] 152
表5-4文獻中有關去細胞血管支架於動物實驗中的結果整理表 153
表5-5 異源性去細胞血管組織大鼠動脈修補實驗結果紀錄表 167
[1] Pektok E, Nottelet B, Tille J-C, Gurny R, Kalangos A, Moeller M, et al. Degradation and healing characteristics of small-diameter poly (ε-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation. 2008;118:2563-70.
[2] Pawlowski KJ, Rittgers SE, Schmidt SP, Bowlin GL. Endothelial cell seeding of polymeric vascular grafts. Frontiers in bioscience : a journal and virtual library. 2004;9:1412-21.
[3] Callow A. Arterial homografts. European journal of vascular and endovascular surgery. 1996;12:272-81.
[4] Castier Y, Francis F, Cerceau P, Besnard M, Albertin J, Fouilhe L, et al. Cryopreserved arterial allograft reconstruction for peripheral graft infection. Journal of vascular surgery. 2005;41:30-7.
[5] Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. Journal of vascular surgery. 2003;37:472-80.
[6] Fuchs VR. New priorities for future biomedical innovations. New England Journal of Medicine. 2010;363:704-6.
[7] Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet. 1999;354:S32-S4.
[8] Dobrin PB. Mechanical properties of arterises. Physiological reviews. 1978;58:397-460.
[9] MECHAM JEWARP. Vascular Extracellular Matrix and Arterial Mechanics. Physiol Rev. 2009;89:957-89.
[10] Burton AC. Relation of structure to function of the tissues of the wall of blood vessels. Physiological reviews. 1954;34:619-42.
[11] Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of elasticity and the physical science of solids. 2000;61:1-48.
[12] Rhodin JA. Architecture of the vessel wall. Comprehensive Physiology. 2011.
[13] Wiederschain GY. Essentials of glycobiology. Biochemistry (Moscow). 2009;74:1056-.
[14] Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527-61.
[15] Jafari B, Mohsenin V. Endothelial dysfunction and hypertension in obstructive sleep apnea - Is it due to intermittent hypoxia? Journal of cardiovascular disease research. 2013;4:87-91.
[16] Jackson SP. Arterial thrombosis [mdash] insidious, unpredictable and deadly. Nature medicine. 2011;17:1423-36.
[17] Halayko AJ, Solway J. Invited review: molecular mechanisms of phenotypic plasticity in smooth muscle cells. Journal of applied physiology. 2001;90:358-68.
[18] Cheung C, Narmada BC. Developmental Basis of Vascular Smooth Muscle Cell Phenotypes. Vascular Smooth Muscle: Structure and Function in Health and Disease. 2016:165.
[19] Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiological reviews. 1995;75:487-517.
[20] Zulliger MA, Rachev A, Stergiopulos N. A constitutive formulation of arterial mechanics including vascular smooth muscle tone. American Journal of Physiology-Heart and Circulatory Physiology. 2004;287:H1335-H43.
[21] Schwartz SM. Perspectives series: cell adhesion in vascular biology. Smooth muscle migration in atherosclerosis and restenosis. Journal of Clinical Investigation. 1997;99:2814.
[22] Takehara K. Growth regulation of skin fibroblasts. Journal of dermatological science. 2000;24:S70-S7.
[23] Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, et al. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling from innocent bystander to active participant. Circulation research. 2001;89:1111-21.
[24] Jack L. Cronenwett KWJ. Rutherford's Vascular Surgery. 8th ed: Elsevier; 2014.
[25] Harkness M, Harkness R, McDonald D. The collagen and elastin content of the arterial wall. The Journal of physiology. 1955;127:33-4P.
[26] Gussenhoven EJ, Essed CE, Lancée CT, Mastik F, Frietman P, van Egmond FC, et al. Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. Journal of the American College of Cardiology. 1989;14:947-52.
[27] Mattson JM, Turcotte R, Zhang Y. Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics. Biomechanics and modeling in mechanobiology. 2017;16:213-25.
[28] Chow M-J, Turcotte R, Lin CP, Zhang Y. Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen. Biophysical journal. 2014;106:2684-92.
[29] Mesa F, Serra JM, Herreros J. Vascular cryopreservation in microsurgery. Journal of reconstructive microsurgery. 1997;13:245-50.
[30] Leseche G, Castier Y, Petit MD, Bertrand P, Kitzis M, Mussot S, et al. Long-term results of cryopreserved arterial allograft reconstruction in infected prosthetic grafts and mycotic aneurysms of the abdominal aorta. Journal of vascular surgery. 2001;34:616-22.
[31] Komorowska-Timek E, Zhang F, Shi DY, Lineaweaver WC, Buncke HJ. Effect of cryopreservation on patency and histological changes of arterial isogeneic and allogeneic grafts in the rat model. Annals of plastic surgery. 2002;49:404-9.
[32] Narita Y, Kagami H, Matsunuma H, Murase Y, Ueda M, Ueda Y. Decellularized ureter for tissue-engineered small-caliber vascular graft. Journal of Artificial Organs. 2008;11:91-9.
[33] Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675-83.
[34] Naito Y, Shinoka T, Duncan D, Hibino N, Solomon D, Cleary M, et al. Vascular tissue engineering: towards the next generation vascular grafts. Advanced drug delivery reviews. 2011;63:312-23.
[35] Meade JW, Linton RR, Darling RC, Menendez CV. Arterial homografts. A long-term clinical follow-up. Archives of surgery. 1966;93:392-9.
[36] Szilagyi DE, Rodriguez FJ, Smith RF, Elliott JP. Late fate of arterial allografts. Observations 6 to 15 years after implantation. Archives of surgery. 1970;101:721-33.
[37] Sellke FW, Stanford W, Rossi NP. Failure of cryopreserved saphenous vein allografts following coronary artery bypass surgery. The Journal of cardiovascular surgery. 1991;32:820-3.
[38] Jashari R, Van Hoeck B, Ngakam R, Goffin Y, Fan Y. Banking of cryopreserved arterial allografts in Europe: 20 years of operation in the European Homograft Bank (EHB) in Brussels. Cell and tissue banking. 2013;14:589-99.
[39] Vogt PR, Brunner-La Rocca HP, Carrel T, von Segesser LK, Ruef C, Debatin J, et al. Cryopreserved arterial allografts in the treatment of major vascular infection: a comparison with conventional surgical techniques. The Journal of thoracic and cardiovascular surgery. 1998;116:965-72.
[40] Kieffer E, Gomes D, Chiche L, Fleron MH, Koskas F, Bahnini A. Allograft replacement for infrarenal aortic graft infection: early and late results in 179 patients. Journal of vascular surgery. 2004;39:1009-17.
[41] Baraldi A, Manenti A, Di Felice A, Grosoli M, Furci L, Leonelli M, et al. Absence of rejection in cryopreserved saphenous vein allografts for hemodialysis. ASAIO transactions / American Society for Artificial Internal Organs. 1989;35:196-9.
[42] Mennander A, Tiisala S, Halttunen J, Yilmaz S, Paavonen T, Hayry P. Chronic rejection in rat aortic allografts. An experimental model for transplant arteriosclerosis. Arteriosclerosis and thrombosis : a journal of vascular biology / American Heart Association. 1991;11:671-80.
[43] Gabriel M, Kostrzewa A, Sobieska M. Immune response after cryopreserved aortic allograft replacement for major vascular infection. Transplantation proceedings. 2002;34:713-4.
[44] Takeishi M, Hirase Y, Kojima T. Experimental study of cryopreserved allogeneic transfer of vessel: preliminary report. Microsurgery. 1994;15:55-62.
[45] Motomura N, Imakita M, Yutani C, Kitoh Y, Kawashima Y, Oka T. Histological change in cryopreserved rat aortic allograft. The Journal of cardiovascular surgery. 1995;36:53-60.
[46] Bujan J, Pascual G, Garcia-Honduvilla N, Gimeno MJ, Jurado F, Carrera-San Martin A, et al. Rapid thawing increases the fragility of the cryopreserved arterial wall. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery. 2000;20:13-20.
[47] Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants–a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32:6692-709.
[48] Lexer G, Cooper D, Rose A, Wicomb W, Rees J, Keraan M, et al. Hyperacute rejection in a discordant (pig to baboon) cardiac xenograft model. The Journal of heart transplantation. 1985;5:411-8.
[49] PLATT JL, FISCHEL RJ, MATAS AJ, REIF SA, Bolman RM, BACH FH. Immunopathology of hyperacute xenograft rejection in a swine-to-primate model. Transplantation. 1991;52:214-20.
[50] Auchincloss Jr H, Sachs DH. Xenogeneic transplantation. Annual review of immunology. 1998;16:433-70.
[51] Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, et al. Xenogeneic Extracellular Matrix Grafts Elicit A Th2-Restricted Immune Response1. Transplantation. 2001;71:1631-40.
[52] Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transplant immunology. 2004;12:367-77.
[53] Wang C, Cen L, Yin S, Liu Q, Liu W, Cao Y, et al. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials. 2010;31:621-30.
[54] Hussein KH, Park K-M, Kang K-S, Woo H-M. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. Materials Science and Engineering: C. 2016;67:766-78.
[55] Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233-43.
[56] Grauss RW, Hazekamp MG, Oppenhuizen F, van Munsteren CJ, Gittenberger-de Groot AC, DeRuiter MC. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2005;27:566-71.
[57] Kasimir MT, Rieder E, Seebacher G, Silberhumer G, Wolner E, Weigel G, et al. Comparison of different decellularization procedures of porcine heart valves. The International journal of artificial organs. 2003;26:421-7.
[58] Schenke-Layland K, Vasilevski O, Opitz F, König K, Riemann I, Halbhuber K, et al. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. Journal of structural biology. 2003;143:201-8.
[59] Rieder E, Kasimir M-T, Silberhumer G, Seebacher G, Wolner E, Simon P, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. The Journal of thoracic and cardiovascular surgery. 2004;127:399-405.
[60] Akhyari P, Aubin H, Gwanmesia P, Barth M, Hoffmann S, Huelsmann J, et al. The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Engineering Part C: Methods. 2011;17:915-26.
[61] Cebotari S, Tudorache I, Jaekel T, Hilfiker A, Dorfman S, Ternes W, et al. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artificial organs. 2010;34:206-10.
[62] Lin CH, Yang JR, Chiang NJ, Ma H, Tsay RY. Evaluation of decellularized extracellular matrix of skeletal muscle for tissue engineering. The International journal of artificial organs. 2014;37:546-55.
[63] Borschel GH, Huang YC, Calve S, Arruda EM, Lynch JB, Dow DE, et al. Tissue engineering of recellularized small-diameter vascular grafts. Tissue engineering. 2005;11:778-86.
[64] Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. Journal of vascular surgery. 2004;40:146-53.
[65] Chuong CJ, Fung YC. Three-dimensional stress distribution in arteries. Journal of biomechanical engineering. 1983;105:268-74.
[66] Spina M, Garbisa S, Hinnie J, Hunter JC, Serafini-Fracassini A. Age-related changes in composition and mechanical properties of the tunica media of the upper thoracic human aorta. Arteriosclerosis, Thrombosis, and Vascular Biology. 1983;3:64-76.
[67] Zulliger MA, Fridez P, Hayashi K, Stergiopulos N. A strain energy function for arteries accounting for wall composition and structure. J Biomech. 2004;37:989-1000.
[68] Fung YC, Fronek K, Patitucci P. Pseudoelasticity of arteries and the choice of its mathematical expression. The American journal of physiology. 1979;237:H620-31.
[69] Holzapfel GA, T. Christian Gasser, and M. Stadler. A structure model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. European Journal of Mechanics-A/Solids 2002;21:441-63.
[70] Roy S, Tsamis A, Prod’hom G, Stergiopulos N. On the in-series and in-parallel contribution of elastin assessed by a structure-based biomechanical model of the arterial wall. Journal of Biomechanics. 2008;41:737-43.
[71] Silver FH, Snowhill PB, Foran DJ. Mechanical Behavior of Vessel Wall: A Comparative Study of Aorta, Vena Cava, and Carotid Artery. Annals of biomedical engineering. 2003;31:793-803.
[72] Clark JM, Glagov S. Transmural organization of the arterial media. The lamellar unit revisited. Arteriosclerosis. 1985;5:19-34.
[73] Wolinsky H, Glagov S. A Lamellar Unit of Aortic Medial Structure and Function in Mammals. Circulation research. 1967;20:99-111.
[74] van der Horst A, van den Broek CN, van de Vosse FN, Rutten MC. The fiber orientation in the coronary arterial wall at physiological loading evaluated with a two-fiber constitutive model. Biomechanics and modeling in mechanobiology. 2012;11:533-42.
[75] Agianniotis A, Rezakhaniha R, Stergiopulos N. A structural constitutive model considering angular dispersion and waviness of collagen fibres of rabbit facial veins. Biomedical engineering online. 2011;10:18.
[76] Sokolis DP. A passive strain-energy function for elastic and muscular arteries: correlation of material parameters with histological data. Medical & biological engineering & computing. 2010;48:507-18.
[77] Zhang W, Guo X, Kassab GS. A generalized Maxwell model for creep behavior of artery opening angle. Journal of biomechanical engineering. 2008;130:054502.
[78] Bronshtein T, Au-Yeung GC, Sarig U, Nguyen EB, Mhaisalkar PS, Boey FY, et al. A mathematical model for analyzing the elasticity, viscosity, and failure of soft tissue: comparison of native and decellularized porcine cardiac extracellular matrix for tissue engineering. Tissue engineering Part C, Methods. 2013;19:620-30.
[79] Gerhard A. Holzapfel, 1, Gerhard Sommer, 2, Christian T. Gasser, 2, et al. Determination of layer-specific mechanical properties of human
coronary arteries with nonatherosclerotic intimal thickening
and related constitutive modeling. Am J Physiol Heart Circ Physiol. 2005;289:H2048-1058.
[80] Wang C, Garcia M, Lu X, Lanir Y, Kassab GS. Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. American Journal of Physiology-Heart and Circulatory Physiology. 2006;291:H1200-H9.
[81] Sacks MS. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. Journal of biomechanical engineering. 2003;125:280-7.
[82] Maksym GN, Bates JH. A distributed nonlinear model of lung tissue elasticity. Journal of applied physiology. 1997;82:32-41.
[83] Fung Y. Microrheology and constitutive equation of soft tissue. Biorheology. 1987;25:261-70.
[84] Soong T, Huang W. A stochastic model for biological tissue elasticity in simple elongation. Journal of Biomechanics. 1973;6:451-8.
[85] Decraemer W, Maes M, Vanhuyse V. An elastic stress-strain relation for soft biological tissues based on a structural model. Journal of biomechanics. 1980;13:463-8.
[86] Roy S, Boss C, Rezakhaniha R, Stergiopulos N. Experimental characterization of the distribution of collagen fiber recruitment. Journal of Biorheology. 2010;24:84-93.
[87] Bergel D. The static elastic properties of the arterial wall. The Journal of physiology. 1961;156:445.
[88] Dobrin PB, Canfield TR. Elastase, collagenase, and the biaxial elastic properties of dog carotid artery. The American journal of physiology. 1984;247:H124-31.
[89] Williams C, Liao J, Joyce EM, Wang B, Leach JB, Sacks MS, et al. Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta biomaterialia. 2009;5:993-1005.
[90] Sheridan W, Duffy GP, Murphy B. Mechanical characterization of a customized decellularized scaffold for vascular tissue engineering. Journal of the mechanical behavior of biomedical materials. 2012;8:58-70.
[91] Sylvain Roy PS, Nikolaos Stergiopulos. Biomechanical proprieties of decellularized porcine common carotid arteries. Am J Physiol Heart Circ Physiol. 2005;289:H1567–H76.
[92] Amiel GE, Komura M, Shapira O, Yoo JJ, Yazdani S, Berry J, et al. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue engineering. 2006;12:2355-65.
[93] Beenakker JW, Ashcroft BA, Lindeman JH, Oosterkamp TH. Mechanical properties of the extracellular matrix of the aorta studied by enzymatic treatments. Biophysical journal. 2012;102:1731-7.
[94] Dong X, Wei X, Yi W, Gu C, Kang X, Liu Y, et al. RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. Journal of Materials Science: Materials in Medicine. 2009;20:2327-36.
[95] Gorschewsky O, Puetz A, Riechert K, Klakow A, Becker R. Quantitative analysis of biochemical characteristics of bone-patellar tendon-bone allografts. Bio-Medical Materials and Engineering. 2005;15:403-11.
[96] Du L, Wu X, Pang K, Yang Y. Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaffold. British Journal of Ophthalmology. 2011;95:410-4.
[97] Meyer SR, Chiu B, Churchill TA, Zhu L, Lakey JR, Ross DB. Comparison of aortic valve allograft decellularization techniques in the rat. Journal of biomedical materials research Part A. 2006;79:254-62.
[98] Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329:538-41.
[99] Cole MB. Alteration of cartilage matrix morphology with histological processing. Journal of microscopy. 1984;133:129-40.
[100] Wilshaw SP, Rooney P, Berry H, Kearney JN, Homer-Vanniasinkam S, Fisher J, et al. Development and characterization of acellular allogeneic arterial matrices. Tissue engineering Part A. 2012;18:471-83.
[101] Luo J, Korossis SA, Wilshaw SP, Jennings LM, Fisher J, Ingham E. Development and characterization of acellular porcine pulmonary valve scaffolds for tissue engineering. Tissue engineering Part A. 2014;20:2963-74.
[102] Friedrich LH, Jungebluth P, Sjoqvist S, Lundin V, Haag JC, Lemon G, et al. Preservation of aortic root architecture and properties using a detergent-enzymatic perfusion protocol. Biomaterials. 2014;35:1907-13.
[103] Kajbafzadeh AM, Javan-Farazmand N, Monajemzadeh M, Baghayee A. Determining the optimal decellularization and sterilization protocol for preparing a tissue scaffold of a human-sized liver tissue. Tissue engineering Part C, Methods. 2013;19:642-51.
[104] Syed O, Walters NJ, Day RM, Kim HW, Knowles JC. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta biomaterialia. 2014;10:5043-54.
[105] Gilpin SE, Ren X, Okamoto T, Guyette JP, Mou H, Rajagopal J, et al. Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix. The Annals of thoracic surgery. 2014;98:1721-9; discussion 9.
[106] Ueda Y, Torrianni MW, Coppin CM, Iwai S, Sawa Y, Matsuda H. Antigen clearing from porcine heart valves with preservation of structural integrity. The International journal of artificial organs. 2006;29:781-9.
[107] Syedain ZH, Bradee AR, Kren S, Taylor DA, Tranquillo RT. Decellularized tissue-engineered heart valve leaflets with recellularization potential. Tissue engineering Part A. 2013;19:759-69.
[108] Zhang Y, He Y, Bharadwaj S, Hammam N, Carnagey K, Myers R, et al. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials. 2009;30:4021-8.
[109] Gillies AR, Smith LR, Lieber RL, Varghese S. Method for decellularizing skeletal muscle without detergents or proteolytic enzymes. Tissue engineering Part C, Methods. 2011;17:383-9.
[110] Stern MM, Myers RL, Hammam N, Stern KA, Eberli D, Kritchevsky SB, et al. The influence of extracellular matrix derived from skeletal muscle tissue on the proliferation and differentiation of myogenic progenitor cells ex vivo. Biomaterials. 2009;30:2393-9.
[111] Grauss RW, Hazekamp MG, Oppenhuizen F, van Munsteren CJ, Gittenberger-de Groot AC, DeRuiter MC. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. European journal of cardio-thoracic surgery. 2005;27:566-71.
[112] Cartmell JS, Dunn MG. Effect of chemical treatments on tendon cellularity and mechanical properties. Journal of biomedical materials research. 2000;49:134-40.
[113] Woods T, Gratzer PF. Effectiveness of three extraction techniques in the development of a decellularized bone–anterior cruciate ligament–bone graft. Biomaterials. 2005;26:7339-49.
[114] Mendoza-Novelo B, Avila EE, Cauich-Rodríguez JV, Jorge-Herrero E, Rojo FJ, Guinea GV, et al. Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta biomaterialia. 2011;7:1241-8.
[115] Dahl SL, Koh J, Prabhakar V, Niklason LE. Decellularized native and engineered arterial scaffolds for transplantation. Cell transplantation. 2003;12:659-66.
[116] Schenke-Layland K, Vasilevski O, Opitz F, Konig K, Riemann I, Halbhuber KJ, et al. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. Journal of structural biology. 2003;143:201-8.
[117] Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. Journal of Surgical Research. 2009;152:135-9.
[118] Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. Journal of biomedical materials research. 1994;28:655-66.
[119] Gui L, Muto A, Chan SA, Breuer CK, Niklason LE. Development of decellularized human umbilical arteries as small-diameter vascular grafts. Tissue engineering Part A. 2009;15:2665-76.
[120] Badylak SF, Tullius R, Kokini K, Shelbourne KD, Klootwyk T, Voytik SL, et al. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. Journal of biomedical materials research. 1995;29:977-85.
[121] Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue engineering. 2006;12:519-26.
[122] Partridge S. Elastin. Advances in protein chemistry. 1963;17:227-302.
[123] Schriefl AJ, Schmidt T, Balzani D, Sommer G, Holzapfel GA. Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modeling. Acta biomaterialia. 2015;17:125-36.
[124] Haase SC, Rovak JM, Dennis RG, Kuzon Jr WM, Cederna PS. Recovery of muscle contractile function following nerve gap repair with chemically acellularized peripheral nerve grafts. Journal of reconstructive microsurgery. 2003;19:241-8.
[125] Hodde JP, Badylak SF, Brightman AO, Voytik-Harbin SL. Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. Tissue engineering. 1996;2:209-17.
[126] Brown BN, Freund JM, Han L, Rubin JP, Reing JE, Jeffries EM, et al. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue engineering Part C, Methods. 2011;17:411-21.
[127] Zhou J, Fritze O, Schleicher M, Wendel HP, Schenke-Layland K, Harasztosi C, et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. 2010;31:2549-54.
[128] Liao H, Zhou GQ. Development and progress of engineering of skeletal muscle tissue. Tissue engineering Part B, Reviews. 2009;15:319-31.
[129] Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium : journal of endothelial cell research. 2001;8:11-24.
[130] Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. Journal of cellular biochemistry. 1997;67:478-91.
[131] Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31:8626-33.
[132] Liao J, Joyce EM, Sacks MS. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials. 2008;29:1065-74.
[133] Merna N, Robertson C, La A, George SC. Optical imaging predicts mechanical properties during decellularization of cardiac tissue. Tissue engineering Part C, Methods. 2013;19:802-9.
[134] Borschel GH, Huang Y-C, Calve S, Arruda EM, Lynch JB, Dow DE, et al. Tissue engineering of recellularized small-diameter vascular grafts. Tissue engineering. 2005;11:778-86.
[135] Campbell E, Cahill P, Lally C. Investigation of a small-diameter decellularised artery as a potential scaffold for vascular tissue engineering; biomechanical evaluation and preliminary cell seeding. Journal of the mechanical behavior of biomedical materials. 2012;14:130-42.
[136] Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25:5681-703.
[137] Heemskerk JW, Bevers EM, Lindhout T. Platelet activation and blood coagulation. THROMBOSIS AND HAEMOSTASIS-STUTTGART-. 2002;88:186-94.
[138] Andersson J, Ekdahl KN, Larsson R, Nilsson UR, Nilsson B. C3 adsorbed to a polymer surface can form an initiating alternative pathway convertase. The Journal of Immunology. 2002;168:5786-91.
[139] Blair P, Flaumenhaft R. Platelet α-granules: basic biology and clinical correlates. Blood reviews. 2009;23:177-89.
[140] Lefkovits J, Plow EF, Topol EJ. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. New England Journal of Medicine. 1995;332:1553-9.
[141] Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32:6692-709.
[142] Kobayashi SD, Voyich JM, Burlak C, DeLeo FR. Neutrophils in the innate immune response. ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS-ENGLISH EDITION-. 2005;53:505.
[143] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Seminars in immunology: Elsevier; 2008. p. 86-100.
[144] Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. The role of complement in biomaterial-induced inflammation. Molecular immunology. 2007;44:82-94.
[145] Botusan IR, Sunkari VG, Savu O, Catrina AI, Grunler J, Lindberg S, et al. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:19426-31.
[146] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Seminars in immunology. 2008;20:86-100.
[147] Klopfleisch R. Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers. Acta biomaterialia. 2016;43:3-13.
[148] Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. Journal of biomedical materials research Part A. 2017;105:927-40.
[149] Jones KS. Effects of biomaterial-induced inflammation on fibrosis and rejection. Seminars in immunology. 2008;20:130-6.
[150] Kasimir MT, Rieder E, Seebacher G, Wolner E, Weigel G, Simon P. Presence and elimination of the xenoantigen gal (alpha1, 3) gal in tissue-engineered heart valves. Tissue engineering. 2005;11:1274-80.
[151] Konakci KZ, Bohle B, Blumer R, Hoetzenecker W, Roth G, Moser B, et al. Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery. European journal of clinical investigation. 2005;35:17-23.
[152] Daly KA, Stewart-Akers AM, Hara H, Ezzelarab M, Long C, Cordero K, et al. Effect of the alphaGal epitope on the response to small intestinal submucosa extracellular matrix in a nonhuman primate model. Tissue engineering Part A. 2009;15:3877-88.
[153] Brodbeck WG MM, Colton E, Meyerson H, Anderson JM. Lymphocytes and the foreign body response: lymphocyte enhancement of macrophage adhesion and fusion. Journal of biomedical materials research Part A. 2005;74:222-5.
[154] Chang DT CE, Anderson JM. Paracrine and juxtacrine lymphocyte enhancement of adherent macrophage and foreign body giant cell activation. Journal of biomedical materials research Part A. 2009;89:490-8.
[155] Chang DT JJ, Meyerson H, Colton E, Kwon IK, Matsuda T, et al. Lymphocyte/macrophage interactions: biomaterial surface-dependent cytokine, chemokine, and matrix protein production. Journal of biomedical materials research Part A. 2008;87:676-87.
[156] Marques AP RR, Hunt JA. Cytokine secretion from mononuclear cells cultured in vitro with starch-based polymers and poly-L-lactide. Journal of biomedical materials research Part A. 2004;71:419-29.
[157] Yu Q SI. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14:163-76.
[158] Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry. Circulation research. 2003;92:827-39.
[159] Zhao WQ, Li H, Yamashita K, Guo XK, Hoshino T, Yoshida S, et al. Cell cycle-associated accumulation of tissue inhibitor of metalloproteinases-1 (TIMP-1) in the nuclei of human gingival fibroblasts. J Cell Sci. 1998;111 ( Pt 9):1147-53.
[160] Ritter LM, Garfield SH, Thorgeirsson UP. Tissue inhibitor of metalloproteinases-1 (TIMP-1) binds to the cell surface and translocates to the nucleus of human MCF-7 breast carcinoma cells. Biochemical and biophysical research communications. 1999;257:494-9.
[161] Barasch J, Yang J, Qiao J, Tempst P, Erdjument-Bromage H, Leung W, et al. Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. The Journal of clinical investigation. 1999;103:1299-307.
[162] Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. European journal of cell biology. 1997;74:111-22.
[163] Murphy AN, Unsworth EJ, Stetler-Stevenson WG. Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. Journal of cellular physiology. 1993;157:351-8.
[164] Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397-400.
[165] L'Heureux N, Paquet S, Labbe R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1998;12:47-56.
[166] Kaehler J, Zilla P, Fasol R, Deutsch M, Kadletz M. Precoating substrate and surface configuration determine adherence and spreading of seeded endothelial cells on polytetrafluoroethylene grafts. Journal of vascular surgery. 1989;9:535-41.
[167] Schneider KH, Aigner P, Holnthoner W, Monforte X, Nurnberger S, Runzler D, et al. Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts. Acta biomaterialia. 2016;29:125-34.
[168] Dahan N, Zarbiv G, Sarig U, Karram T, Hoffman A, Machluf M. Porcine small diameter arterial extracellular matrix supports endothelium formation and media remodeling forming a promising vascular engineered biograft. Tissue engineering Part A. 2012;18:411-22.
[169] Law RE, Meehan WP, Xi X-P, Graf K, Wuthrich DA, Coats W, et al. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. Journal of Clinical Investigation. 1996;98:1897.
[170] Liu MW, Roubin GS, King SB. Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation. 1989;79:1374-87.
[171] Sandusky Jr G, Badylak S, Morff R, Johnson W, Lantz G. Histologic findings after in vivo placement of small intestine submucosal vascular grafts and saphenous vein grafts in the carotid artery in dogs. The American journal of pathology. 1992;140:317.
[172] Clowes AW, Kirkman TR, Reidy M. Mechanisms of arterial graft healing. Rapid transmural capillary ingrowth provides a source of intimal endothelium and smooth muscle in porous PTFE prostheses. The American journal of pathology. 1986;123:220.
[173] Leyh RG, Wilhelmi M, Rebe P, Ciboutari S, Haverich A, Mertsching H. Tissue engineering of viable pulmonary arteries for surgical correction of congenital heart defects. The Annals of thoracic surgery. 2006;81:1466-71.
[174] Dahan N, Sarig U, Bronshtein T, Baruch L, Karram T, Hoffman A, et al. Dynamic Autologous Reendothelialization of Small-Caliber Arterial Extracellular Matrix: A Preclinical Large Animal Study. Tissue Engineering Part A. 2016.
[175] Fillinger MF, Sampson LN, Cronenwett JL, Powell RJ, Wagner RJ. Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. Journal of Surgical Research. 1997;67:169-78.
[176] Sarkar R, Meinberg EG, Stanley JC, Gordon D, Webb RC. Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells. Circulation research. 1996;78:225-30.
[177] Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373-6.
[178] Cho S-W, Lim SH, Kim I-K, Hong YS, Kim S-S, Yoo KJ, et al. Small-diameter blood vessels engineered with bone marrow–derived cells. Annals of surgery. 2005;241:506-15.
[179] Liu JY, Swartz DD, Peng HF, Gugino SF, Russell JA, Andreadis ST. Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovascular research. 2007;75:618-28.
[180] Zhu C, Ying D, Mi J, Li L, Zeng W, Hou C, et al. Development of anti-atherosclerotic tissue-engineered blood vessel by A20-regulated endothelial progenitor cells seeding decellularized vascular matrix. Biomaterials. 2008;29:2628-36.
[181] Cho S-W, Kim I-K, Kang JM, Song KW, Kim HS, Park CH, et al. Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery. Tissue Engineering Part A. 2008;15:901-12.
[182] Zhao Y, Zhang S, Zhou J, Wang J, Zhen M, Liu Y, et al. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials. 2010;31:296-307.
[183] Neff LP, Tillman BW, Yazdani SK, Machingal MA, Yoo JJ, Soker S, et al. Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. Journal of vascular surgery. 2011;53:426-34.
[184] Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, et al. Host bone-marrow cells are a source of donor intimal smooth-muscle–like cells in murine aortic transplant arteriopathy. Nature medicine. 2001;7:738-41.
[185] Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nature medicine. 2001;7:1035-40.
[186] Velazquez OC, Snyder R, Liu Z-J, Fairman RM, Herlyn M. Fibroblast-dependent differentiation of human microvascular endothelial cells into capillary-like 3-dimensional networks. The FASEB Journal. 2002;16:1316-8.
[187] Yang JR, Shiue YL, Liao CH, Lin SZ, Chen LR. Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP. Cloning and stem cells. 2009;11:235-44.
[188] Karlsson LK, Junker JP, Grenegard M, Kratz G. Human dermal fibroblasts: a potential cell source for endothelialization of vascular grafts. Annals of vascular surgery. 2009;23:663-74.
[189] Kuo YR, Chen CC, Goto S, Lee IT, Huang CW, Tsai CC, et al. Modulation of immune response and T-cell regulation by donor adipose-derived stem cells in a rodent hind-limb allotransplant model. Plastic and reconstructive surgery. 2011;128:661e-72e.
[190] DiMuzio P, Tulenko T. Tissue engineering applications to vascular bypass graft development: the use of adipose-derived stem cells. Journal of vascular surgery. 2007;45 Suppl A:A99-103.
[191] Krawiec JT, Liao H-T, Kwan LL, D'Amore A, Weinbaum JS, Rubin JP, et al. Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft. Journal of vascular surgery. 2016.
[192] Elçin AE, Parmaksiz M, Dogan A, Seker S, Durkut S, Dalva K, et al. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4. Experimental cell research. 2017.
[193] Rodríguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proceedings of the National Academy of Sciences. 2006;103:12167-72.
[194] Jack GS, Zhang R, Lee M, Xu Y, Wu BM, Rodríguez LV. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials. 2009;30:3259-70.
[195] Park IS, Kim SH, Heo DN, Jung Y, Kwon IK, Rhie J-W, et al. Synergistic effect of biochemical factors and strain on the smooth muscle cell differentiation of adipose-derived stem cells on an elastic nanofibrous scaffold. Journal of Biomaterials Science, Polymer Edition. 2012;23:1579-93.
[196] Björninen M, Gilmore K, Pelto J, Seppänen-Kaijansinkko R, Kellomäki M, Miettinen S, et al. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering. Annals of biomedical engineering. 2016:1-12.
[197] Bertanha M, Moroz A, Almeida R, Alves FC, Acorci Valerio MJ, Moura R, et al. Tissue-engineered blood vessel substitute by reconstruction of endothelium using mesenchymal stem cells induced by platelet growth factors. Journal of vascular surgery. 2013.
[198] Valérie Planat-Benard; Jean-Sébastien Silvestre BC, Mireille André MMN, Radia Tamarat, Michel Clergue,, Carole Manneville CS-B, Micheline Duriez, Alain Tedgui,, Bernard Levy LP, Louis Casteilla. Plasticity of Human Adipose Lineage Cells Toward
Endothelial Cells
Physiological and Therapeutic Perspectives. Circulation. 2004;109:656-63.
[199] Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110:349-55.
[200] Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochemical and biophysical research communications. 2005;332:370-9.
[201] Martinez-Estrada OM, Munoz-Santos Y, Julve J, Reina M, Vilaro S. Human adipose tissue as a source of Flk-1+ cells: new method of differentiation and expansion. Cardiovascular research. 2005;65:328-33.
[202] Kondo K, Shintani S, Shibata R, Murakami H, Murakami R, Imaizumi M, et al. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29:61-6.
[203] Mi Hyang Moon JBL, Sun Young Kim, Yong Chan Bae, Yeon Jeong Kim, Sang Min Sung et al.,. Human Adipose Tissue-Derived Mesenchymal Stem Cells Improve Postnatal Neovascularization in a Mouse Model of Hindlimb Ischemia. Cell Physiol Biochem. 2006;17:279-90.
[204] Fischer LJ, McIlhenny S, Tulenko T, Golesorkhi N, Zhang P, Larson R, et al. Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. The Journal of surgical research. 2009;152:157-66.
[205] Szoke K, Beckstrom KJ, Brinchmann JE. Human adipose tissue as a source of cells with angiogenic potential. Cell transplantation. 2012;21:235-50.
[206] Heydarkhan-Hagvall S, Schenke-Layland K, Yang JQ, Heydarkhan S, Xu Y, Zuk PA, et al. Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs. 2008;187:263-74.
[207] Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292-8.
[208] Fan W, Sun D, Liu J, Liang D, Wang Y, Narsinh KH, et al. Adipose stromal cells amplify angiogenic signaling via the VEGF/mTOR/Akt pathway in a murine hindlimb ischemia model: a 3D multimodality imaging study. PloS one. 2012;7:e45621.
[209] Szmitko PE, Fedak PW, Weisel RD, Stewart DJ, Kutryk MJ, Verma S. Endothelial progenitor cells. Circulation. 2003;107:3093-100.
[210] Khakoo AY, Finkel T. Endothelial progenitor cells. Annu Rev Med. 2005;56:79-101.
[211] Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature medicine. 1999;5:434-8.
[212] Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation research. 1999;85:221-8.
[213] Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K-i, Eguchi H, et al. Transplanted cord blood–derived endothelial precursor cells augment postnatal neovascularization. The Journal of clinical investigation. 2000;105:1527-36.
[214] Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood. 2000;95:952-8.
[215] Krawiec JT, Vorp DA. Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials. 2012;33:3388-400.
[216] Zeng W, Wen C, Wu Y, Li L, Zhou Z, Mi J, et al. The use of BDNF to enhance the patency rate of small-diameter tissue-engineered blood vessels through stem cell homing mechanisms. Biomaterials. 2012;33:473-84.
[217] Schmidt D, Breymann C, Weber A, Guenter CI, Neuenschwander S, Zund G, et al. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. The Annals of thoracic surgery. 2004;78:2094-8.
[218] Melchiorri AJ, Bracaglia LG, Kimerer LK, Hibino N, Fisher JP. In vitro endothelialization of biodegradable vascular grafts via endothelial progenitor cell seeding and maturation in a tubular perfusion system bioreactor. Tissue Engineering Part C: Methods. 2016;22:663-70.
[219] Zhou M, Liu Z, Liu C, Jiang X, Wei Z, Qiao W, et al. Tissue engineering of small‐diameter vascular grafts by endothelial progenitor cells seeding heparin‐coated decellularized scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2012;100:111-20.
[220] Quint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE. Decellularized tissue-engineered blood vessel as an arterial conduit. Proceedings of the National Academy of Sciences. 2011;108:9214-9.
[221] Byrom MJ, Bannon PG, White GH, Ng MK. Animal models for the assessment of novel vascular conduits. Journal of vascular surgery. 2010;52:176-95.
[222] Lu J-H, Chang Y, Sung H-W, Chiu Y-T, Yang P-C, Hwang B. Heparinization on pericardial substitutes can reduce adhesion and epicardial inflammation in the dog. The Journal of thoracic and cardiovascular surgery. 1998;115:1111-20.
[223] Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30:1482-91.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top